// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/dec_noise.h" #include #include #include #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/dec_noise.cc" #include #include #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/rect.h" #include "lib/jxl/frame_dimensions.h" #include "lib/jxl/xorshift128plus-inl.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Or; using hwy::HWY_NAMESPACE::ShiftRight; using hwy::HWY_NAMESPACE::Vec; using D = HWY_CAPPED(float, kBlockDim); using DI = hwy::HWY_NAMESPACE::Rebind; using DI8 = hwy::HWY_NAMESPACE::Repartition; // Converts one vector's worth of random bits to floats in [1, 2). // NOTE: as the convolution kernel sums to 0, it doesn't matter if inputs are in // [0, 1) or in [1, 2). void BitsToFloat(const uint32_t* JXL_RESTRICT random_bits, float* JXL_RESTRICT floats) { const HWY_FULL(float) df; const HWY_FULL(uint32_t) du; const auto bits = Load(du, random_bits); // 1.0 + 23 random mantissa bits = [1, 2) const auto rand12 = BitCast(df, Or(ShiftRight<9>(bits), Set(du, 0x3F800000))); Store(rand12, df, floats); } void RandomImage(Xorshift128Plus* rng, const Rect& rect, ImageF* JXL_RESTRICT noise) { const size_t xsize = rect.xsize(); const size_t ysize = rect.ysize(); // May exceed the vector size, hence we have two loops over x below. constexpr size_t kFloatsPerBatch = Xorshift128Plus::N * sizeof(uint64_t) / sizeof(float); HWY_ALIGN uint64_t batch[Xorshift128Plus::N] = {}; const HWY_FULL(float) df; const size_t N = Lanes(df); for (size_t y = 0; y < ysize; ++y) { float* JXL_RESTRICT row = rect.Row(noise, y); size_t x = 0; // Only entire batches (avoids exceeding the image padding). for (; x + kFloatsPerBatch < xsize; x += kFloatsPerBatch) { rng->Fill(batch); for (size_t i = 0; i < kFloatsPerBatch; i += Lanes(df)) { BitsToFloat(reinterpret_cast(batch) + i, row + x + i); } } // Any remaining pixels, rounded up to vectors (safe due to padding). rng->Fill(batch); size_t batch_pos = 0; // < kFloatsPerBatch for (; x < xsize; x += N) { BitsToFloat(reinterpret_cast(batch) + batch_pos, row + x); batch_pos += N; } } } void Random3Planes(size_t visible_frame_index, size_t nonvisible_frame_index, size_t x0, size_t y0, const std::pair& plane0, const std::pair& plane1, const std::pair& plane2) { HWY_ALIGN Xorshift128Plus rng(visible_frame_index, nonvisible_frame_index, x0, y0); RandomImage(&rng, plane0.second, plane0.first); RandomImage(&rng, plane1.second, plane1.first); RandomImage(&rng, plane2.second, plane2.first); } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(Random3Planes); void Random3Planes(size_t visible_frame_index, size_t nonvisible_frame_index, size_t x0, size_t y0, const std::pair& plane0, const std::pair& plane1, const std::pair& plane2) { HWY_DYNAMIC_DISPATCH(Random3Planes) (visible_frame_index, nonvisible_frame_index, x0, y0, plane0, plane1, plane2); } void DecodeFloatParam(float precision, float* val, BitReader* br) { const int absval_quant = br->ReadFixedBits<10>(); *val = absval_quant / precision; } Status DecodeNoise(BitReader* br, NoiseParams* noise_params) { for (float& i : noise_params->lut) { DecodeFloatParam(kNoisePrecision, &i, br); } return true; } } // namespace jxl #endif // HWY_ONCE