// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_frame.h" #include #include #include #include #include #include #include #include #include #include #include "lib/jxl/ac_context.h" #include "lib/jxl/ac_strategy.h" #include "lib/jxl/base/bits.h" #include "lib/jxl/base/common.h" #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/data_parallel.h" #include "lib/jxl/base/override.h" #include "lib/jxl/base/printf_macros.h" #include "lib/jxl/base/rect.h" #include "lib/jxl/base/status.h" #include "lib/jxl/chroma_from_luma.h" #include "lib/jxl/coeff_order.h" #include "lib/jxl/coeff_order_fwd.h" #include "lib/jxl/color_encoding_internal.h" #include "lib/jxl/common.h" // kMaxNumPasses #include "lib/jxl/dct_util.h" #include "lib/jxl/dec_external_image.h" #include "lib/jxl/enc_ac_strategy.h" #include "lib/jxl/enc_adaptive_quantization.h" #include "lib/jxl/enc_ans.h" #include "lib/jxl/enc_ar_control_field.h" #include "lib/jxl/enc_aux_out.h" #include "lib/jxl/enc_bit_writer.h" #include "lib/jxl/enc_cache.h" #include "lib/jxl/enc_chroma_from_luma.h" #include "lib/jxl/enc_coeff_order.h" #include "lib/jxl/enc_context_map.h" #include "lib/jxl/enc_entropy_coder.h" #include "lib/jxl/enc_external_image.h" #include "lib/jxl/enc_fields.h" #include "lib/jxl/enc_group.h" #include "lib/jxl/enc_heuristics.h" #include "lib/jxl/enc_modular.h" #include "lib/jxl/enc_noise.h" #include "lib/jxl/enc_params.h" #include "lib/jxl/enc_patch_dictionary.h" #include "lib/jxl/enc_photon_noise.h" #include "lib/jxl/enc_quant_weights.h" #include "lib/jxl/enc_splines.h" #include "lib/jxl/enc_toc.h" #include "lib/jxl/enc_xyb.h" #include "lib/jxl/fields.h" #include "lib/jxl/frame_dimensions.h" #include "lib/jxl/frame_header.h" #include "lib/jxl/image.h" #include "lib/jxl/image_bundle.h" #include "lib/jxl/image_ops.h" #include "lib/jxl/jpeg/enc_jpeg_data.h" #include "lib/jxl/loop_filter.h" #include "lib/jxl/modular/options.h" #include "lib/jxl/quant_weights.h" #include "lib/jxl/quantizer.h" #include "lib/jxl/splines.h" #include "lib/jxl/toc.h" namespace jxl { Status ParamsPostInit(CompressParams* p) { if (!p->manual_noise.empty() && p->manual_noise.size() != NoiseParams::kNumNoisePoints) { return JXL_FAILURE("Invalid number of noise lut entries"); } if (!p->manual_xyb_factors.empty() && p->manual_xyb_factors.size() != 3) { return JXL_FAILURE("Invalid number of XYB quantization factors"); } if (!p->modular_mode && p->butteraugli_distance == 0.0) { p->butteraugli_distance = kMinButteraugliDistance; } if (p->original_butteraugli_distance == -1.0) { p->original_butteraugli_distance = p->butteraugli_distance; } if (p->resampling <= 0) { p->resampling = 1; // For very low bit rates, using 2x2 resampling gives better results on // most photographic images, with an adjusted butteraugli score chosen to // give roughly the same amount of bits per pixel. if (!p->already_downsampled && p->butteraugli_distance >= 20) { p->resampling = 2; p->butteraugli_distance = 6 + ((p->butteraugli_distance - 20) * 0.25); } } if (p->ec_resampling <= 0) { p->ec_resampling = p->resampling; } return true; } namespace { template uint32_t GetBitDepth(JxlBitDepth bit_depth, const T& metadata, JxlPixelFormat format) { if (bit_depth.type == JXL_BIT_DEPTH_FROM_PIXEL_FORMAT) { return BitsPerChannel(format.data_type); } else if (bit_depth.type == JXL_BIT_DEPTH_FROM_CODESTREAM) { return metadata.bit_depth.bits_per_sample; } else if (bit_depth.type == JXL_BIT_DEPTH_CUSTOM) { return bit_depth.bits_per_sample; } else { return 0; } } Status CopyColorChannels(JxlChunkedFrameInputSource input, Rect rect, const FrameInfo& frame_info, const ImageMetadata& metadata, ThreadPool* pool, Image3F* color, ImageF* alpha, bool* has_interleaved_alpha) { JxlPixelFormat format = {4, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; input.get_color_channels_pixel_format(input.opaque, &format); *has_interleaved_alpha = format.num_channels == 2 || format.num_channels == 4; size_t bits_per_sample = GetBitDepth(frame_info.image_bit_depth, metadata, format); size_t row_offset; auto buffer = GetColorBuffer(input, rect.x0(), rect.y0(), rect.xsize(), rect.ysize(), &row_offset); if (!buffer) { return JXL_FAILURE("no buffer for color channels given"); } size_t color_channels = frame_info.ib_needs_color_transform ? metadata.color_encoding.Channels() : 3; if (format.num_channels < color_channels) { return JXL_FAILURE("Expected %" PRIuS " color channels, received only %u channels", color_channels, format.num_channels); } const uint8_t* data = reinterpret_cast(buffer.get()); for (size_t c = 0; c < color_channels; ++c) { JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, c, pool, &color->Plane(c))); } if (color_channels == 1) { CopyImageTo(color->Plane(0), &color->Plane(1)); CopyImageTo(color->Plane(0), &color->Plane(2)); } if (alpha) { if (*has_interleaved_alpha) { JXL_RETURN_IF_ERROR(ConvertFromExternalNoSizeCheck( data, rect.xsize(), rect.ysize(), row_offset, bits_per_sample, format, format.num_channels - 1, pool, alpha)); } else { // if alpha is not passed, but it is expected, then assume // it is all-opaque FillImage(1.0f, alpha); } } return true; } Status CopyExtraChannels(JxlChunkedFrameInputSource input, Rect rect, const FrameInfo& frame_info, const ImageMetadata& metadata, bool has_interleaved_alpha, ThreadPool* pool, std::vector* extra_channels) { for (size_t ec = 0; ec < metadata.num_extra_channels; ec++) { if (has_interleaved_alpha && metadata.extra_channel_info[ec].type == ExtraChannel::kAlpha) { // Skip this alpha channel, but still request additional alpha channels // if they exist. has_interleaved_alpha = false; continue; } JxlPixelFormat ec_format = {1, JXL_TYPE_UINT8, JXL_NATIVE_ENDIAN, 0}; input.get_extra_channel_pixel_format(input.opaque, ec, &ec_format); ec_format.num_channels = 1; size_t row_offset; auto buffer = GetExtraChannelBuffer(input, ec, rect.x0(), rect.y0(), rect.xsize(), rect.ysize(), &row_offset); if (!buffer) { return JXL_FAILURE("no buffer for extra channel given"); } size_t bits_per_sample = GetBitDepth( frame_info.image_bit_depth, metadata.extra_channel_info[ec], ec_format); if (!ConvertFromExternalNoSizeCheck( reinterpret_cast(buffer.get()), rect.xsize(), rect.ysize(), row_offset, bits_per_sample, ec_format, 0, pool, &(*extra_channels)[ec])) { return JXL_FAILURE("Failed to set buffer for extra channel"); } } return true; } void SetProgressiveMode(const CompressParams& cparams, ProgressiveSplitter* progressive_splitter) { constexpr PassDefinition progressive_passes_dc_vlf_lf_full_ac[] = { {/*num_coefficients=*/2, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/4}, {/*num_coefficients=*/3, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/2}, {/*num_coefficients=*/8, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/0}, }; constexpr PassDefinition progressive_passes_dc_quant_ac_full_ac[] = { {/*num_coefficients=*/8, /*shift=*/1, /*suitable_for_downsampling_of_at_least=*/2}, {/*num_coefficients=*/8, /*shift=*/0, /*suitable_for_downsampling_of_at_least=*/0}, }; bool progressive_mode = ApplyOverride(cparams.progressive_mode, false); bool qprogressive_mode = ApplyOverride(cparams.qprogressive_mode, false); if (cparams.custom_progressive_mode) { progressive_splitter->SetProgressiveMode(*cparams.custom_progressive_mode); } else if (qprogressive_mode) { progressive_splitter->SetProgressiveMode( ProgressiveMode{progressive_passes_dc_quant_ac_full_ac}); } else if (progressive_mode) { progressive_splitter->SetProgressiveMode( ProgressiveMode{progressive_passes_dc_vlf_lf_full_ac}); } } uint64_t FrameFlagsFromParams(const CompressParams& cparams) { uint64_t flags = 0; const float dist = cparams.butteraugli_distance; // We don't add noise at low butteraugli distances because the original // noise is stored within the compressed image and adding noise makes things // worse. if (ApplyOverride(cparams.noise, dist >= kMinButteraugliForNoise) || cparams.photon_noise_iso > 0 || cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { flags |= FrameHeader::kNoise; } if (cparams.progressive_dc > 0 && cparams.modular_mode == false) { flags |= FrameHeader::kUseDcFrame; } return flags; } Status LoopFilterFromParams(const CompressParams& cparams, bool streaming_mode, FrameHeader* JXL_RESTRICT frame_header) { LoopFilter* loop_filter = &frame_header->loop_filter; // Gaborish defaults to enabled in Hare or slower. loop_filter->gab = ApplyOverride( cparams.gaborish, cparams.speed_tier <= SpeedTier::kHare && frame_header->encoding == FrameEncoding::kVarDCT && cparams.decoding_speed_tier < 4); if (cparams.epf != -1) { loop_filter->epf_iters = cparams.epf; } else { if (frame_header->encoding == FrameEncoding::kModular) { loop_filter->epf_iters = 0; } else { constexpr float kThresholds[3] = {0.7, 1.5, 4.0}; loop_filter->epf_iters = 0; if (cparams.decoding_speed_tier < 3) { for (size_t i = cparams.decoding_speed_tier == 2 ? 1 : 0; i < 3; i++) { if (cparams.butteraugli_distance >= kThresholds[i]) { loop_filter->epf_iters++; } } } } } // Strength of EPF in modular mode. if (frame_header->encoding == FrameEncoding::kModular && !cparams.IsLossless()) { // TODO(veluca): this formula is nonsense. loop_filter->epf_sigma_for_modular = std::max(cparams.butteraugli_distance, 1.0f); } if (frame_header->encoding == FrameEncoding::kModular && cparams.lossy_palette) { loop_filter->epf_sigma_for_modular = 1.0f; } return true; } Status MakeFrameHeader(size_t xsize, size_t ysize, const CompressParams& cparams, const ProgressiveSplitter& progressive_splitter, const FrameInfo& frame_info, const jpeg::JPEGData* jpeg_data, bool streaming_mode, FrameHeader* JXL_RESTRICT frame_header) { frame_header->nonserialized_is_preview = frame_info.is_preview; frame_header->is_last = frame_info.is_last; frame_header->save_before_color_transform = frame_info.save_before_color_transform; frame_header->frame_type = frame_info.frame_type; frame_header->name = frame_info.name; progressive_splitter.InitPasses(&frame_header->passes); if (cparams.modular_mode) { frame_header->encoding = FrameEncoding::kModular; if (cparams.modular_group_size_shift == -1) { frame_header->group_size_shift = 1; // no point using groups when only one group is full and the others are // less than half full: multithreading will not really help much, while // compression does suffer if (xsize <= 400 && ysize <= 400) { frame_header->group_size_shift = 2; } } else { frame_header->group_size_shift = cparams.modular_group_size_shift; } } if (jpeg_data) { // we are transcoding a JPEG, so we don't get to choose frame_header->encoding = FrameEncoding::kVarDCT; frame_header->x_qm_scale = 2; frame_header->b_qm_scale = 2; JXL_RETURN_IF_ERROR(SetChromaSubsamplingFromJpegData( *jpeg_data, &frame_header->chroma_subsampling)); JXL_RETURN_IF_ERROR(SetColorTransformFromJpegData( *jpeg_data, &frame_header->color_transform)); } else { frame_header->color_transform = cparams.color_transform; if (!cparams.modular_mode && (frame_header->chroma_subsampling.MaxHShift() != 0 || frame_header->chroma_subsampling.MaxVShift() != 0)) { return JXL_FAILURE( "Chroma subsampling is not supported in VarDCT mode when not " "recompressing JPEGs"); } } if (frame_header->color_transform != ColorTransform::kYCbCr && (frame_header->chroma_subsampling.MaxHShift() != 0 || frame_header->chroma_subsampling.MaxVShift() != 0)) { return JXL_FAILURE( "Chroma subsampling is not supported when color transform is not " "YCbCr"); } frame_header->flags = FrameFlagsFromParams(cparams); // Non-photon noise is not supported in the Modular encoder for now. if (frame_header->encoding != FrameEncoding::kVarDCT && cparams.photon_noise_iso == 0 && cparams.manual_noise.empty()) { frame_header->UpdateFlag(false, FrameHeader::Flags::kNoise); } JXL_RETURN_IF_ERROR( LoopFilterFromParams(cparams, streaming_mode, frame_header)); frame_header->dc_level = frame_info.dc_level; if (frame_header->dc_level > 2) { // With 3 or more progressive_dc frames, the implementation does not yet // work, see enc_cache.cc. return JXL_FAILURE("progressive_dc > 2 is not yet supported"); } if (cparams.progressive_dc > 0 && (cparams.ec_resampling != 1 || cparams.resampling != 1)) { return JXL_FAILURE("Resampling not supported with DC frames"); } if (cparams.resampling != 1 && cparams.resampling != 2 && cparams.resampling != 4 && cparams.resampling != 8) { return JXL_FAILURE("Invalid resampling factor"); } if (cparams.ec_resampling != 1 && cparams.ec_resampling != 2 && cparams.ec_resampling != 4 && cparams.ec_resampling != 8) { return JXL_FAILURE("Invalid ec_resampling factor"); } // Resized frames. if (frame_info.frame_type != FrameType::kDCFrame) { frame_header->frame_origin = frame_info.origin; size_t ups = 1; if (cparams.already_downsampled) ups = cparams.resampling; // TODO(lode): this is not correct in case of odd original image sizes in // combination with cparams.already_downsampled. Likely these values should // be set to respectively frame_header->default_xsize() and // frame_header->default_ysize() instead, the original (non downsampled) // intended decoded image dimensions. But it may be more subtle than that // if combined with crop. This issue causes custom_size_or_origin to be // incorrectly set to true in case of already_downsampled with odd output // image size when no cropping is used. frame_header->frame_size.xsize = xsize * ups; frame_header->frame_size.ysize = ysize * ups; if (frame_info.origin.x0 != 0 || frame_info.origin.y0 != 0 || frame_header->frame_size.xsize != frame_header->default_xsize() || frame_header->frame_size.ysize != frame_header->default_ysize()) { frame_header->custom_size_or_origin = true; } } // Upsampling. frame_header->upsampling = cparams.resampling; const std::vector& extra_channels = frame_header->nonserialized_metadata->m.extra_channel_info; frame_header->extra_channel_upsampling.clear(); frame_header->extra_channel_upsampling.resize(extra_channels.size(), cparams.ec_resampling); frame_header->save_as_reference = frame_info.save_as_reference; // Set blending-related information. if (frame_info.blend || frame_header->custom_size_or_origin) { // Set blend_channel to the first alpha channel. These values are only // encoded in case a blend mode involving alpha is used and there are more // than one extra channels. size_t index = 0; if (frame_info.alpha_channel == -1) { if (extra_channels.size() > 1) { for (size_t i = 0; i < extra_channels.size(); i++) { if (extra_channels[i].type == ExtraChannel::kAlpha) { index = i; break; } } } } else { index = static_cast(frame_info.alpha_channel); JXL_ASSERT(index == 0 || index < extra_channels.size()); } frame_header->blending_info.alpha_channel = index; frame_header->blending_info.mode = frame_info.blend ? frame_info.blendmode : BlendMode::kReplace; frame_header->blending_info.source = frame_info.source; frame_header->blending_info.clamp = frame_info.clamp; const auto& extra_channel_info = frame_info.extra_channel_blending_info; for (size_t i = 0; i < extra_channels.size(); i++) { if (i < extra_channel_info.size()) { frame_header->extra_channel_blending_info[i] = extra_channel_info[i]; } else { frame_header->extra_channel_blending_info[i].alpha_channel = index; BlendMode default_blend = frame_info.blendmode; if (extra_channels[i].type != ExtraChannel::kBlack && i != index) { // K needs to be blended, spot colors and other stuff gets added default_blend = BlendMode::kAdd; } frame_header->extra_channel_blending_info[i].mode = frame_info.blend ? default_blend : BlendMode::kReplace; frame_header->extra_channel_blending_info[i].source = 1; } } } frame_header->animation_frame.duration = frame_info.duration; frame_header->animation_frame.timecode = frame_info.timecode; if (jpeg_data) { frame_header->UpdateFlag(false, FrameHeader::kUseDcFrame); frame_header->UpdateFlag(true, FrameHeader::kSkipAdaptiveDCSmoothing); } return true; } // Invisible (alpha = 0) pixels tend to be a mess in optimized PNGs. // Since they have no visual impact whatsoever, we can replace them with // something that compresses better and reduces artifacts near the edges. This // does some kind of smooth stuff that seems to work. // Replace invisible pixels with a weighted average of the pixel to the left, // the pixel to the topright, and non-invisible neighbours. // Produces downward-blurry smears, with in the upwards direction only a 1px // edge duplication but not more. It would probably be better to smear in all // directions. That requires an alpha-weighed convolution with a large enough // kernel though, which might be overkill... void SimplifyInvisible(Image3F* image, const ImageF& alpha, bool lossless) { for (size_t c = 0; c < 3; ++c) { for (size_t y = 0; y < image->ysize(); ++y) { float* JXL_RESTRICT row = image->PlaneRow(c, y); const float* JXL_RESTRICT prow = (y > 0 ? image->PlaneRow(c, y - 1) : nullptr); const float* JXL_RESTRICT nrow = (y + 1 < image->ysize() ? image->PlaneRow(c, y + 1) : nullptr); const float* JXL_RESTRICT a = alpha.Row(y); const float* JXL_RESTRICT pa = (y > 0 ? alpha.Row(y - 1) : nullptr); const float* JXL_RESTRICT na = (y + 1 < image->ysize() ? alpha.Row(y + 1) : nullptr); for (size_t x = 0; x < image->xsize(); ++x) { if (a[x] == 0) { if (lossless) { row[x] = 0; continue; } float d = 0.f; row[x] = 0; if (x > 0) { row[x] += row[x - 1]; d++; if (a[x - 1] > 0.f) { row[x] += row[x - 1]; d++; } } if (x + 1 < image->xsize()) { if (y > 0) { row[x] += prow[x + 1]; d++; } if (a[x + 1] > 0.f) { row[x] += 2.f * row[x + 1]; d += 2.f; } if (y > 0 && pa[x + 1] > 0.f) { row[x] += 2.f * prow[x + 1]; d += 2.f; } if (y + 1 < image->ysize() && na[x + 1] > 0.f) { row[x] += 2.f * nrow[x + 1]; d += 2.f; } } if (y > 0 && pa[x] > 0.f) { row[x] += 2.f * prow[x]; d += 2.f; } if (y + 1 < image->ysize() && na[x] > 0.f) { row[x] += 2.f * nrow[x]; d += 2.f; } if (d > 1.f) row[x] /= d; } } } } } struct PixelStatsForChromacityAdjustment { float dx = 0; float db = 0; float exposed_blue = 0; static float CalcPlane(const ImageF* JXL_RESTRICT plane, const Rect& rect) { float xmax = 0; float ymax = 0; for (size_t ty = 1; ty < rect.ysize(); ++ty) { for (size_t tx = 1; tx < rect.xsize(); ++tx) { float cur = rect.Row(plane, ty)[tx]; float prev_row = rect.Row(plane, ty - 1)[tx]; float prev = rect.Row(plane, ty)[tx - 1]; xmax = std::max(xmax, std::abs(cur - prev)); ymax = std::max(ymax, std::abs(cur - prev_row)); } } return std::max(xmax, ymax); } void CalcExposedBlue(const ImageF* JXL_RESTRICT plane_y, const ImageF* JXL_RESTRICT plane_b, const Rect& rect) { float eb = 0; float xmax = 0; float ymax = 0; for (size_t ty = 1; ty < rect.ysize(); ++ty) { for (size_t tx = 1; tx < rect.xsize(); ++tx) { float cur_y = rect.Row(plane_y, ty)[tx]; float cur_b = rect.Row(plane_b, ty)[tx]; float exposed_b = cur_b - cur_y * 1.2; float diff_b = cur_b - cur_y; float prev_row = rect.Row(plane_b, ty - 1)[tx]; float prev = rect.Row(plane_b, ty)[tx - 1]; float diff_prev_row = prev_row - rect.Row(plane_y, ty - 1)[tx]; float diff_prev = prev - rect.Row(plane_y, ty)[tx - 1]; xmax = std::max(xmax, std::abs(diff_b - diff_prev)); ymax = std::max(ymax, std::abs(diff_b - diff_prev_row)); if (exposed_b >= 0) { exposed_b *= fabs(cur_b - prev) + fabs(cur_b - prev_row); eb = std::max(eb, exposed_b); } } } exposed_blue = eb; db = std::max(xmax, ymax); } void Calc(const Image3F* JXL_RESTRICT opsin, const Rect& rect) { dx = CalcPlane(&opsin->Plane(0), rect); CalcExposedBlue(&opsin->Plane(1), &opsin->Plane(2), rect); } int HowMuchIsXChannelPixelized() const { if (dx >= 0.026) { return 3; } if (dx >= 0.022) { return 2; } if (dx >= 0.015) { return 1; } return 0; } int HowMuchIsBChannelPixelized() const { int add = exposed_blue >= 0.13 ? 1 : 0; if (db > 0.38) { return 2 + add; } if (db > 0.33) { return 1 + add; } if (db > 0.28) { return add; } return 0; } }; void ComputeChromacityAdjustments(const CompressParams& cparams, const Image3F& opsin, const Rect& rect, FrameHeader* frame_header) { if (frame_header->encoding != FrameEncoding::kVarDCT || cparams.max_error_mode) { return; } // 1) Distance based approach for chromacity adjustment: float x_qm_scale_steps[3] = {2.5f, 5.5f, 9.5f}; frame_header->x_qm_scale = 3; for (float x_qm_scale_step : x_qm_scale_steps) { if (cparams.original_butteraugli_distance > x_qm_scale_step) { frame_header->x_qm_scale++; } } // 2) Pixel-based approach for chromacity adjustment: // look at the individual pixels and make a guess how difficult // the image would be based on the worst case pixel. PixelStatsForChromacityAdjustment pixel_stats; if (cparams.speed_tier <= SpeedTier::kSquirrel) { pixel_stats.Calc(&opsin, rect); } // For X take the most severe adjustment. frame_header->x_qm_scale = std::max( frame_header->x_qm_scale, 2 + pixel_stats.HowMuchIsXChannelPixelized()); // B only adjusted by pixel-based approach. frame_header->b_qm_scale = 2 + pixel_stats.HowMuchIsBChannelPixelized(); } void ComputeNoiseParams(const CompressParams& cparams, bool streaming_mode, bool color_is_jpeg, const Image3F& opsin, const FrameDimensions& frame_dim, FrameHeader* frame_header, NoiseParams* noise_params) { if (cparams.photon_noise_iso > 0) { *noise_params = SimulatePhotonNoise(frame_dim.xsize, frame_dim.ysize, cparams.photon_noise_iso); } else if (cparams.manual_noise.size() == NoiseParams::kNumNoisePoints) { for (size_t i = 0; i < NoiseParams::kNumNoisePoints; i++) { noise_params->lut[i] = cparams.manual_noise[i]; } } else if (frame_header->encoding == FrameEncoding::kVarDCT && frame_header->flags & FrameHeader::kNoise && !color_is_jpeg && !streaming_mode) { // Don't start at zero amplitude since adding noise is expensive -- it // significantly slows down decoding, and this is unlikely to // completely go away even with advanced optimizations. After the // kNoiseModelingRampUpDistanceRange we have reached the full level, // i.e. noise is no longer represented by the compressed image, so we // can add full noise by the noise modeling itself. static const float kNoiseModelingRampUpDistanceRange = 0.6; static const float kNoiseLevelAtStartOfRampUp = 0.25; static const float kNoiseRampupStart = 1.0; // TODO(user) test and properly select quality_coef with smooth // filter float quality_coef = 1.0f; const float rampup = (cparams.butteraugli_distance - kNoiseRampupStart) / kNoiseModelingRampUpDistanceRange; if (rampup < 1.0f) { quality_coef = kNoiseLevelAtStartOfRampUp + (1.0f - kNoiseLevelAtStartOfRampUp) * rampup; } if (rampup < 0.0f) { quality_coef = kNoiseRampupStart; } if (!GetNoiseParameter(opsin, noise_params, quality_coef)) { frame_header->flags &= ~FrameHeader::kNoise; } } } Status DownsampleColorChannels(const CompressParams& cparams, const FrameHeader& frame_header, bool color_is_jpeg, Image3F* opsin) { if (color_is_jpeg || frame_header.upsampling == 1 || cparams.already_downsampled) { return true; } if (frame_header.encoding == FrameEncoding::kVarDCT && frame_header.upsampling == 2) { // TODO(lode): use the regular DownsampleImage, or adapt to the custom // coefficients, if there is are custom upscaling coefficients in // CustomTransformData if (cparams.speed_tier <= SpeedTier::kSquirrel) { // TODO(lode): DownsampleImage2_Iterative is currently too slow to // be used for squirrel, make it faster, and / or enable it only for // kitten. JXL_RETURN_IF_ERROR(DownsampleImage2_Iterative(opsin)); } else { JXL_RETURN_IF_ERROR(DownsampleImage2_Sharper(opsin)); } } else { JXL_ASSIGN_OR_RETURN(*opsin, DownsampleImage(*opsin, frame_header.upsampling)); } if (frame_header.encoding == FrameEncoding::kVarDCT) { PadImageToBlockMultipleInPlace(opsin); } return true; } template void FindIndexOfSumMaximum(const V* array, const size_t len, R* idx, V* sum) { JXL_ASSERT(len > 0); V maxval = 0; V val = 0; R maxidx = 0; for (size_t i = 0; i < len; ++i) { val += array[i]; if (val > maxval) { maxval = val; maxidx = i; } } *idx = maxidx; *sum = maxval; } Status ComputeJPEGTranscodingData(const jpeg::JPEGData& jpeg_data, const FrameHeader& frame_header, ThreadPool* pool, ModularFrameEncoder* enc_modular, PassesEncoderState* enc_state) { PassesSharedState& shared = enc_state->shared; const FrameDimensions& frame_dim = shared.frame_dim; const size_t xsize = frame_dim.xsize_padded; const size_t ysize = frame_dim.ysize_padded; const size_t xsize_blocks = frame_dim.xsize_blocks; const size_t ysize_blocks = frame_dim.ysize_blocks; // no-op chroma from luma JXL_ASSIGN_OR_RETURN(shared.cmap, ColorCorrelationMap::Create(xsize, ysize, false)); shared.ac_strategy.FillDCT8(); FillImage(static_cast(0), &shared.epf_sharpness); enc_state->coeffs.clear(); while (enc_state->coeffs.size() < enc_state->passes.size()) { JXL_ASSIGN_OR_RETURN( std::unique_ptr> coeffs, ACImageT::Make(kGroupDim * kGroupDim, frame_dim.num_groups)); enc_state->coeffs.emplace_back(std::move(coeffs)); } // convert JPEG quantization table to a Quantizer object float dcquantization[3]; std::vector qe(DequantMatrices::kNum, QuantEncoding::Library(0)); auto jpeg_c_map = JpegOrder(frame_header.color_transform, jpeg_data.components.size() == 1); std::vector qt(192); for (size_t c = 0; c < 3; c++) { size_t jpeg_c = jpeg_c_map[c]; const int32_t* quant = jpeg_data.quant[jpeg_data.components[jpeg_c].quant_idx].values.data(); dcquantization[c] = 255 * 8.0f / quant[0]; for (size_t y = 0; y < 8; y++) { for (size_t x = 0; x < 8; x++) { // JPEG XL transposes the DCT, JPEG doesn't. qt[c * 64 + 8 * x + y] = quant[8 * y + x]; } } } DequantMatricesSetCustomDC(&shared.matrices, dcquantization); float dcquantization_r[3] = {1.0f / dcquantization[0], 1.0f / dcquantization[1], 1.0f / dcquantization[2]}; qe[AcStrategy::Type::DCT] = QuantEncoding::RAW(qt); JXL_RETURN_IF_ERROR( DequantMatricesSetCustom(&shared.matrices, qe, enc_modular)); // Ensure that InvGlobalScale() is 1. shared.quantizer = Quantizer(&shared.matrices, 1, kGlobalScaleDenom); // Recompute MulDC() and InvMulDC(). shared.quantizer.RecomputeFromGlobalScale(); // Per-block dequant scaling should be 1. FillImage(static_cast(shared.quantizer.InvGlobalScale()), &shared.raw_quant_field); std::vector scaled_qtable(192); for (size_t c = 0; c < 3; c++) { for (size_t i = 0; i < 64; i++) { scaled_qtable[64 * c + i] = (1 << kCFLFixedPointPrecision) * qt[64 + i] / qt[64 * c + i]; } } auto jpeg_row = [&](size_t c, size_t y) { return jpeg_data.components[jpeg_c_map[c]].coeffs.data() + jpeg_data.components[jpeg_c_map[c]].width_in_blocks * kDCTBlockSize * y; }; bool DCzero = (frame_header.color_transform == ColorTransform::kYCbCr); // Compute chroma-from-luma for AC (doesn't seem to be useful for DC) if (frame_header.chroma_subsampling.Is444() && enc_state->cparams.force_cfl_jpeg_recompression && jpeg_data.components.size() == 3) { for (size_t c : {0, 2}) { ImageSB* map = (c == 0 ? &shared.cmap.ytox_map : &shared.cmap.ytob_map); const float kScale = kDefaultColorFactor; const int kOffset = 127; const float kBase = c == 0 ? shared.cmap.YtoXRatio(0) : shared.cmap.YtoBRatio(0); const float kZeroThresh = kScale * kZeroBiasDefault[c] * 0.9999f; // just epsilon less for better rounding auto process_row = [&](const uint32_t task, const size_t thread) { size_t ty = task; int8_t* JXL_RESTRICT row_out = map->Row(ty); for (size_t tx = 0; tx < map->xsize(); ++tx) { const size_t y0 = ty * kColorTileDimInBlocks; const size_t x0 = tx * kColorTileDimInBlocks; const size_t y1 = std::min(frame_dim.ysize_blocks, (ty + 1) * kColorTileDimInBlocks); const size_t x1 = std::min(frame_dim.xsize_blocks, (tx + 1) * kColorTileDimInBlocks); int32_t d_num_zeros[257] = {0}; // TODO(veluca): this needs SIMD + fixed point adaptation, and/or // conversion to the new CfL algorithm. for (size_t y = y0; y < y1; ++y) { const int16_t* JXL_RESTRICT row_m = jpeg_row(1, y); const int16_t* JXL_RESTRICT row_s = jpeg_row(c, y); for (size_t x = x0; x < x1; ++x) { for (size_t coeffpos = 1; coeffpos < kDCTBlockSize; coeffpos++) { const float scaled_m = row_m[x * kDCTBlockSize + coeffpos] * scaled_qtable[64 * c + coeffpos] * (1.0f / (1 << kCFLFixedPointPrecision)); const float scaled_s = kScale * row_s[x * kDCTBlockSize + coeffpos] + (kOffset - kBase * kScale) * scaled_m; if (std::abs(scaled_m) > 1e-8f) { float from; float to; if (scaled_m > 0) { from = (scaled_s - kZeroThresh) / scaled_m; to = (scaled_s + kZeroThresh) / scaled_m; } else { from = (scaled_s + kZeroThresh) / scaled_m; to = (scaled_s - kZeroThresh) / scaled_m; } if (from < 0.0f) { from = 0.0f; } if (to > 255.0f) { to = 255.0f; } // Instead of clamping the both values // we just check that range is sane. if (from <= to) { d_num_zeros[static_cast(std::ceil(from))]++; d_num_zeros[static_cast(std::floor(to + 1))]--; } } } } } int best = 0; int32_t best_sum = 0; FindIndexOfSumMaximum(d_num_zeros, 256, &best, &best_sum); int32_t offset_sum = 0; for (int i = 0; i < 256; ++i) { if (i <= kOffset) { offset_sum += d_num_zeros[i]; } } row_out[tx] = 0; if (best_sum > offset_sum + 1) { row_out[tx] = best - kOffset; } } }; JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, map->ysize(), ThreadPool::NoInit, process_row, "FindCorrelation")); } } JXL_ASSIGN_OR_RETURN(Image3F dc, Image3F::Create(xsize_blocks, ysize_blocks)); if (!frame_header.chroma_subsampling.Is444()) { ZeroFillImage(&dc); for (auto& coeff : enc_state->coeffs) { coeff->ZeroFill(); } } // JPEG DC is from -1024 to 1023. std::vector dc_counts[3] = {}; dc_counts[0].resize(2048); dc_counts[1].resize(2048); dc_counts[2].resize(2048); size_t total_dc[3] = {}; for (size_t c : {1, 0, 2}) { if (jpeg_data.components.size() == 1 && c != 1) { for (auto& coeff : enc_state->coeffs) { coeff->ZeroFillPlane(c); } ZeroFillImage(&dc.Plane(c)); // Ensure no division by 0. dc_counts[c][1024] = 1; total_dc[c] = 1; continue; } size_t hshift = frame_header.chroma_subsampling.HShift(c); size_t vshift = frame_header.chroma_subsampling.VShift(c); ImageSB& map = (c == 0 ? shared.cmap.ytox_map : shared.cmap.ytob_map); for (size_t group_index = 0; group_index < frame_dim.num_groups; group_index++) { const size_t gx = group_index % frame_dim.xsize_groups; const size_t gy = group_index / frame_dim.xsize_groups; int32_t* coeffs[kMaxNumPasses]; for (size_t i = 0; i < enc_state->coeffs.size(); i++) { coeffs[i] = enc_state->coeffs[i]->PlaneRow(c, group_index, 0).ptr32; } int32_t block[64]; for (size_t by = gy * kGroupDimInBlocks; by < ysize_blocks && by < (gy + 1) * kGroupDimInBlocks; ++by) { if ((by >> vshift) << vshift != by) continue; const int16_t* JXL_RESTRICT inputjpeg = jpeg_row(c, by >> vshift); const int16_t* JXL_RESTRICT inputjpegY = jpeg_row(1, by); float* JXL_RESTRICT fdc = dc.PlaneRow(c, by >> vshift); const int8_t* JXL_RESTRICT cm = map.ConstRow(by / kColorTileDimInBlocks); for (size_t bx = gx * kGroupDimInBlocks; bx < xsize_blocks && bx < (gx + 1) * kGroupDimInBlocks; ++bx) { if ((bx >> hshift) << hshift != bx) continue; size_t base = (bx >> hshift) * kDCTBlockSize; int idc; if (DCzero) { idc = inputjpeg[base]; } else { idc = inputjpeg[base] + 1024 / qt[c * 64]; } dc_counts[c][std::min(static_cast(idc + 1024), static_cast(2047))]++; total_dc[c]++; fdc[bx >> hshift] = idc * dcquantization_r[c]; if (c == 1 || !enc_state->cparams.force_cfl_jpeg_recompression || !frame_header.chroma_subsampling.Is444()) { for (size_t y = 0; y < 8; y++) { for (size_t x = 0; x < 8; x++) { block[y * 8 + x] = inputjpeg[base + x * 8 + y]; } } } else { const int32_t scale = shared.cmap.RatioJPEG(cm[bx / kColorTileDimInBlocks]); for (size_t y = 0; y < 8; y++) { for (size_t x = 0; x < 8; x++) { int Y = inputjpegY[kDCTBlockSize * bx + x * 8 + y]; int QChroma = inputjpeg[kDCTBlockSize * bx + x * 8 + y]; // Fixed-point multiply of CfL scale with quant table ratio // first, and Y value second. int coeff_scale = (scale * scaled_qtable[64 * c + y * 8 + x] + (1 << (kCFLFixedPointPrecision - 1))) >> kCFLFixedPointPrecision; int cfl_factor = (Y * coeff_scale + (1 << (kCFLFixedPointPrecision - 1))) >> kCFLFixedPointPrecision; int QCR = QChroma - cfl_factor; block[y * 8 + x] = QCR; } } } enc_state->progressive_splitter.SplitACCoefficients( block, AcStrategy::FromRawStrategy(AcStrategy::Type::DCT), bx, by, coeffs); for (size_t i = 0; i < enc_state->coeffs.size(); i++) { coeffs[i] += kDCTBlockSize; } } } } } auto& dct = enc_state->shared.block_ctx_map.dc_thresholds; auto& num_dc_ctxs = enc_state->shared.block_ctx_map.num_dc_ctxs; num_dc_ctxs = 1; for (size_t i = 0; i < 3; i++) { dct[i].clear(); int num_thresholds = (CeilLog2Nonzero(total_dc[i]) - 12) / 2; // up to 3 buckets per channel: // dark/medium/bright, yellow/unsat/blue, green/unsat/red num_thresholds = std::min(std::max(num_thresholds, 0), 2); size_t cumsum = 0; size_t cut = total_dc[i] / (num_thresholds + 1); for (int j = 0; j < 2048; j++) { cumsum += dc_counts[i][j]; if (cumsum > cut) { dct[i].push_back(j - 1025); cut = total_dc[i] * (dct[i].size() + 1) / (num_thresholds + 1); } } num_dc_ctxs *= dct[i].size() + 1; } auto& ctx_map = enc_state->shared.block_ctx_map.ctx_map; ctx_map.clear(); ctx_map.resize(3 * kNumOrders * num_dc_ctxs, 0); int lbuckets = (dct[1].size() + 1); for (size_t i = 0; i < num_dc_ctxs; i++) { // up to 9 contexts for luma ctx_map[i] = i / lbuckets; // up to 3 contexts for chroma ctx_map[kNumOrders * num_dc_ctxs + i] = ctx_map[2 * kNumOrders * num_dc_ctxs + i] = num_dc_ctxs / lbuckets + (i % lbuckets); } enc_state->shared.block_ctx_map.num_ctxs = *std::max_element(ctx_map.begin(), ctx_map.end()) + 1; // disable DC frame for now std::atomic has_error{false}; auto compute_dc_coeffs = [&](const uint32_t group_index, size_t /* thread */) { if (has_error) return; const Rect r = enc_state->shared.frame_dim.DCGroupRect(group_index); if (!enc_modular->AddVarDCTDC(frame_header, dc, r, group_index, /*nl_dc=*/false, enc_state, /*jpeg_transcode=*/true)) { has_error = true; return; } if (!enc_modular->AddACMetadata(r, group_index, /*jpeg_transcode=*/true, enc_state)) { has_error = true; return; } }; JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_dc_groups, ThreadPool::NoInit, compute_dc_coeffs, "Compute DC coeffs")); if (has_error) return JXL_FAILURE("Compute DC coeffs failed"); return true; } Status ComputeVarDCTEncodingData(const FrameHeader& frame_header, const Image3F* linear, Image3F* JXL_RESTRICT opsin, const Rect& rect, const JxlCmsInterface& cms, ThreadPool* pool, ModularFrameEncoder* enc_modular, PassesEncoderState* enc_state, AuxOut* aux_out) { JXL_ASSERT((rect.xsize() % kBlockDim) == 0 && (rect.ysize() % kBlockDim) == 0); JXL_RETURN_IF_ERROR(LossyFrameHeuristics(frame_header, enc_state, enc_modular, linear, opsin, rect, cms, pool, aux_out)); JXL_RETURN_IF_ERROR(InitializePassesEncoder( frame_header, *opsin, rect, cms, pool, enc_state, enc_modular, aux_out)); return true; } void ComputeAllCoeffOrders(PassesEncoderState& enc_state, const FrameDimensions& frame_dim) { auto used_orders_info = ComputeUsedOrders( enc_state.cparams.speed_tier, enc_state.shared.ac_strategy, Rect(enc_state.shared.raw_quant_field)); enc_state.used_orders.resize(enc_state.progressive_splitter.GetNumPasses()); for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { ComputeCoeffOrder( enc_state.cparams.speed_tier, *enc_state.coeffs[i], enc_state.shared.ac_strategy, frame_dim, enc_state.used_orders[i], enc_state.used_acs, used_orders_info.first, used_orders_info.second, &enc_state.shared.coeff_orders[i * enc_state.shared.coeff_order_size]); } enc_state.used_acs |= used_orders_info.first; } // Working area for TokenizeCoefficients (per-group!) struct EncCache { // Allocates memory when first called. Status InitOnce() { if (num_nzeroes.xsize() == 0) { JXL_ASSIGN_OR_RETURN( num_nzeroes, Image3I::Create(kGroupDimInBlocks, kGroupDimInBlocks)); } return true; } // TokenizeCoefficients Image3I num_nzeroes; }; Status TokenizeAllCoefficients(const FrameHeader& frame_header, ThreadPool* pool, PassesEncoderState* enc_state) { PassesSharedState& shared = enc_state->shared; std::vector group_caches; const auto tokenize_group_init = [&](const size_t num_threads) { group_caches.resize(num_threads); return true; }; std::atomic has_error{false}; const auto tokenize_group = [&](const uint32_t group_index, const size_t thread) { if (has_error) return; // Tokenize coefficients. const Rect rect = shared.frame_dim.BlockGroupRect(group_index); for (size_t idx_pass = 0; idx_pass < enc_state->passes.size(); idx_pass++) { JXL_ASSERT(enc_state->coeffs[idx_pass]->Type() == ACType::k32); const int32_t* JXL_RESTRICT ac_rows[3] = { enc_state->coeffs[idx_pass]->PlaneRow(0, group_index, 0).ptr32, enc_state->coeffs[idx_pass]->PlaneRow(1, group_index, 0).ptr32, enc_state->coeffs[idx_pass]->PlaneRow(2, group_index, 0).ptr32, }; // Ensure group cache is initialized. if (!group_caches[thread].InitOnce()) { has_error = true; return; } TokenizeCoefficients( &shared.coeff_orders[idx_pass * shared.coeff_order_size], rect, ac_rows, shared.ac_strategy, frame_header.chroma_subsampling, &group_caches[thread].num_nzeroes, &enc_state->passes[idx_pass].ac_tokens[group_index], shared.quant_dc, shared.raw_quant_field, shared.block_ctx_map); } }; JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, shared.frame_dim.num_groups, tokenize_group_init, tokenize_group, "TokenizeGroup")); if (has_error) return JXL_FAILURE("TokenizeGroup failed"); return true; } Status EncodeGlobalDCInfo(const PassesSharedState& shared, BitWriter* writer, AuxOut* aux_out) { // Encode quantizer DC and global scale. QuantizerParams params = shared.quantizer.GetParams(); JXL_RETURN_IF_ERROR( WriteQuantizerParams(params, writer, kLayerQuant, aux_out)); EncodeBlockCtxMap(shared.block_ctx_map, writer, aux_out); ColorCorrelationMapEncodeDC(shared.cmap, writer, kLayerDC, aux_out); return true; } // In streaming mode, this function only performs the histogram clustering and // saves the histogram bitstreams in enc_state, the actual AC global bitstream // is written in OutputAcGlobal() function after all the groups are processed. Status EncodeGlobalACInfo(PassesEncoderState* enc_state, BitWriter* writer, ModularFrameEncoder* enc_modular, AuxOut* aux_out) { PassesSharedState& shared = enc_state->shared; JXL_RETURN_IF_ERROR(DequantMatricesEncode(shared.matrices, writer, kLayerQuant, aux_out, enc_modular)); size_t num_histo_bits = CeilLog2Nonzero(shared.frame_dim.num_groups); if (!enc_state->streaming_mode && num_histo_bits != 0) { BitWriter::Allotment allotment(writer, num_histo_bits); writer->Write(num_histo_bits, shared.num_histograms - 1); allotment.ReclaimAndCharge(writer, kLayerAC, aux_out); } for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); i++) { // Encode coefficient orders. if (!enc_state->streaming_mode) { size_t order_bits = 0; JXL_RETURN_IF_ERROR(U32Coder::CanEncode( kOrderEnc, enc_state->used_orders[i], &order_bits)); BitWriter::Allotment allotment(writer, order_bits); JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state->used_orders[i], writer)); allotment.ReclaimAndCharge(writer, kLayerOrder, aux_out); EncodeCoeffOrders(enc_state->used_orders[i], &shared.coeff_orders[i * shared.coeff_order_size], writer, kLayerOrder, aux_out); } // Encode histograms. HistogramParams hist_params(enc_state->cparams.speed_tier, shared.block_ctx_map.NumACContexts()); if (enc_state->cparams.speed_tier > SpeedTier::kTortoise) { hist_params.lz77_method = HistogramParams::LZ77Method::kNone; } if (enc_state->cparams.decoding_speed_tier >= 1) { hist_params.max_histograms = 6; } size_t num_histogram_groups = shared.num_histograms; if (enc_state->streaming_mode) { size_t prev_num_histograms = enc_state->passes[i].codes.encoding_info.size(); if (enc_state->initialize_global_state) { prev_num_histograms += kNumFixedHistograms; hist_params.add_fixed_histograms = true; } size_t remaining_histograms = kClustersLimit - prev_num_histograms; // Heuristic to assign budget of new histograms to DC groups. // TODO(szabadka) Tune this together with the DC group ordering. size_t max_histograms = remaining_histograms < 20 ? std::min(remaining_histograms, 4) : remaining_histograms / 4; hist_params.max_histograms = std::min(max_histograms, hist_params.max_histograms); num_histogram_groups = 1; } hist_params.streaming_mode = enc_state->streaming_mode; hist_params.initialize_global_state = enc_state->initialize_global_state; BuildAndEncodeHistograms( hist_params, num_histogram_groups * shared.block_ctx_map.NumACContexts(), enc_state->passes[i].ac_tokens, &enc_state->passes[i].codes, &enc_state->passes[i].context_map, writer, kLayerAC, aux_out); } return true; } Status EncodeGroups(const FrameHeader& frame_header, PassesEncoderState* enc_state, ModularFrameEncoder* enc_modular, ThreadPool* pool, std::vector* group_codes, AuxOut* aux_out) { const PassesSharedState& shared = enc_state->shared; const FrameDimensions& frame_dim = shared.frame_dim; const size_t num_groups = frame_dim.num_groups; const size_t num_passes = enc_state->progressive_splitter.GetNumPasses(); const size_t global_ac_index = frame_dim.num_dc_groups + 1; const bool is_small_image = !enc_state->streaming_mode && num_groups == 1 && num_passes == 1; const size_t num_toc_entries = is_small_image ? 1 : AcGroupIndex(0, 0, num_groups, frame_dim.num_dc_groups) + num_groups * num_passes; group_codes->resize(num_toc_entries); const auto get_output = [&](const size_t index) { return &(*group_codes)[is_small_image ? 0 : index]; }; auto ac_group_code = [&](size_t pass, size_t group) { return get_output(AcGroupIndex(pass, group, frame_dim.num_groups, frame_dim.num_dc_groups)); }; if (enc_state->initialize_global_state) { if (frame_header.flags & FrameHeader::kPatches) { PatchDictionaryEncoder::Encode(shared.image_features.patches, get_output(0), kLayerDictionary, aux_out); } if (frame_header.flags & FrameHeader::kSplines) { EncodeSplines(shared.image_features.splines, get_output(0), kLayerSplines, HistogramParams(), aux_out); } if (frame_header.flags & FrameHeader::kNoise) { EncodeNoise(shared.image_features.noise_params, get_output(0), kLayerNoise, aux_out); } JXL_RETURN_IF_ERROR(DequantMatricesEncodeDC(shared.matrices, get_output(0), kLayerQuant, aux_out)); if (frame_header.encoding == FrameEncoding::kVarDCT) { JXL_RETURN_IF_ERROR(EncodeGlobalDCInfo(shared, get_output(0), aux_out)); } JXL_RETURN_IF_ERROR(enc_modular->EncodeGlobalInfo(enc_state->streaming_mode, get_output(0), aux_out)); JXL_RETURN_IF_ERROR(enc_modular->EncodeStream(get_output(0), aux_out, kLayerModularGlobal, ModularStreamId::Global())); } std::vector> aux_outs; auto resize_aux_outs = [&aux_outs, aux_out](const size_t num_threads) -> Status { if (aux_out == nullptr) { aux_outs.resize(num_threads); } else { while (aux_outs.size() > num_threads) { aux_out->Assimilate(*aux_outs.back()); aux_outs.pop_back(); } while (num_threads > aux_outs.size()) { aux_outs.emplace_back(jxl::make_unique()); } } return true; }; const auto process_dc_group = [&](const uint32_t group_index, const size_t thread) { AuxOut* my_aux_out = aux_outs[thread].get(); BitWriter* output = get_output(group_index + 1); int modular_group_index = group_index; if (enc_state->streaming_mode) { JXL_ASSERT(group_index == 0); modular_group_index = enc_state->dc_group_index; } if (frame_header.encoding == FrameEncoding::kVarDCT && !(frame_header.flags & FrameHeader::kUseDcFrame)) { BitWriter::Allotment allotment(output, 2); output->Write(2, enc_modular->extra_dc_precision[modular_group_index]); allotment.ReclaimAndCharge(output, kLayerDC, my_aux_out); JXL_CHECK(enc_modular->EncodeStream( output, my_aux_out, kLayerDC, ModularStreamId::VarDCTDC(modular_group_index))); } JXL_CHECK(enc_modular->EncodeStream( output, my_aux_out, kLayerModularDcGroup, ModularStreamId::ModularDC(modular_group_index))); if (frame_header.encoding == FrameEncoding::kVarDCT) { const Rect& rect = enc_state->shared.frame_dim.DCGroupRect(group_index); size_t nb_bits = CeilLog2Nonzero(rect.xsize() * rect.ysize()); if (nb_bits != 0) { BitWriter::Allotment allotment(output, nb_bits); output->Write(nb_bits, enc_modular->ac_metadata_size[modular_group_index] - 1); allotment.ReclaimAndCharge(output, kLayerControlFields, my_aux_out); } JXL_CHECK(enc_modular->EncodeStream( output, my_aux_out, kLayerControlFields, ModularStreamId::ACMetadata(modular_group_index))); } }; JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, frame_dim.num_dc_groups, resize_aux_outs, process_dc_group, "EncodeDCGroup")); if (frame_header.encoding == FrameEncoding::kVarDCT) { JXL_RETURN_IF_ERROR(EncodeGlobalACInfo( enc_state, get_output(global_ac_index), enc_modular, aux_out)); } std::atomic has_error{false}; const auto process_group = [&](const uint32_t group_index, const size_t thread) { if (has_error) return; AuxOut* my_aux_out = aux_outs[thread].get(); size_t ac_group_id = enc_state->streaming_mode ? enc_modular->ComputeStreamingAbsoluteAcGroupId( enc_state->dc_group_index, group_index, shared.frame_dim) : group_index; for (size_t i = 0; i < num_passes; i++) { JXL_DEBUG_V(2, "Encoding AC group %u [abs %" PRIuS "] pass %" PRIuS, group_index, ac_group_id, i); if (frame_header.encoding == FrameEncoding::kVarDCT) { if (!EncodeGroupTokenizedCoefficients( group_index, i, enc_state->histogram_idx[group_index], *enc_state, ac_group_code(i, group_index), my_aux_out)) { has_error = true; return; } } // Write all modular encoded data (color?, alpha, depth, extra channels) if (!enc_modular->EncodeStream( ac_group_code(i, group_index), my_aux_out, kLayerModularAcGroup, ModularStreamId::ModularAC(ac_group_id, i))) { has_error = true; return; } JXL_DEBUG_V(2, "AC group %u [abs %" PRIuS "] pass %" PRIuS " encoded size is %" PRIuS " bits", group_index, ac_group_id, i, ac_group_code(i, group_index)->BitsWritten()); } }; JXL_RETURN_IF_ERROR(RunOnPool(pool, 0, num_groups, resize_aux_outs, process_group, "EncodeGroupCoefficients")); if (has_error) return JXL_FAILURE("EncodeGroupCoefficients failed"); // Resizing aux_outs to 0 also Assimilates the array. static_cast(resize_aux_outs(0)); for (BitWriter& bw : *group_codes) { BitWriter::Allotment allotment(&bw, 8); bw.ZeroPadToByte(); // end of group. allotment.ReclaimAndCharge(&bw, kLayerAC, aux_out); } return true; } Status ComputeEncodingData( const CompressParams& cparams, const FrameInfo& frame_info, const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, const jpeg::JPEGData* jpeg_data, size_t x0, size_t y0, size_t xsize, size_t ysize, const JxlCmsInterface& cms, ThreadPool* pool, FrameHeader& mutable_frame_header, ModularFrameEncoder& enc_modular, PassesEncoderState& enc_state, std::vector* group_codes, AuxOut* aux_out) { JXL_ASSERT(x0 + xsize <= frame_data.xsize); JXL_ASSERT(y0 + ysize <= frame_data.ysize); const FrameHeader& frame_header = mutable_frame_header; PassesSharedState& shared = enc_state.shared; shared.metadata = metadata; if (enc_state.streaming_mode) { shared.frame_dim.Set( xsize, ysize, frame_header.group_size_shift, /*max_hshift=*/0, /*max_vshift=*/0, mutable_frame_header.encoding == FrameEncoding::kModular, /*upsampling=*/1); } else { shared.frame_dim = frame_header.ToFrameDimensions(); } shared.image_features.patches.SetPassesSharedState(&shared); const FrameDimensions& frame_dim = shared.frame_dim; JXL_ASSIGN_OR_RETURN( shared.ac_strategy, AcStrategyImage::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks)); JXL_ASSIGN_OR_RETURN( shared.raw_quant_field, ImageI::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks)); JXL_ASSIGN_OR_RETURN( shared.epf_sharpness, ImageB::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks)); JXL_ASSIGN_OR_RETURN(shared.cmap, ColorCorrelationMap::Create( frame_dim.xsize, frame_dim.ysize)); shared.coeff_order_size = kCoeffOrderMaxSize; if (frame_header.encoding == FrameEncoding::kVarDCT) { shared.coeff_orders.resize(frame_header.passes.num_passes * kCoeffOrderMaxSize); } JXL_ASSIGN_OR_RETURN(shared.quant_dc, ImageB::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks)); JXL_ASSIGN_OR_RETURN( shared.dc_storage, Image3F::Create(frame_dim.xsize_blocks, frame_dim.ysize_blocks)); shared.dc = &shared.dc_storage; const size_t num_extra_channels = metadata->m.num_extra_channels; const ExtraChannelInfo* alpha_eci = metadata->m.Find(ExtraChannel::kAlpha); const ExtraChannelInfo* black_eci = metadata->m.Find(ExtraChannel::kBlack); const size_t alpha_idx = alpha_eci - metadata->m.extra_channel_info.data(); const size_t black_idx = black_eci - metadata->m.extra_channel_info.data(); const ColorEncoding c_enc = metadata->m.color_encoding; // Make the image patch bigger than the currently processed group in streaming // mode so that we can take into account border pixels around the group when // computing inverse Gaborish and adaptive quantization map. int max_border = enc_state.streaming_mode ? kBlockDim : 0; Rect frame_rect(0, 0, frame_data.xsize, frame_data.ysize); Rect frame_area_rect = Rect(x0, y0, xsize, ysize); Rect patch_rect = frame_area_rect.Extend(max_border, frame_rect); JXL_ASSERT(patch_rect.IsInside(frame_rect)); // Allocating a large enough image avoids a copy when padding. JXL_ASSIGN_OR_RETURN(Image3F color, Image3F::Create(RoundUpToBlockDim(patch_rect.xsize()), RoundUpToBlockDim(patch_rect.ysize()))); color.ShrinkTo(patch_rect.xsize(), patch_rect.ysize()); std::vector extra_channels(num_extra_channels); for (auto& extra_channel : extra_channels) { JXL_ASSIGN_OR_RETURN( extra_channel, ImageF::Create(patch_rect.xsize(), patch_rect.ysize())); } ImageF* alpha = alpha_eci ? &extra_channels[alpha_idx] : nullptr; ImageF* black = black_eci ? &extra_channels[black_idx] : nullptr; bool has_interleaved_alpha = false; JxlChunkedFrameInputSource input = frame_data.GetInputSource(); if (!frame_data.IsJPEG()) { JXL_RETURN_IF_ERROR(CopyColorChannels(input, patch_rect, frame_info, metadata->m, pool, &color, alpha, &has_interleaved_alpha)); } JXL_RETURN_IF_ERROR(CopyExtraChannels(input, patch_rect, frame_info, metadata->m, has_interleaved_alpha, pool, &extra_channels)); shared.image_features.patches.SetPassesSharedState(&shared); enc_state.cparams = cparams; Image3F linear_storage; Image3F* linear = nullptr; if (!jpeg_data) { if (frame_header.color_transform == ColorTransform::kXYB && frame_info.ib_needs_color_transform) { if (frame_header.encoding == FrameEncoding::kVarDCT && cparams.speed_tier <= SpeedTier::kKitten) { JXL_ASSIGN_OR_RETURN( linear_storage, Image3F::Create(patch_rect.xsize(), patch_rect.ysize())); linear = &linear_storage; } ToXYB(c_enc, metadata->m.IntensityTarget(), black, pool, &color, cms, linear); } else { // Nothing to do. // RGB or YCbCr: forward YCbCr is not implemented, this is only used when // the input is already in YCbCr // If encoding a special DC or reference frame: input is already in XYB. } bool lossless = cparams.IsLossless(); if (alpha && !alpha_eci->alpha_associated && frame_header.frame_type == FrameType::kRegularFrame && !ApplyOverride(cparams.keep_invisible, true) && cparams.ec_resampling == cparams.resampling) { // simplify invisible pixels SimplifyInvisible(&color, *alpha, lossless); if (linear) { SimplifyInvisible(linear, *alpha, lossless); } } PadImageToBlockMultipleInPlace(&color); } // Rectangle within color that corresponds to the currently processed group in // streaming mode. Rect group_rect(x0 - patch_rect.x0(), y0 - patch_rect.y0(), RoundUpToBlockDim(xsize), RoundUpToBlockDim(ysize)); if (enc_state.initialize_global_state && !jpeg_data) { ComputeChromacityAdjustments(cparams, color, group_rect, &mutable_frame_header); } bool has_jpeg_data = (jpeg_data != nullptr); ComputeNoiseParams(cparams, enc_state.streaming_mode, has_jpeg_data, color, frame_dim, &mutable_frame_header, &shared.image_features.noise_params); JXL_RETURN_IF_ERROR( DownsampleColorChannels(cparams, frame_header, has_jpeg_data, &color)); if (cparams.ec_resampling != 1 && !cparams.already_downsampled) { for (ImageF& ec : extra_channels) { JXL_ASSIGN_OR_RETURN(ec, DownsampleImage(ec, cparams.ec_resampling)); } } if (!enc_state.streaming_mode) { group_rect = Rect(color); } if (frame_header.encoding == FrameEncoding::kVarDCT) { enc_state.passes.resize(enc_state.progressive_splitter.GetNumPasses()); for (PassesEncoderState::PassData& pass : enc_state.passes) { pass.ac_tokens.resize(shared.frame_dim.num_groups); } if (jpeg_data) { JXL_RETURN_IF_ERROR(ComputeJPEGTranscodingData( *jpeg_data, frame_header, pool, &enc_modular, &enc_state)); } else { JXL_RETURN_IF_ERROR(ComputeVarDCTEncodingData( frame_header, linear, &color, group_rect, cms, pool, &enc_modular, &enc_state, aux_out)); } ComputeAllCoeffOrders(enc_state, frame_dim); if (!enc_state.streaming_mode) { shared.num_histograms = 1; enc_state.histogram_idx.resize(frame_dim.num_groups); } JXL_RETURN_IF_ERROR( TokenizeAllCoefficients(frame_header, pool, &enc_state)); } if (cparams.modular_mode || !extra_channels.empty()) { JXL_RETURN_IF_ERROR(enc_modular.ComputeEncodingData( frame_header, metadata->m, &color, extra_channels, group_rect, frame_dim, frame_area_rect, &enc_state, cms, pool, aux_out, /*do_color=*/cparams.modular_mode)); } if (!enc_state.streaming_mode) { if (cparams.speed_tier < SpeedTier::kTortoise || !cparams.ModularPartIsLossless() || cparams.responsive || !cparams.custom_fixed_tree.empty()) { // Use local trees if doing lossless modular, unless at very slow speeds. JXL_RETURN_IF_ERROR(enc_modular.ComputeTree(pool)); JXL_RETURN_IF_ERROR(enc_modular.ComputeTokens(pool)); } mutable_frame_header.UpdateFlag(shared.image_features.patches.HasAny(), FrameHeader::kPatches); mutable_frame_header.UpdateFlag(shared.image_features.splines.HasAny(), FrameHeader::kSplines); } JXL_RETURN_IF_ERROR(EncodeGroups(frame_header, &enc_state, &enc_modular, pool, group_codes, aux_out)); if (enc_state.streaming_mode) { const size_t group_index = enc_state.dc_group_index; enc_modular.ClearStreamData(ModularStreamId::VarDCTDC(group_index)); enc_modular.ClearStreamData(ModularStreamId::ACMetadata(group_index)); enc_modular.ClearModularStreamData(); } return true; } Status PermuteGroups(const CompressParams& cparams, const FrameDimensions& frame_dim, size_t num_passes, std::vector* permutation, std::vector* group_codes) { const size_t num_groups = frame_dim.num_groups; if (!cparams.centerfirst || (num_passes == 1 && num_groups == 1)) { return true; } // Don't permute global DC/AC or DC. permutation->resize(frame_dim.num_dc_groups + 2); std::iota(permutation->begin(), permutation->end(), 0); std::vector ac_group_order(num_groups); std::iota(ac_group_order.begin(), ac_group_order.end(), 0); size_t group_dim = frame_dim.group_dim; // The center of the image is either given by parameters or chosen // to be the middle of the image by default if center_x, center_y resp. // are not provided. int64_t imag_cx; if (cparams.center_x != static_cast(-1)) { JXL_RETURN_IF_ERROR(cparams.center_x < frame_dim.xsize); imag_cx = cparams.center_x; } else { imag_cx = frame_dim.xsize / 2; } int64_t imag_cy; if (cparams.center_y != static_cast(-1)) { JXL_RETURN_IF_ERROR(cparams.center_y < frame_dim.ysize); imag_cy = cparams.center_y; } else { imag_cy = frame_dim.ysize / 2; } // The center of the group containing the center of the image. int64_t cx = (imag_cx / group_dim) * group_dim + group_dim / 2; int64_t cy = (imag_cy / group_dim) * group_dim + group_dim / 2; // This identifies in what area of the central group the center of the image // lies in. double direction = -std::atan2(imag_cy - cy, imag_cx - cx); // This identifies the side of the central group the center of the image // lies closest to. This can take values 0, 1, 2, 3 corresponding to left, // bottom, right, top. int64_t side = std::fmod((direction + 5 * kPi / 4), 2 * kPi) * 2 / kPi; auto get_distance_from_center = [&](size_t gid) { Rect r = frame_dim.GroupRect(gid); int64_t gcx = r.x0() + group_dim / 2; int64_t gcy = r.y0() + group_dim / 2; int64_t dx = gcx - cx; int64_t dy = gcy - cy; // The angle is determined by taking atan2 and adding an appropriate // starting point depending on the side we want to start on. double angle = std::remainder( std::atan2(dy, dx) + kPi / 4 + side * (kPi / 2), 2 * kPi); // Concentric squares in clockwise order. return std::make_pair(std::max(std::abs(dx), std::abs(dy)), angle); }; std::sort(ac_group_order.begin(), ac_group_order.end(), [&](coeff_order_t a, coeff_order_t b) { return get_distance_from_center(a) < get_distance_from_center(b); }); std::vector inv_ac_group_order(ac_group_order.size(), 0); for (size_t i = 0; i < ac_group_order.size(); i++) { inv_ac_group_order[ac_group_order[i]] = i; } for (size_t i = 0; i < num_passes; i++) { size_t pass_start = permutation->size(); for (coeff_order_t v : inv_ac_group_order) { permutation->push_back(pass_start + v); } } std::vector new_group_codes(group_codes->size()); for (size_t i = 0; i < permutation->size(); i++) { new_group_codes[(*permutation)[i]] = std::move((*group_codes)[i]); } *group_codes = std::move(new_group_codes); return true; } bool CanDoStreamingEncoding(const CompressParams& cparams, const FrameInfo& frame_info, const CodecMetadata& metadata, const JxlEncoderChunkedFrameAdapter& frame_data) { if (cparams.buffering == 0) { return false; } if (cparams.buffering == -1) { if (cparams.speed_tier < SpeedTier::kTortoise) return false; if (cparams.speed_tier < SpeedTier::kSquirrel && cparams.butteraugli_distance > 0.5f) { return false; } if (cparams.speed_tier == SpeedTier::kSquirrel && cparams.butteraugli_distance >= 3.f) { return false; } } // TODO(veluca): handle different values of `buffering`. if (frame_data.xsize <= 2048 && frame_data.ysize <= 2048) { return false; } if (frame_data.IsJPEG()) { return false; } if (cparams.noise == Override::kOn || cparams.patches == Override::kOn) { return false; } if (cparams.progressive_dc != 0 || frame_info.dc_level != 0) { return false; } if (cparams.resampling != 1 || cparams.ec_resampling != 1) { return false; } if (cparams.max_error_mode) { return false; } if (!cparams.ModularPartIsLossless() || cparams.responsive > 0) { if (metadata.m.num_extra_channels > 0 || cparams.modular_mode) { return false; } } ColorTransform ok_color_transform = cparams.modular_mode ? ColorTransform::kNone : ColorTransform::kXYB; if (cparams.color_transform != ok_color_transform) { return false; } return true; } void ComputePermutationForStreaming(size_t xsize, size_t ysize, size_t group_size, size_t num_passes, std::vector& permutation, std::vector& dc_group_order) { // This is only valid in VarDCT mode, otherwise there can be group shift. const size_t dc_group_size = group_size * kBlockDim; const size_t group_xsize = DivCeil(xsize, group_size); const size_t group_ysize = DivCeil(ysize, group_size); const size_t dc_group_xsize = DivCeil(xsize, dc_group_size); const size_t dc_group_ysize = DivCeil(ysize, dc_group_size); const size_t num_groups = group_xsize * group_ysize; const size_t num_dc_groups = dc_group_xsize * dc_group_ysize; const size_t num_sections = 2 + num_dc_groups + num_passes * num_groups; permutation.resize(num_sections); size_t new_ix = 0; // DC Global is first permutation[0] = new_ix++; // TODO(szabadka) Change the dc group order to center-first. for (size_t dc_y = 0; dc_y < dc_group_ysize; ++dc_y) { for (size_t dc_x = 0; dc_x < dc_group_xsize; ++dc_x) { size_t dc_ix = dc_y * dc_group_xsize + dc_x; dc_group_order.push_back(dc_ix); permutation[1 + dc_ix] = new_ix++; size_t ac_y0 = dc_y * kBlockDim; size_t ac_x0 = dc_x * kBlockDim; size_t ac_y1 = std::min(group_ysize, ac_y0 + kBlockDim); size_t ac_x1 = std::min(group_xsize, ac_x0 + kBlockDim); for (size_t pass = 0; pass < num_passes; ++pass) { for (size_t ac_y = ac_y0; ac_y < ac_y1; ++ac_y) { for (size_t ac_x = ac_x0; ac_x < ac_x1; ++ac_x) { size_t group_ix = ac_y * group_xsize + ac_x; size_t old_ix = AcGroupIndex(pass, group_ix, num_groups, num_dc_groups); permutation[old_ix] = new_ix++; } } } } } // AC Global is last permutation[1 + num_dc_groups] = new_ix++; JXL_ASSERT(new_ix == num_sections); } constexpr size_t kGroupSizeOffset[4] = { static_cast(0), static_cast(1024), static_cast(17408), static_cast(4211712), }; constexpr size_t kTOCBits[4] = {12, 16, 24, 32}; size_t TOCBucket(size_t group_size) { size_t bucket = 0; while (bucket < 3 && group_size >= kGroupSizeOffset[bucket + 1]) ++bucket; return bucket; } size_t TOCSize(const std::vector& group_sizes) { size_t toc_bits = 0; for (size_t group_size : group_sizes) { toc_bits += kTOCBits[TOCBucket(group_size)]; } return (toc_bits + 7) / 8; } PaddedBytes EncodeTOC(const std::vector& group_sizes, AuxOut* aux_out) { BitWriter writer; BitWriter::Allotment allotment(&writer, 32 * group_sizes.size()); for (size_t group_size : group_sizes) { JXL_CHECK(U32Coder::Write(kTocDist, group_size, &writer)); } writer.ZeroPadToByte(); // before first group allotment.ReclaimAndCharge(&writer, kLayerTOC, aux_out); return std::move(writer).TakeBytes(); } void ComputeGroupDataOffset(size_t frame_header_size, size_t dc_global_size, size_t num_sections, size_t& min_dc_global_size, size_t& group_offset) { size_t max_toc_bits = (num_sections - 1) * 32; size_t min_toc_bits = (num_sections - 1) * 12; size_t max_padding = (max_toc_bits - min_toc_bits + 7) / 8; min_dc_global_size = dc_global_size; size_t dc_global_bucket = TOCBucket(min_dc_global_size); while (TOCBucket(min_dc_global_size + max_padding) > dc_global_bucket) { dc_global_bucket = TOCBucket(min_dc_global_size + max_padding); min_dc_global_size = kGroupSizeOffset[dc_global_bucket]; } JXL_ASSERT(TOCBucket(min_dc_global_size) == dc_global_bucket); JXL_ASSERT(TOCBucket(min_dc_global_size + max_padding) == dc_global_bucket); max_toc_bits += kTOCBits[dc_global_bucket]; size_t max_toc_size = (max_toc_bits + 7) / 8; group_offset = frame_header_size + max_toc_size + min_dc_global_size; } size_t ComputeDcGlobalPadding(const std::vector& group_sizes, size_t frame_header_size, size_t group_data_offset, size_t min_dc_global_size) { std::vector new_group_sizes = group_sizes; new_group_sizes[0] = min_dc_global_size; size_t toc_size = TOCSize(new_group_sizes); size_t actual_offset = frame_header_size + toc_size + group_sizes[0]; return group_data_offset - actual_offset; } Status OutputGroups(std::vector&& group_codes, std::vector* group_sizes, JxlEncoderOutputProcessorWrapper* output_processor) { JXL_ASSERT(group_codes.size() >= 4); { PaddedBytes dc_group = std::move(group_codes[1]).TakeBytes(); group_sizes->push_back(dc_group.size()); JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_group)); } for (size_t i = 3; i < group_codes.size(); ++i) { PaddedBytes ac_group = std::move(group_codes[i]).TakeBytes(); group_sizes->push_back(ac_group.size()); JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_group)); } return true; } void RemoveUnusedHistograms(std::vector& context_map, EntropyEncodingData& codes) { std::vector remap(256, -1); std::vector inv_remap; for (uint8_t& context : context_map) { const uint8_t histo_ix = context; if (remap[histo_ix] == -1) { remap[histo_ix] = inv_remap.size(); inv_remap.push_back(histo_ix); } context = remap[histo_ix]; } EntropyEncodingData new_codes; new_codes.use_prefix_code = codes.use_prefix_code; new_codes.lz77 = codes.lz77; for (uint8_t histo_idx : inv_remap) { new_codes.encoding_info.emplace_back( std::move(codes.encoding_info[histo_idx])); new_codes.uint_config.emplace_back(codes.uint_config[histo_idx]); new_codes.encoded_histograms.emplace_back( std::move(codes.encoded_histograms[histo_idx])); } codes = std::move(new_codes); } Status OutputAcGlobal(PassesEncoderState& enc_state, const FrameDimensions& frame_dim, std::vector* group_sizes, JxlEncoderOutputProcessorWrapper* output_processor, AuxOut* aux_out) { JXL_ASSERT(frame_dim.num_groups > 1); BitWriter writer; { size_t num_histo_bits = CeilLog2Nonzero(frame_dim.num_groups); BitWriter::Allotment allotment(&writer, num_histo_bits + 1); writer.Write(1, 1); // default dequant matrices writer.Write(num_histo_bits, frame_dim.num_dc_groups - 1); allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out); } const PassesSharedState& shared = enc_state.shared; for (size_t i = 0; i < enc_state.progressive_splitter.GetNumPasses(); i++) { // Encode coefficient orders. size_t order_bits = 0; JXL_RETURN_IF_ERROR( U32Coder::CanEncode(kOrderEnc, enc_state.used_orders[i], &order_bits)); BitWriter::Allotment allotment(&writer, order_bits); JXL_CHECK(U32Coder::Write(kOrderEnc, enc_state.used_orders[i], &writer)); allotment.ReclaimAndCharge(&writer, kLayerOrder, aux_out); EncodeCoeffOrders(enc_state.used_orders[i], &shared.coeff_orders[i * shared.coeff_order_size], &writer, kLayerOrder, aux_out); // Fix up context map and entropy codes to remove any fix histograms that // were not selected by clustering. RemoveUnusedHistograms(enc_state.passes[i].context_map, enc_state.passes[i].codes); EncodeHistograms(enc_state.passes[i].context_map, enc_state.passes[i].codes, &writer, kLayerAC, aux_out); } { BitWriter::Allotment allotment(&writer, 8); writer.ZeroPadToByte(); // end of group. allotment.ReclaimAndCharge(&writer, kLayerAC, aux_out); } PaddedBytes ac_global = std::move(writer).TakeBytes(); group_sizes->push_back(ac_global.size()); JXL_RETURN_IF_ERROR(AppendData(*output_processor, ac_global)); return true; } Status EncodeFrameStreaming(const CompressParams& cparams, const FrameInfo& frame_info, const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, const JxlCmsInterface& cms, ThreadPool* pool, JxlEncoderOutputProcessorWrapper* output_processor, AuxOut* aux_out) { PassesEncoderState enc_state; SetProgressiveMode(cparams, &enc_state.progressive_splitter); FrameHeader frame_header(metadata); std::unique_ptr jpeg_data; if (frame_data.IsJPEG()) { jpeg_data = make_unique(frame_data.TakeJPEGData()); } JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, cparams, enc_state.progressive_splitter, frame_info, jpeg_data.get(), true, &frame_header)); const size_t num_passes = enc_state.progressive_splitter.GetNumPasses(); ModularFrameEncoder enc_modular(frame_header, cparams, true); std::vector permutation; std::vector dc_group_order; size_t group_size = frame_header.ToFrameDimensions().group_dim; ComputePermutationForStreaming(frame_data.xsize, frame_data.ysize, group_size, num_passes, permutation, dc_group_order); enc_state.shared.num_histograms = dc_group_order.size(); size_t dc_group_size = group_size * kBlockDim; size_t dc_group_xsize = DivCeil(frame_data.xsize, dc_group_size); size_t min_dc_global_size = 0; size_t group_data_offset = 0; PaddedBytes frame_header_bytes; PaddedBytes dc_global_bytes; std::vector group_sizes; size_t start_pos = output_processor->CurrentPosition(); for (size_t i = 0; i < dc_group_order.size(); ++i) { size_t dc_ix = dc_group_order[i]; size_t dc_y = dc_ix / dc_group_xsize; size_t dc_x = dc_ix % dc_group_xsize; size_t y0 = dc_y * dc_group_size; size_t x0 = dc_x * dc_group_size; size_t ysize = std::min(dc_group_size, frame_data.ysize - y0); size_t xsize = std::min(dc_group_size, frame_data.xsize - x0); size_t group_xsize = DivCeil(xsize, group_size); size_t group_ysize = DivCeil(ysize, group_size); JXL_DEBUG_V(2, "Encoding DC group #%" PRIuS " dc_y = %" PRIuS " dc_x = %" PRIuS " (x0, y0) = (%" PRIuS ", %" PRIuS ") (xsize, ysize) = (%" PRIuS ", %" PRIuS ")", dc_ix, dc_y, dc_x, x0, y0, xsize, ysize); enc_state.streaming_mode = true; enc_state.initialize_global_state = (i == 0); enc_state.dc_group_index = dc_ix; enc_state.histogram_idx = std::vector(group_xsize * group_ysize, i); std::vector group_codes; JXL_RETURN_IF_ERROR(ComputeEncodingData( cparams, frame_info, metadata, frame_data, jpeg_data.get(), x0, y0, xsize, ysize, cms, pool, frame_header, enc_modular, enc_state, &group_codes, aux_out)); JXL_ASSERT(enc_state.special_frames.empty()); if (i == 0) { BitWriter writer; JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); BitWriter::Allotment allotment(&writer, 8); writer.Write(1, 1); // write permutation EncodePermutation(permutation.data(), /*skip=*/0, permutation.size(), &writer, kLayerHeader, aux_out); writer.ZeroPadToByte(); allotment.ReclaimAndCharge(&writer, kLayerHeader, aux_out); frame_header_bytes = std::move(writer).TakeBytes(); dc_global_bytes = std::move(group_codes[0]).TakeBytes(); ComputeGroupDataOffset(frame_header_bytes.size(), dc_global_bytes.size(), permutation.size(), min_dc_global_size, group_data_offset); JXL_DEBUG_V(2, "Frame header size: %" PRIuS, frame_header_bytes.size()); JXL_DEBUG_V(2, "DC global size: %" PRIuS ", min size for TOC: %" PRIuS, dc_global_bytes.size(), min_dc_global_size); JXL_DEBUG_V(2, "Num groups: %" PRIuS " group data offset: %" PRIuS, permutation.size(), group_data_offset); group_sizes.push_back(dc_global_bytes.size()); output_processor->Seek(start_pos + group_data_offset); } JXL_RETURN_IF_ERROR( OutputGroups(std::move(group_codes), &group_sizes, output_processor)); } if (frame_header.encoding == FrameEncoding::kVarDCT) { JXL_RETURN_IF_ERROR( OutputAcGlobal(enc_state, frame_header.ToFrameDimensions(), &group_sizes, output_processor, aux_out)); } else { group_sizes.push_back(0); } JXL_ASSERT(group_sizes.size() == permutation.size()); size_t end_pos = output_processor->CurrentPosition(); output_processor->Seek(start_pos); size_t padding_size = ComputeDcGlobalPadding(group_sizes, frame_header_bytes.size(), group_data_offset, min_dc_global_size); group_sizes[0] += padding_size; PaddedBytes toc_bytes = EncodeTOC(group_sizes, aux_out); std::vector padding_bytes(padding_size); JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_header_bytes)); JXL_RETURN_IF_ERROR(AppendData(*output_processor, toc_bytes)); JXL_RETURN_IF_ERROR(AppendData(*output_processor, dc_global_bytes)); JXL_RETURN_IF_ERROR(AppendData(*output_processor, padding_bytes)); JXL_DEBUG_V(2, "TOC size: %" PRIuS " padding bytes after DC global: %" PRIuS, toc_bytes.size(), padding_size); JXL_ASSERT(output_processor->CurrentPosition() == start_pos + group_data_offset); output_processor->Seek(end_pos); return true; } Status EncodeFrameOneShot(const CompressParams& cparams, const FrameInfo& frame_info, const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, const JxlCmsInterface& cms, ThreadPool* pool, JxlEncoderOutputProcessorWrapper* output_processor, AuxOut* aux_out) { PassesEncoderState enc_state; SetProgressiveMode(cparams, &enc_state.progressive_splitter); std::vector group_codes; FrameHeader frame_header(metadata); std::unique_ptr jpeg_data; if (frame_data.IsJPEG()) { jpeg_data = make_unique(frame_data.TakeJPEGData()); } JXL_RETURN_IF_ERROR(MakeFrameHeader(frame_data.xsize, frame_data.ysize, cparams, enc_state.progressive_splitter, frame_info, jpeg_data.get(), false, &frame_header)); const size_t num_passes = enc_state.progressive_splitter.GetNumPasses(); ModularFrameEncoder enc_modular(frame_header, cparams, false); JXL_RETURN_IF_ERROR(ComputeEncodingData( cparams, frame_info, metadata, frame_data, jpeg_data.get(), 0, 0, frame_data.xsize, frame_data.ysize, cms, pool, frame_header, enc_modular, enc_state, &group_codes, aux_out)); BitWriter writer; writer.AppendByteAligned(enc_state.special_frames); JXL_RETURN_IF_ERROR(WriteFrameHeader(frame_header, &writer, aux_out)); std::vector permutation; JXL_RETURN_IF_ERROR(PermuteGroups(cparams, enc_state.shared.frame_dim, num_passes, &permutation, &group_codes)); JXL_RETURN_IF_ERROR( WriteGroupOffsets(group_codes, permutation, &writer, aux_out)); writer.AppendByteAligned(group_codes); PaddedBytes frame_bytes = std::move(writer).TakeBytes(); JXL_RETURN_IF_ERROR(AppendData(*output_processor, frame_bytes)); return true; } } // namespace Status EncodeFrame(const CompressParams& cparams_orig, const FrameInfo& frame_info, const CodecMetadata* metadata, JxlEncoderChunkedFrameAdapter& frame_data, const JxlCmsInterface& cms, ThreadPool* pool, JxlEncoderOutputProcessorWrapper* output_processor, AuxOut* aux_out) { CompressParams cparams = cparams_orig; if (cparams.speed_tier == SpeedTier::kTectonicPlate && !cparams.IsLossless()) { cparams.speed_tier = SpeedTier::kGlacier; } // Lightning mode is handled externally, so switch to Thunder mode to handle // potentially weird cases. if (cparams.speed_tier == SpeedTier::kLightning) { cparams.speed_tier = SpeedTier::kThunder; } if (cparams.speed_tier == SpeedTier::kTectonicPlate) { std::vector all_params; std::vector size; CompressParams cparams_attempt = cparams_orig; cparams_attempt.speed_tier = SpeedTier::kGlacier; cparams_attempt.options.max_properties = 4; for (float x : {0.0f, 80.f}) { cparams_attempt.channel_colors_percent = x; for (float y : {0.0f, 95.0f}) { cparams_attempt.channel_colors_pre_transform_percent = y; // 70000 ensures that the number of palette colors is representable in // modular headers. for (int K : {0, 1 << 10, 70000}) { cparams_attempt.palette_colors = K; for (int tree_mode : {-1, static_cast(ModularOptions::TreeMode::kNoWP), static_cast(ModularOptions::TreeMode::kDefault)}) { if (tree_mode == -1) { // LZ77 only cparams_attempt.options.nb_repeats = 0; } else { cparams_attempt.options.nb_repeats = 1; cparams_attempt.options.wp_tree_mode = static_cast(tree_mode); } for (Predictor pred : {Predictor::Zero, Predictor::Variable}) { cparams_attempt.options.predictor = pred; for (int g : {0, -1, 3}) { cparams_attempt.modular_group_size_shift = g; for (Override patches : {Override::kDefault, Override::kOff}) { cparams_attempt.patches = patches; all_params.push_back(cparams_attempt); } } } } } } } size.resize(all_params.size()); std::atomic has_error{false}; JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, all_params.size(), ThreadPool::NoInit, [&](size_t task, size_t) { if (has_error) return; std::vector output(64); uint8_t* next_out = output.data(); size_t avail_out = output.size(); JxlEncoderOutputProcessorWrapper local_output; local_output.SetAvailOut(&next_out, &avail_out); if (!EncodeFrame(all_params[task], frame_info, metadata, frame_data, cms, nullptr, &local_output, aux_out)) { has_error = true; return; } size[task] = local_output.CurrentPosition(); }, "Compress kTectonicPlate")); if (has_error) return JXL_FAILURE("Compress kTectonicPlate failed"); size_t best_idx = 0; for (size_t i = 1; i < all_params.size(); i++) { if (size[best_idx] > size[i]) { best_idx = i; } } cparams = all_params[best_idx]; } JXL_RETURN_IF_ERROR(ParamsPostInit(&cparams)); if (cparams.butteraugli_distance < 0) { return JXL_FAILURE("Expected non-negative distance"); } if (cparams.progressive_dc < 0) { if (cparams.progressive_dc != -1) { return JXL_FAILURE("Invalid progressive DC setting value (%d)", cparams.progressive_dc); } cparams.progressive_dc = 0; } if (cparams.ec_resampling < cparams.resampling) { cparams.ec_resampling = cparams.resampling; } if (cparams.resampling > 1 || frame_info.is_preview) { cparams.progressive_dc = 0; } if (frame_info.dc_level + cparams.progressive_dc > 4) { return JXL_FAILURE("Too many levels of progressive DC"); } if (cparams.butteraugli_distance != 0 && cparams.butteraugli_distance < kMinButteraugliDistance) { return JXL_FAILURE("Butteraugli distance is too low (%f)", cparams.butteraugli_distance); } if (frame_data.IsJPEG()) { cparams.gaborish = Override::kOff; cparams.epf = 0; cparams.modular_mode = false; } if (frame_data.xsize == 0 || frame_data.ysize == 0) { return JXL_FAILURE("Empty image"); } // Assert that this metadata is correctly set up for the compression params, // this should have been done by enc_file.cc JXL_ASSERT(metadata->m.xyb_encoded == (cparams.color_transform == ColorTransform::kXYB)); if (frame_data.IsJPEG() && cparams.color_transform == ColorTransform::kXYB) { return JXL_FAILURE("Can't add JPEG frame to XYB codestream"); } if (CanDoStreamingEncoding(cparams, frame_info, *metadata, frame_data)) { return EncodeFrameStreaming(cparams, frame_info, metadata, frame_data, cms, pool, output_processor, aux_out); } else { return EncodeFrameOneShot(cparams, frame_info, metadata, frame_data, cms, pool, output_processor, aux_out); } } Status EncodeFrame(const CompressParams& cparams_orig, const FrameInfo& frame_info, const CodecMetadata* metadata, const ImageBundle& ib, const JxlCmsInterface& cms, ThreadPool* pool, BitWriter* writer, AuxOut* aux_out) { JxlEncoderChunkedFrameAdapter frame_data(ib.xsize(), ib.ysize(), ib.extra_channels().size()); std::vector color; if (ib.IsJPEG()) { frame_data.SetJPEGData(*ib.jpeg_data); } else { uint32_t num_channels = ib.IsGray() && frame_info.ib_needs_color_transform ? 1 : 3; size_t stride = ib.xsize() * num_channels * 4; color.resize(ib.ysize() * stride); JXL_RETURN_IF_ERROR(ConvertToExternal( ib, /*bits_per_sample=*/32, /*float_out=*/true, num_channels, JXL_NATIVE_ENDIAN, stride, pool, color.data(), color.size(), /*out_callback=*/{}, Orientation::kIdentity)); JxlPixelFormat format{num_channels, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; frame_data.SetFromBuffer(0, color.data(), color.size(), format); } for (size_t ec = 0; ec < ib.extra_channels().size(); ++ec) { JxlPixelFormat ec_format{1, JXL_TYPE_FLOAT, JXL_NATIVE_ENDIAN, 0}; size_t ec_stride = ib.xsize() * 4; std::vector ec_data(ib.ysize() * ec_stride); const ImageF* channel = &ib.extra_channels()[ec]; JXL_RETURN_IF_ERROR(ConvertChannelsToExternal( &channel, 1, /*bits_per_sample=*/32, /*float_out=*/true, JXL_NATIVE_ENDIAN, ec_stride, pool, ec_data.data(), ec_data.size(), /*out_callback=*/{}, Orientation::kIdentity)); frame_data.SetFromBuffer(1 + ec, ec_data.data(), ec_data.size(), ec_format); } FrameInfo fi = frame_info; fi.origin = ib.origin; fi.blend = ib.blend; fi.blendmode = ib.blendmode; fi.duration = ib.duration; fi.timecode = ib.timecode; fi.name = ib.name; std::vector output(64); uint8_t* next_out = output.data(); size_t avail_out = output.size(); JxlEncoderOutputProcessorWrapper output_processor; output_processor.SetAvailOut(&next_out, &avail_out); JXL_RETURN_IF_ERROR(EncodeFrame(cparams_orig, fi, metadata, frame_data, cms, pool, &output_processor, aux_out)); output_processor.SetFinalizedPosition(); output_processor.CopyOutput(output, next_out, avail_out); writer->AppendByteAligned(Bytes(output)); return true; } } // namespace jxl