// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/enc_modular.h" #include #include #include #include #include #include #include #include "lib/jxl/base/compiler_specific.h" #include "lib/jxl/base/printf_macros.h" #include "lib/jxl/base/rect.h" #include "lib/jxl/base/status.h" #include "lib/jxl/compressed_dc.h" #include "lib/jxl/dec_ans.h" #include "lib/jxl/enc_aux_out.h" #include "lib/jxl/enc_bit_writer.h" #include "lib/jxl/enc_cluster.h" #include "lib/jxl/enc_fields.h" #include "lib/jxl/enc_gaborish.h" #include "lib/jxl/enc_params.h" #include "lib/jxl/enc_patch_dictionary.h" #include "lib/jxl/enc_quant_weights.h" #include "lib/jxl/frame_dimensions.h" #include "lib/jxl/frame_header.h" #include "lib/jxl/modular/encoding/context_predict.h" #include "lib/jxl/modular/encoding/enc_encoding.h" #include "lib/jxl/modular/encoding/encoding.h" #include "lib/jxl/modular/encoding/ma_common.h" #include "lib/jxl/modular/modular_image.h" #include "lib/jxl/modular/options.h" #include "lib/jxl/modular/transform/enc_transform.h" #include "lib/jxl/pack_signed.h" #include "modular/options.h" namespace jxl { namespace { // constexpr bool kPrintTree = false; // Squeeze default quantization factors // these quantization factors are for -Q 50 (other qualities simply scale the // factors; things are rounded down and obviously cannot get below 1) const float squeeze_quality_factor = 0.35; // for easy tweaking of the quality range (decrease this number for // higher quality) const float squeeze_luma_factor = 1.1; // for easy tweaking of the balance between luma (or anything // non-chroma) and chroma (decrease this number for higher quality // luma) const float squeeze_quality_factor_xyb = 2.4f; const float squeeze_xyb_qtable[3][16] = { {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 0.005}, // Y {1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5}, // X {2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5}, // B-Y }; const float squeeze_luma_qtable[16] = {163.84, 81.92, 40.96, 20.48, 10.24, 5.12, 2.56, 1.28, 0.64, 0.32, 0.16, 0.08, 0.04, 0.02, 0.01, 0.005}; // for 8-bit input, the range of YCoCg chroma is -255..255 so basically this // does 4:2:0 subsampling (two most fine grained layers get quantized away) const float squeeze_chroma_qtable[16] = { 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1, 0.5, 0.5, 0.5, 0.5, 0.5}; // Merges the trees in `trees` using nodes that decide on stream_id, as defined // by `tree_splits`. void MergeTrees(const std::vector& trees, const std::vector& tree_splits, size_t begin, size_t end, Tree* tree) { JXL_ASSERT(trees.size() + 1 == tree_splits.size()); JXL_ASSERT(end > begin); JXL_ASSERT(end <= trees.size()); if (end == begin + 1) { // Insert the tree, adding the opportune offset to all child nodes. // This will make the leaf IDs wrong, but subsequent roundtripping will fix // them. size_t sz = tree->size(); tree->insert(tree->end(), trees[begin].begin(), trees[begin].end()); for (size_t i = sz; i < tree->size(); i++) { (*tree)[i].lchild += sz; (*tree)[i].rchild += sz; } return; } size_t mid = (begin + end) / 2; size_t splitval = tree_splits[mid] - 1; size_t cur = tree->size(); tree->emplace_back(1 /*stream_id*/, splitval, 0, 0, Predictor::Zero, 0, 1); (*tree)[cur].lchild = tree->size(); MergeTrees(trees, tree_splits, mid, end, tree); (*tree)[cur].rchild = tree->size(); MergeTrees(trees, tree_splits, begin, mid, tree); } void QuantizeChannel(Channel& ch, const int q) { if (q == 1) return; for (size_t y = 0; y < ch.plane.ysize(); y++) { pixel_type* row = ch.plane.Row(y); for (size_t x = 0; x < ch.plane.xsize(); x++) { if (row[x] < 0) { row[x] = -((-row[x] + q / 2) / q) * q; } else { row[x] = ((row[x] + q / 2) / q) * q; } } } } // convert binary32 float that corresponds to custom [bits]-bit float (with // [exp_bits] exponent bits) to a [bits]-bit integer representation that should // fit in pixel_type Status float_to_int(const float* const row_in, pixel_type* const row_out, size_t xsize, unsigned int bits, unsigned int exp_bits, bool fp, double dfactor) { JXL_ASSERT(sizeof(pixel_type) * 8 >= bits); if (!fp) { if (bits > 22) { for (size_t x = 0; x < xsize; ++x) { row_out[x] = row_in[x] * dfactor + (row_in[x] < 0 ? -0.5 : 0.5); } } else { float factor = dfactor; for (size_t x = 0; x < xsize; ++x) { row_out[x] = row_in[x] * factor + (row_in[x] < 0 ? -0.5f : 0.5f); } } return true; } if (bits == 32 && fp) { JXL_ASSERT(exp_bits == 8); memcpy(static_cast(row_out), static_cast(row_in), 4 * xsize); return true; } JXL_ASSERT(bits > 0); int exp_bias = (1 << (exp_bits - 1)) - 1; int max_exp = (1 << exp_bits) - 1; uint32_t sign = (1u << (bits - 1)); int mant_bits = bits - exp_bits - 1; int mant_shift = 23 - mant_bits; for (size_t x = 0; x < xsize; ++x) { uint32_t f; memcpy(&f, &row_in[x], 4); int signbit = (f >> 31); f &= 0x7fffffff; if (f == 0) { row_out[x] = (signbit ? sign : 0); continue; } int exp = (f >> 23) - 127; if (exp == 128) return JXL_FAILURE("Inf/NaN not allowed"); int mantissa = (f & 0x007fffff); // broke up the binary32 into its parts, now reassemble into // arbitrary float exp += exp_bias; if (exp < 0) { // will become a subnormal number // add implicit leading 1 to mantissa mantissa |= 0x00800000; if (exp < -mant_bits) { return JXL_FAILURE( "Invalid float number: %g cannot be represented with %i " "exp_bits and %i mant_bits (exp %i)", row_in[x], exp_bits, mant_bits, exp); } mantissa >>= 1 - exp; exp = 0; } // exp should be representable in exp_bits, otherwise input was // invalid if (exp > max_exp) return JXL_FAILURE("Invalid float exponent"); if (mantissa & ((1 << mant_shift) - 1)) { return JXL_FAILURE("%g is losing precision (mant: %x)", row_in[x], mantissa); } mantissa >>= mant_shift; f = (signbit ? sign : 0); f |= (exp << mant_bits); f |= mantissa; row_out[x] = static_cast(f); } return true; } float EstimateWPCost(const Image& img, size_t i) { size_t extra_bits = 0; float histo_cost = 0; HybridUintConfig config; int32_t cutoffs[] = {-500, -392, -255, -191, -127, -95, -63, -47, -31, -23, -15, -11, -7, -4, -3, -1, 0, 1, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 392, 500}; constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1; Histogram histo[nc] = {}; weighted::Header wp_header; PredictorMode(i, &wp_header); for (const Channel& ch : img.channel) { const intptr_t onerow = ch.plane.PixelsPerRow(); weighted::State wp_state(wp_header, ch.w, ch.h); Properties properties(1); for (size_t y = 0; y < ch.h; y++) { const pixel_type* JXL_RESTRICT r = ch.Row(y); for (size_t x = 0; x < ch.w; x++) { size_t offset = 0; pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0); pixel_type_w top = (y ? *(r + x - onerow) : left); pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left); pixel_type_w topright = (x + 1 < ch.w && y ? *(r + x + 1 - onerow) : top); pixel_type_w toptop = (y > 1 ? *(r + x - onerow - onerow) : top); pixel_type guess = wp_state.Predict( x, y, ch.w, top, left, topright, topleft, toptop, &properties, offset); size_t ctx = 0; for (int c : cutoffs) { ctx += (c >= properties[0]) ? 1 : 0; } pixel_type res = r[x] - guess; uint32_t token; uint32_t nbits; uint32_t bits; config.Encode(PackSigned(res), &token, &nbits, &bits); histo[ctx].Add(token); extra_bits += nbits; wp_state.UpdateErrors(r[x], x, y, ch.w); } } for (auto& h : histo) { histo_cost += h.ShannonEntropy(); h.Clear(); } } return histo_cost + extra_bits; } float EstimateCost(const Image& img) { // TODO(veluca): consider SIMDfication of this code. size_t extra_bits = 0; float histo_cost = 0; HybridUintConfig config; uint32_t cutoffs[] = {0, 1, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 392, 500}; constexpr size_t nc = sizeof(cutoffs) / sizeof(*cutoffs) + 1; Histogram histo[nc] = {}; for (const Channel& ch : img.channel) { const intptr_t onerow = ch.plane.PixelsPerRow(); for (size_t y = 0; y < ch.h; y++) { const pixel_type* JXL_RESTRICT r = ch.Row(y); for (size_t x = 0; x < ch.w; x++) { pixel_type_w left = (x ? r[x - 1] : y ? *(r + x - onerow) : 0); pixel_type_w top = (y ? *(r + x - onerow) : left); pixel_type_w topleft = (x && y ? *(r + x - 1 - onerow) : left); size_t maxdiff = std::max(std::max(left, top), topleft) - std::min(std::min(left, top), topleft); size_t ctx = 0; for (uint32_t c : cutoffs) { ctx += (c > maxdiff) ? 1 : 0; } pixel_type res = r[x] - ClampedGradient(top, left, topleft); uint32_t token; uint32_t nbits; uint32_t bits; config.Encode(PackSigned(res), &token, &nbits, &bits); histo[ctx].Add(token); extra_bits += nbits; } } for (auto& h : histo) { histo_cost += h.ShannonEntropy(); h.Clear(); } } return histo_cost + extra_bits; } bool do_transform(Image& image, const Transform& tr, const weighted::Header& wp_header, jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) { Transform t = tr; bool did_it = true; if (force_jxlart) { if (!t.MetaApply(image)) return false; } else { did_it = TransformForward(t, image, wp_header, pool); } if (did_it) image.transform.push_back(t); return did_it; } bool maybe_do_transform(Image& image, const Transform& tr, const CompressParams& cparams, const weighted::Header& wp_header, float cost_before, jxl::ThreadPool* pool = nullptr, bool force_jxlart = false) { if (force_jxlart || cparams.speed_tier >= SpeedTier::kSquirrel) { return do_transform(image, tr, wp_header, pool, force_jxlart); } bool did_it = do_transform(image, tr, wp_header, pool); if (did_it) { float cost_after = EstimateCost(image); JXL_DEBUG_V(7, "Cost before: %f cost after: %f", cost_before, cost_after); if (cost_after > cost_before) { Transform t = image.transform.back(); JXL_RETURN_IF_ERROR(t.Inverse(image, wp_header, pool)); image.transform.pop_back(); did_it = false; } } return did_it; } void try_palettes(Image& gi, int& max_bitdepth, int& maxval, const CompressParams& cparams_, float channel_colors_percent, jxl::ThreadPool* pool = nullptr) { float cost_before = 0.f; size_t did_palette = 0; float nb_pixels = gi.channel[0].w * gi.channel[0].h; int nb_chans = gi.channel.size() - gi.nb_meta_channels; // arbitrary estimate: 4.8 bpp for 8-bit RGB float arbitrary_bpp_estimate = 0.2f * gi.bitdepth * nb_chans; if (cparams_.palette_colors != 0 || cparams_.lossy_palette) { // when not estimating, assume some arbitrary bpp cost_before = cparams_.speed_tier <= SpeedTier::kSquirrel ? EstimateCost(gi) : nb_pixels * arbitrary_bpp_estimate; // all-channel palette (e.g. RGBA) if (nb_chans > 1) { Transform maybe_palette(TransformId::kPalette); maybe_palette.begin_c = gi.nb_meta_channels; maybe_palette.num_c = nb_chans; // Heuristic choice of max colors for a palette: // max_colors = nb_pixels * estimated_bpp_without_palette * 0.0005 + // + nb_pixels / 128 + 128 // (estimated_bpp_without_palette = cost_before / nb_pixels) // Rationale: small image with large palette is not effective; // also if the entropy (estimated bpp) is low (e.g. mostly solid/gradient // areas), palette is less useful and may even be counterproductive. maybe_palette.nb_colors = std::min( static_cast(cost_before * 0.0005f + nb_pixels / 128 + 128), std::abs(cparams_.palette_colors)); maybe_palette.ordered_palette = cparams_.palette_colors >= 0; maybe_palette.lossy_palette = (cparams_.lossy_palette && maybe_palette.num_c == 3); if (maybe_palette.lossy_palette) { maybe_palette.predictor = Predictor::Average4; } // TODO(veluca): use a custom weighted header if using the weighted // predictor. if (maybe_do_transform(gi, maybe_palette, cparams_, weighted::Header(), cost_before, pool, cparams_.options.zero_tokens)) { did_palette = 1; }; } // all-minus-one-channel palette (RGB with separate alpha, or CMY with // separate K) if (!did_palette && nb_chans > 3) { Transform maybe_palette_3(TransformId::kPalette); maybe_palette_3.begin_c = gi.nb_meta_channels; maybe_palette_3.num_c = nb_chans - 1; maybe_palette_3.nb_colors = std::min( static_cast(cost_before * 0.0005f + nb_pixels / 128 + 128), std::abs(cparams_.palette_colors)); maybe_palette_3.ordered_palette = cparams_.palette_colors >= 0; maybe_palette_3.lossy_palette = cparams_.lossy_palette; if (maybe_palette_3.lossy_palette) { maybe_palette_3.predictor = Predictor::Average4; } if (maybe_do_transform(gi, maybe_palette_3, cparams_, weighted::Header(), cost_before, pool, cparams_.options.zero_tokens)) { did_palette = 1; } } } if (channel_colors_percent > 0) { // single channel palette (like FLIF's ChannelCompact) size_t nb_channels = gi.channel.size() - gi.nb_meta_channels - did_palette; int orig_bitdepth = max_bitdepth; max_bitdepth = 0; if (nb_channels > 0 && (did_palette || cost_before == 0)) { cost_before = cparams_.speed_tier < SpeedTier::kSquirrel ? EstimateCost(gi) : 0; } for (size_t i = did_palette; i < nb_channels + did_palette; i++) { int32_t min; int32_t max; compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max); int64_t colors = static_cast(max) - min + 1; JXL_DEBUG_V(10, "Channel %" PRIuS ": range=%i..%i", i, min, max); Transform maybe_palette_1(TransformId::kPalette); maybe_palette_1.begin_c = i + gi.nb_meta_channels; maybe_palette_1.num_c = 1; // simple heuristic: if less than X percent of the values in the range // actually occur, it is probably worth it to do a compaction // (but only if the channel palette is less than 6% the size of the // image itself) maybe_palette_1.nb_colors = std::min(static_cast(nb_pixels / 16), static_cast(channel_colors_percent / 100. * colors)); if (maybe_do_transform(gi, maybe_palette_1, cparams_, weighted::Header(), cost_before, pool)) { // effective bit depth is lower, adjust quantization accordingly compute_minmax(gi.channel[gi.nb_meta_channels + i], &min, &max); if (max < maxval) maxval = max; int ch_bitdepth = (max > 0 ? CeilLog2Nonzero(static_cast(max)) : 0); if (ch_bitdepth > max_bitdepth) max_bitdepth = ch_bitdepth; } else { max_bitdepth = orig_bitdepth; } } } } } // namespace ModularFrameEncoder::ModularFrameEncoder(const FrameHeader& frame_header, const CompressParams& cparams_orig, bool streaming_mode) : frame_dim_(frame_header.ToFrameDimensions()), cparams_(cparams_orig) { size_t num_streams = ModularStreamId::Num(frame_dim_, frame_header.passes.num_passes); if (cparams_.ModularPartIsLossless()) { switch (cparams_.decoding_speed_tier) { case 0: break; case 1: cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kWPOnly; break; case 2: { cparams_.options.wp_tree_mode = ModularOptions::TreeMode::kGradientOnly; cparams_.options.predictor = Predictor::Gradient; break; } case 3: { // LZ77, no Gradient. cparams_.options.nb_repeats = 0; cparams_.options.predictor = Predictor::Gradient; break; } default: { // LZ77, no predictor. cparams_.options.nb_repeats = 0; cparams_.options.predictor = Predictor::Zero; break; } } } if (cparams_.decoding_speed_tier >= 1 && cparams_.responsive && cparams_.ModularPartIsLossless()) { cparams_.options.tree_kind = ModularOptions::TreeKind::kTrivialTreeNoPredictor; cparams_.options.nb_repeats = 0; } stream_images_.resize(num_streams); // use a sensible default if nothing explicit is specified: // Squeeze for lossy, no squeeze for lossless if (cparams_.responsive < 0) { if (cparams_.ModularPartIsLossless()) { cparams_.responsive = 0; } else { cparams_.responsive = 1; } } cparams_.options.splitting_heuristics_node_threshold = 82 + 14 * static_cast(cparams_.speed_tier); { // Set properties. std::vector prop_order; if (cparams_.responsive) { // Properties in order of their likelihood of being useful for Squeeze // residuals. prop_order = {0, 1, 4, 5, 6, 7, 8, 15, 9, 10, 11, 12, 13, 14, 2, 3}; } else { // Same, but for the non-Squeeze case. prop_order = {0, 1, 15, 9, 10, 11, 12, 13, 14, 2, 3, 4, 5, 6, 7, 8}; // if few groups, don't use group as a property if (num_streams < 30 && cparams_.speed_tier > SpeedTier::kTortoise && cparams_orig.ModularPartIsLossless()) { prop_order.erase(prop_order.begin() + 1); } } int max_properties = std::min( cparams_.options.max_properties, static_cast( frame_header.nonserialized_metadata->m.num_extra_channels) + (frame_header.encoding == FrameEncoding::kModular ? 2 : -1)); switch (cparams_.speed_tier) { case SpeedTier::kHare: cparams_.options.splitting_heuristics_properties.assign( prop_order.begin(), prop_order.begin() + 4); cparams_.options.max_property_values = 24; break; case SpeedTier::kWombat: cparams_.options.splitting_heuristics_properties.assign( prop_order.begin(), prop_order.begin() + 5); cparams_.options.max_property_values = 32; break; case SpeedTier::kSquirrel: cparams_.options.splitting_heuristics_properties.assign( prop_order.begin(), prop_order.begin() + 7); cparams_.options.max_property_values = 48; break; case SpeedTier::kKitten: cparams_.options.splitting_heuristics_properties.assign( prop_order.begin(), prop_order.begin() + 10); cparams_.options.max_property_values = 96; break; case SpeedTier::kGlacier: case SpeedTier::kTortoise: cparams_.options.splitting_heuristics_properties = prop_order; cparams_.options.max_property_values = 256; break; default: cparams_.options.splitting_heuristics_properties.assign( prop_order.begin(), prop_order.begin() + 3); cparams_.options.max_property_values = 16; break; } if (cparams_.speed_tier > SpeedTier::kTortoise) { // Gradient in previous channels. for (int i = 0; i < max_properties; i++) { cparams_.options.splitting_heuristics_properties.push_back( kNumNonrefProperties + i * 4 + 3); } } else { // All the extra properties in Tortoise mode. for (int i = 0; i < max_properties * 4; i++) { cparams_.options.splitting_heuristics_properties.push_back( kNumNonrefProperties + i); } } } if ((cparams_.options.predictor == Predictor::Average0 || cparams_.options.predictor == Predictor::Average1 || cparams_.options.predictor == Predictor::Average2 || cparams_.options.predictor == Predictor::Average3 || cparams_.options.predictor == Predictor::Average4 || cparams_.options.predictor == Predictor::Weighted) && !cparams_.ModularPartIsLossless()) { // Lossy + Average/Weighted predictors does not work, so switch to default // predictors. cparams_.options.predictor = kUndefinedPredictor; } if (cparams_.options.predictor == kUndefinedPredictor) { // no explicit predictor(s) given, set a good default if ((cparams_.speed_tier <= SpeedTier::kGlacier || cparams_.modular_mode == false) && cparams_.IsLossless() && cparams_.responsive == JXL_FALSE) { // TODO(veluca): allow all predictors that don't break residual // multipliers in lossy mode. cparams_.options.predictor = Predictor::Variable; } else if (cparams_.responsive || cparams_.lossy_palette) { // zero predictor for Squeeze residues and lossy palette cparams_.options.predictor = Predictor::Zero; } else if (!cparams_.IsLossless()) { // If not responsive and lossy. TODO(veluca): use near_lossless instead? cparams_.options.predictor = Predictor::Gradient; } else if (cparams_.speed_tier < SpeedTier::kFalcon) { // try median and weighted predictor for anything else cparams_.options.predictor = Predictor::Best; } else if (cparams_.speed_tier == SpeedTier::kFalcon) { // just weighted predictor in falcon mode cparams_.options.predictor = Predictor::Weighted; } else if (cparams_.speed_tier > SpeedTier::kFalcon) { // just gradient predictor in thunder mode cparams_.options.predictor = Predictor::Gradient; } } else { if (cparams_.lossy_palette) cparams_.options.predictor = Predictor::Zero; } if (!cparams_.ModularPartIsLossless()) { if (cparams_.options.predictor == Predictor::Weighted || cparams_.options.predictor == Predictor::Variable || cparams_.options.predictor == Predictor::Best) cparams_.options.predictor = Predictor::Zero; } tree_splits_.push_back(0); if (cparams_.modular_mode == false) { cparams_.options.fast_decode_multiplier = 1.0f; tree_splits_.push_back(ModularStreamId::VarDCTDC(0).ID(frame_dim_)); tree_splits_.push_back(ModularStreamId::ModularDC(0).ID(frame_dim_)); tree_splits_.push_back(ModularStreamId::ACMetadata(0).ID(frame_dim_)); tree_splits_.push_back(ModularStreamId::QuantTable(0).ID(frame_dim_)); tree_splits_.push_back(ModularStreamId::ModularAC(0, 0).ID(frame_dim_)); ac_metadata_size.resize(frame_dim_.num_dc_groups); extra_dc_precision.resize(frame_dim_.num_dc_groups); } tree_splits_.push_back(num_streams); cparams_.options.max_chan_size = frame_dim_.group_dim; cparams_.options.group_dim = frame_dim_.group_dim; // TODO(veluca): figure out how to use different predictor sets per channel. stream_options_.resize(num_streams, cparams_.options); stream_options_[0] = cparams_.options; if (cparams_.speed_tier == SpeedTier::kFalcon) { stream_options_[0].tree_kind = ModularOptions::TreeKind::kWPFixedDC; } else if (cparams_.speed_tier == SpeedTier::kThunder) { stream_options_[0].tree_kind = ModularOptions::TreeKind::kGradientFixedDC; } stream_options_[0].histogram_params = HistogramParams::ForModular(cparams_, {}, streaming_mode); } Status ModularFrameEncoder::ComputeEncodingData( const FrameHeader& frame_header, const ImageMetadata& metadata, Image3F* JXL_RESTRICT color, const std::vector& extra_channels, const Rect& group_rect, const FrameDimensions& patch_dim, const Rect& frame_area_rect, PassesEncoderState* JXL_RESTRICT enc_state, const JxlCmsInterface& cms, ThreadPool* pool, AuxOut* aux_out, bool do_color) { JXL_DEBUG_V(6, "Computing modular encoding data for frame %s", frame_header.DebugString().c_str()); bool groupwise = enc_state->streaming_mode; if (do_color && frame_header.loop_filter.gab && !groupwise) { float w = 0.9908511000000001f; float weights[3] = {w, w, w}; JXL_RETURN_IF_ERROR(GaborishInverse(color, Rect(*color), weights, pool)); } if (do_color && metadata.bit_depth.bits_per_sample <= 16 && cparams_.speed_tier < SpeedTier::kCheetah && cparams_.decoding_speed_tier < 2 && !groupwise) { JXL_RETURN_IF_ERROR(FindBestPatchDictionary( *color, enc_state, cms, nullptr, aux_out, cparams_.color_transform == ColorTransform::kXYB)); PatchDictionaryEncoder::SubtractFrom( enc_state->shared.image_features.patches, color); } if (cparams_.custom_splines.HasAny()) { PassesSharedState& shared = enc_state->shared; ImageFeatures& image_features = shared.image_features; image_features.splines = cparams_.custom_splines; } // Convert ImageBundle to modular Image object const size_t xsize = patch_dim.xsize; const size_t ysize = patch_dim.ysize; int nb_chans = 3; if (metadata.color_encoding.IsGray() && cparams_.color_transform == ColorTransform::kNone) { nb_chans = 1; } if (!do_color) nb_chans = 0; nb_chans += extra_channels.size(); bool fp = metadata.bit_depth.floating_point_sample && cparams_.color_transform != ColorTransform::kXYB; // bits_per_sample is just metadata for XYB images. if (metadata.bit_depth.bits_per_sample >= 32 && do_color && cparams_.color_transform != ColorTransform::kXYB) { if (metadata.bit_depth.bits_per_sample == 32 && fp == false) { return JXL_FAILURE("uint32_t not supported in enc_modular"); } else if (metadata.bit_depth.bits_per_sample > 32) { return JXL_FAILURE("bits_per_sample > 32 not supported"); } } // in the non-float case, there is an implicit 0 sign bit int max_bitdepth = do_color ? metadata.bit_depth.bits_per_sample + (fp ? 0 : 1) : 0; Image& gi = stream_images_[0]; JXL_ASSIGN_OR_RETURN( gi, Image::Create(xsize, ysize, metadata.bit_depth.bits_per_sample, nb_chans)); int c = 0; if (cparams_.color_transform == ColorTransform::kXYB && cparams_.modular_mode == true) { float enc_factors[3] = {32768.0f, 2048.0f, 2048.0f}; if (cparams_.butteraugli_distance > 0 && !cparams_.responsive) { // quantize XYB here and then treat it as a lossless image enc_factors[0] *= 1.f / (1.f + 23.f * cparams_.butteraugli_distance); enc_factors[1] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance); enc_factors[2] *= 1.f / (1.f + 14.f * cparams_.butteraugli_distance); cparams_.butteraugli_distance = 0; } if (cparams_.manual_xyb_factors.size() == 3) { DequantMatricesSetCustomDC(&enc_state->shared.matrices, cparams_.manual_xyb_factors.data()); // TODO(jon): update max_bitdepth in this case } else { DequantMatricesSetCustomDC(&enc_state->shared.matrices, enc_factors); max_bitdepth = 12; } } pixel_type maxval = gi.bitdepth < 32 ? (1u << gi.bitdepth) - 1 : 0; if (do_color) { for (; c < 3; c++) { if (metadata.color_encoding.IsGray() && cparams_.color_transform == ColorTransform::kNone && c != (cparams_.color_transform == ColorTransform::kXYB ? 1 : 0)) continue; int c_out = c; // XYB is encoded as YX(B-Y) if (cparams_.color_transform == ColorTransform::kXYB && c < 2) c_out = 1 - c_out; double factor = maxval; if (cparams_.color_transform == ColorTransform::kXYB) factor = enc_state->shared.matrices.InvDCQuant(c); if (c == 2 && cparams_.color_transform == ColorTransform::kXYB) { JXL_ASSERT(!fp); for (size_t y = 0; y < ysize; ++y) { const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y); pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y); pixel_type* const JXL_RESTRICT row_Y = gi.channel[0].Row(y); for (size_t x = 0; x < xsize; ++x) { // TODO(eustas): check if std::roundf is appropriate row_out[x] = row_in[x] * factor + 0.5f; row_out[x] -= row_Y[x]; // zero the lsb of B row_out[x] = row_out[x] / 2 * 2; } } } else { int bits = metadata.bit_depth.bits_per_sample; int exp_bits = metadata.bit_depth.exponent_bits_per_sample; gi.channel[c_out].hshift = frame_header.chroma_subsampling.HShift(c); gi.channel[c_out].vshift = frame_header.chroma_subsampling.VShift(c); size_t xsize_shifted = DivCeil(xsize, 1 << gi.channel[c_out].hshift); size_t ysize_shifted = DivCeil(ysize, 1 << gi.channel[c_out].vshift); JXL_RETURN_IF_ERROR( gi.channel[c_out].shrink(xsize_shifted, ysize_shifted)); std::atomic has_error{false}; JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, ysize_shifted, ThreadPool::NoInit, [&](const int task, const int thread) { if (has_error) return; const size_t y = task; const float* const JXL_RESTRICT row_in = color->PlaneRow(c, y + group_rect.y0()) + group_rect.x0(); pixel_type* const JXL_RESTRICT row_out = gi.channel[c_out].Row(y); if (!float_to_int(row_in, row_out, xsize_shifted, bits, exp_bits, fp, factor)) { has_error = true; return; }; }, "float2int")); if (has_error) { return JXL_FAILURE("Error in float to integer conversion"); } } } if (metadata.color_encoding.IsGray() && cparams_.color_transform == ColorTransform::kNone) c = 1; } for (size_t ec = 0; ec < extra_channels.size(); ec++, c++) { const ExtraChannelInfo& eci = metadata.extra_channel_info[ec]; size_t ecups = frame_header.extra_channel_upsampling[ec]; JXL_RETURN_IF_ERROR( gi.channel[c].shrink(DivCeil(patch_dim.xsize_upsampled, ecups), DivCeil(patch_dim.ysize_upsampled, ecups))); gi.channel[c].hshift = gi.channel[c].vshift = CeilLog2Nonzero(ecups) - CeilLog2Nonzero(frame_header.upsampling); int bits = eci.bit_depth.bits_per_sample; int exp_bits = eci.bit_depth.exponent_bits_per_sample; bool fp = eci.bit_depth.floating_point_sample; double factor = (fp ? 1 : ((1u << eci.bit_depth.bits_per_sample) - 1)); if (bits + (fp ? 0 : 1) > max_bitdepth) max_bitdepth = bits + (fp ? 0 : 1); std::atomic has_error{false}; JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, gi.channel[c].plane.ysize(), ThreadPool::NoInit, [&](const int task, const int thread) { if (has_error) return; const size_t y = task; const float* const JXL_RESTRICT row_in = extra_channels[ec].Row(y + group_rect.y0()) + group_rect.x0(); pixel_type* const JXL_RESTRICT row_out = gi.channel[c].Row(y); if (!float_to_int(row_in, row_out, gi.channel[c].plane.xsize(), bits, exp_bits, fp, factor)) { has_error = true; return; }; }, "float2int")); if (has_error) return JXL_FAILURE("Error in float to integer conversion"); } JXL_ASSERT(c == nb_chans); int level_max_bitdepth = (cparams_.level == 5 ? 16 : 32); if (max_bitdepth > level_max_bitdepth) { return JXL_FAILURE( "Bitdepth too high for level %i (need %i bits, have only %i in this " "level)", cparams_.level, max_bitdepth, level_max_bitdepth); } // Set options and apply transformations if (!cparams_.ModularPartIsLossless()) { if (cparams_.palette_colors != 0) { JXL_DEBUG_V(3, "Lossy encode, not doing palette transforms"); } if (cparams_.color_transform == ColorTransform::kXYB) { cparams_.channel_colors_pre_transform_percent = 0; } cparams_.channel_colors_percent = 0; cparams_.palette_colors = 0; cparams_.lossy_palette = false; } // Global palette transforms float channel_colors_percent = 0; if (!cparams_.lossy_palette && (cparams_.speed_tier <= SpeedTier::kThunder || (do_color && metadata.bit_depth.bits_per_sample > 8))) { channel_colors_percent = cparams_.channel_colors_pre_transform_percent; } if (!groupwise) { try_palettes(gi, max_bitdepth, maxval, cparams_, channel_colors_percent, pool); } // don't do an RCT if we're short on bits if (cparams_.color_transform == ColorTransform::kNone && do_color && gi.channel.size() - gi.nb_meta_channels >= 3 && max_bitdepth + 1 < level_max_bitdepth) { if (cparams_.colorspace < 0 && (!cparams_.ModularPartIsLossless() || cparams_.speed_tier > SpeedTier::kHare)) { Transform ycocg{TransformId::kRCT}; ycocg.rct_type = 6; ycocg.begin_c = gi.nb_meta_channels; do_transform(gi, ycocg, weighted::Header(), pool); max_bitdepth++; } else if (cparams_.colorspace > 0) { Transform sg(TransformId::kRCT); sg.begin_c = gi.nb_meta_channels; sg.rct_type = cparams_.colorspace; do_transform(gi, sg, weighted::Header(), pool); max_bitdepth++; } } if (cparams_.move_to_front_from_channel > 0) { for (size_t tgt = 0; tgt + cparams_.move_to_front_from_channel < gi.channel.size(); tgt++) { size_t pos = cparams_.move_to_front_from_channel; while (pos > 0) { Transform move(TransformId::kRCT); if (pos == 1) { move.begin_c = tgt; move.rct_type = 28; // RGB -> GRB pos -= 1; } else { move.begin_c = tgt + pos - 2; move.rct_type = 14; // RGB -> BRG pos -= 2; } do_transform(gi, move, weighted::Header(), pool); } } } // don't do squeeze if we don't have some spare bits if (!groupwise && cparams_.responsive && !gi.channel.empty() && max_bitdepth + 2 < level_max_bitdepth) { Transform t(TransformId::kSqueeze); do_transform(gi, t, weighted::Header(), pool); max_bitdepth += 2; } if (max_bitdepth + 1 > level_max_bitdepth) { // force no group RCTs if we don't have a spare bit cparams_.colorspace = 0; } JXL_ASSERT(max_bitdepth <= level_max_bitdepth); if (!cparams_.ModularPartIsLossless()) { quants_.resize(gi.channel.size(), 1); float quantizer = 0.25f; if (!cparams_.responsive) { JXL_DEBUG_V(1, "Warning: lossy compression without Squeeze " "transform is just color quantization."); quantizer *= 0.1f; } float bitdepth_correction = 1.f; if (cparams_.color_transform != ColorTransform::kXYB) { bitdepth_correction = maxval / 255.f; } std::vector quantizers; for (size_t i = 0; i < 3; i++) { float dist = cparams_.butteraugli_distance; quantizers.push_back(quantizer * dist * bitdepth_correction); } for (size_t i = 0; i < extra_channels.size(); i++) { int ec_bitdepth = metadata.extra_channel_info[i].bit_depth.bits_per_sample; pixel_type ec_maxval = ec_bitdepth < 32 ? (1u << ec_bitdepth) - 1 : 0; bitdepth_correction = ec_maxval / 255.f; float dist = 0; if (i < cparams_.ec_distance.size()) dist = cparams_.ec_distance[i]; if (dist < 0) dist = cparams_.butteraugli_distance; quantizers.push_back(quantizer * dist * bitdepth_correction); } if (cparams_.options.nb_repeats == 0) { return JXL_FAILURE("nb_repeats = 0 not supported with modular lossy!"); } for (uint32_t i = gi.nb_meta_channels; i < gi.channel.size(); i++) { Channel& ch = gi.channel[i]; int shift = ch.hshift + ch.vshift; // number of pixel halvings if (shift > 16) shift = 16; if (shift > 0) shift--; int q; // assuming default Squeeze here int component = (do_color ? 0 : 3) + ((i - gi.nb_meta_channels) % nb_chans); // last 4 channels are final chroma residuals if (nb_chans > 2 && i >= gi.channel.size() - 4 && cparams_.responsive) { component = 1; } if (cparams_.color_transform == ColorTransform::kXYB && component < 3) { q = quantizers[component] * squeeze_quality_factor_xyb * squeeze_xyb_qtable[component][shift]; } else { if (cparams_.colorspace != 0 && component > 0 && component < 3) { q = quantizers[component] * squeeze_quality_factor * squeeze_chroma_qtable[shift]; } else { q = quantizers[component] * squeeze_quality_factor * squeeze_luma_factor * squeeze_luma_qtable[shift]; } } if (q < 1) q = 1; QuantizeChannel(gi.channel[i], q); quants_[i] = q; } } // Fill other groups. // DC for (size_t group_id = 0; group_id < patch_dim.num_dc_groups; group_id++) { const size_t rgx = group_id % patch_dim.xsize_dc_groups; const size_t rgy = group_id / patch_dim.xsize_dc_groups; const Rect rect(rgx * patch_dim.dc_group_dim, rgy * patch_dim.dc_group_dim, patch_dim.dc_group_dim, patch_dim.dc_group_dim); size_t gx = rgx + frame_area_rect.x0() / 2048; size_t gy = rgy + frame_area_rect.y0() / 2048; size_t real_group_id = gy * frame_dim_.xsize_dc_groups + gx; // minShift==3 because (frame_dim.dc_group_dim >> 3) == frame_dim.group_dim // maxShift==1000 is infinity stream_params_.push_back( GroupParams{rect, 3, 1000, ModularStreamId::ModularDC(real_group_id)}); } // AC global -> nothing. // AC for (size_t group_id = 0; group_id < patch_dim.num_groups; group_id++) { const size_t rgx = group_id % patch_dim.xsize_groups; const size_t rgy = group_id / patch_dim.xsize_groups; const Rect mrect(rgx * patch_dim.group_dim, rgy * patch_dim.group_dim, patch_dim.group_dim, patch_dim.group_dim); size_t gx = rgx + frame_area_rect.x0() / (frame_dim_.group_dim); size_t gy = rgy + frame_area_rect.y0() / (frame_dim_.group_dim); size_t real_group_id = gy * frame_dim_.xsize_groups + gx; for (size_t i = 0; i < enc_state->progressive_splitter.GetNumPasses(); i++) { int maxShift; int minShift; frame_header.passes.GetDownsamplingBracket(i, minShift, maxShift); stream_params_.push_back( GroupParams{mrect, minShift, maxShift, ModularStreamId::ModularAC(real_group_id, i)}); } } // if there's only one group, everything ends up in GlobalModular // in that case, also try RCTs/WP params for the one group if (stream_params_.size() == 2) { stream_params_.push_back(GroupParams{Rect(0, 0, xsize, ysize), 0, 1000, ModularStreamId::Global()}); } gi_channel_.resize(stream_images_.size()); JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, stream_params_.size(), ThreadPool::NoInit, [&](const uint32_t i, size_t /* thread */) { size_t stream = stream_params_[i].id.ID(frame_dim_); if (stream != 0) { stream_options_[stream] = stream_options_[0]; } JXL_CHECK(PrepareStreamParams( stream_params_[i].rect, cparams_, stream_params_[i].minShift, stream_params_[i].maxShift, stream_params_[i].id, do_color, groupwise)); }, "ChooseParams")); { // Clear out channels that have been copied to groups. Image& full_image = stream_images_[0]; size_t c = full_image.nb_meta_channels; for (; c < full_image.channel.size(); c++) { Channel& fc = full_image.channel[c]; if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break; } for (; c < full_image.channel.size(); c++) { full_image.channel[c].plane = ImageI(); } } JXL_RETURN_IF_ERROR(ValidateChannelDimensions(gi, stream_options_[0])); return true; } Status ModularFrameEncoder::ComputeTree(ThreadPool* pool) { std::vector multiplier_info; if (!quants_.empty()) { for (uint32_t stream_id = 0; stream_id < stream_images_.size(); stream_id++) { // skip non-modular stream_ids if (stream_id > 0 && gi_channel_[stream_id].empty()) continue; const Image& image = stream_images_[stream_id]; const ModularOptions& options = stream_options_[stream_id]; for (uint32_t i = image.nb_meta_channels; i < image.channel.size(); i++) { if (i >= image.nb_meta_channels && (image.channel[i].w > options.max_chan_size || image.channel[i].h > options.max_chan_size)) { continue; } if (stream_id > 0 && gi_channel_[stream_id].empty()) continue; size_t ch_id = stream_id == 0 ? i : gi_channel_[stream_id][i - image.nb_meta_channels]; uint32_t q = quants_[ch_id]; // Inform the tree splitting heuristics that each channel in each group // used this quantization factor. This will produce a tree with the // given multipliers. if (multiplier_info.empty() || multiplier_info.back().range[1][0] != stream_id || multiplier_info.back().multiplier != q) { StaticPropRange range; range[0] = {{i, i + 1}}; range[1] = {{stream_id, stream_id + 1}}; multiplier_info.push_back({range, static_cast(q)}); } else { // Previous channel in the same group had the same quantization // factor. Don't provide two different ranges, as that creates // unnecessary nodes. multiplier_info.back().range[0][1] = i + 1; } } } // Merge group+channel settings that have the same channels and quantization // factors, to avoid unnecessary nodes. std::sort(multiplier_info.begin(), multiplier_info.end(), [](ModularMultiplierInfo a, ModularMultiplierInfo b) { return std::make_tuple(a.range, a.multiplier) < std::make_tuple(b.range, b.multiplier); }); size_t new_num = 1; for (size_t i = 1; i < multiplier_info.size(); i++) { ModularMultiplierInfo& prev = multiplier_info[new_num - 1]; ModularMultiplierInfo& cur = multiplier_info[i]; if (prev.range[0] == cur.range[0] && prev.multiplier == cur.multiplier && prev.range[1][1] == cur.range[1][0]) { prev.range[1][1] = cur.range[1][1]; } else { multiplier_info[new_num++] = multiplier_info[i]; } } multiplier_info.resize(new_num); } if (!cparams_.custom_fixed_tree.empty()) { tree_ = cparams_.custom_fixed_tree; } else if (cparams_.speed_tier < SpeedTier::kFalcon || !cparams_.modular_mode) { // Avoid creating a tree with leaves that don't correspond to any pixels. std::vector useful_splits; useful_splits.reserve(tree_splits_.size()); for (size_t chunk = 0; chunk < tree_splits_.size() - 1; chunk++) { bool has_pixels = false; size_t start = tree_splits_[chunk]; size_t stop = tree_splits_[chunk + 1]; for (size_t i = start; i < stop; i++) { if (!stream_images_[i].empty()) has_pixels = true; } if (has_pixels) { useful_splits.push_back(tree_splits_[chunk]); } } // Don't do anything if modular mode does not have any pixels in this image if (useful_splits.empty()) return true; useful_splits.push_back(tree_splits_.back()); std::atomic_flag invalid_force_wp = ATOMIC_FLAG_INIT; std::vector trees(useful_splits.size() - 1); JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, useful_splits.size() - 1, ThreadPool::NoInit, [&](const uint32_t chunk, size_t /* thread */) { // TODO(veluca): parallelize more. size_t total_pixels = 0; uint32_t start = useful_splits[chunk]; uint32_t stop = useful_splits[chunk + 1]; while (start < stop && stream_images_[start].empty()) ++start; while (start < stop && stream_images_[stop - 1].empty()) --stop; if (stream_options_[start].tree_kind != ModularOptions::TreeKind::kLearn) { for (size_t i = start; i < stop; i++) { for (const Channel& ch : stream_images_[i].channel) { total_pixels += ch.w * ch.h; } } trees[chunk] = PredefinedTree(stream_options_[start].tree_kind, total_pixels); return; } TreeSamples tree_samples; if (!tree_samples.SetPredictor(stream_options_[start].predictor, stream_options_[start].wp_tree_mode)) { invalid_force_wp.test_and_set(std::memory_order_acq_rel); return; } if (!tree_samples.SetProperties( stream_options_[start].splitting_heuristics_properties, stream_options_[start].wp_tree_mode)) { invalid_force_wp.test_and_set(std::memory_order_acq_rel); return; } uint32_t max_c = 0; std::vector pixel_samples; std::vector diff_samples; std::vector group_pixel_count; std::vector channel_pixel_count; for (size_t i = start; i < stop; i++) { max_c = std::max(stream_images_[i].channel.size(), max_c); CollectPixelSamples(stream_images_[i], stream_options_[i], i, group_pixel_count, channel_pixel_count, pixel_samples, diff_samples); } StaticPropRange range; range[0] = {{0, max_c}}; range[1] = {{start, stop}}; tree_samples.PreQuantizeProperties( range, multiplier_info, group_pixel_count, channel_pixel_count, pixel_samples, diff_samples, stream_options_[start].max_property_values); for (size_t i = start; i < stop; i++) { JXL_CHECK(ModularGenericCompress( stream_images_[i], stream_options_[i], /*writer=*/nullptr, /*aux_out=*/nullptr, 0, i, &tree_samples, &total_pixels)); } // TODO(veluca): parallelize more. trees[chunk] = LearnTree(std::move(tree_samples), total_pixels, stream_options_[start], multiplier_info, range); }, "LearnTrees")); if (invalid_force_wp.test_and_set(std::memory_order_acq_rel)) { return JXL_FAILURE("PrepareEncoding: force_no_wp with {Weighted}"); } tree_.clear(); MergeTrees(trees, useful_splits, 0, useful_splits.size() - 1, &tree_); } else { // Fixed tree. size_t total_pixels = 0; for (const Image& img : stream_images_) { for (const Channel& ch : img.channel) { total_pixels += ch.w * ch.h; } } if (cparams_.speed_tier <= SpeedTier::kFalcon) { tree_ = PredefinedTree(ModularOptions::TreeKind::kWPFixedDC, total_pixels); } else if (cparams_.speed_tier <= SpeedTier::kThunder) { tree_ = PredefinedTree(ModularOptions::TreeKind::kGradientFixedDC, total_pixels); } else { tree_ = {PropertyDecisionNode::Leaf(Predictor::Gradient)}; } } tree_tokens_.resize(1); tree_tokens_[0].clear(); Tree decoded_tree; TokenizeTree(tree_, tree_tokens_.data(), &decoded_tree); JXL_ASSERT(tree_.size() == decoded_tree.size()); tree_ = std::move(decoded_tree); /* TODO(szabadka) Add text output callback to cparams if (kPrintTree && WantDebugOutput(aux_out)) { if (frame_header.dc_level > 0) { PrintTree(tree_, aux_out->debug_prefix + "/dc_frame_level" + std::to_string(frame_header.dc_level) + "_tree"); } else { PrintTree(tree_, aux_out->debug_prefix + "/global_tree"); } } */ return true; } Status ModularFrameEncoder::ComputeTokens(ThreadPool* pool) { size_t num_streams = stream_images_.size(); stream_headers_.resize(num_streams); tokens_.resize(num_streams); image_widths_.resize(num_streams); JXL_RETURN_IF_ERROR(RunOnPool( pool, 0, num_streams, ThreadPool::NoInit, [&](const uint32_t stream_id, size_t /* thread */) { AuxOut my_aux_out; tokens_[stream_id].clear(); JXL_CHECK(ModularGenericCompress( stream_images_[stream_id], stream_options_[stream_id], /*writer=*/nullptr, &my_aux_out, 0, stream_id, /*tree_samples=*/nullptr, /*total_pixels=*/nullptr, /*tree=*/&tree_, /*header=*/&stream_headers_[stream_id], /*tokens=*/&tokens_[stream_id], /*widths=*/&image_widths_[stream_id])); }, "ComputeTokens")); return true; } Status ModularFrameEncoder::EncodeGlobalInfo(bool streaming_mode, BitWriter* writer, AuxOut* aux_out) { BitWriter::Allotment allotment(writer, 1); // If we are using brotli, or not using modular mode. if (tree_tokens_.empty() || tree_tokens_[0].empty()) { writer->Write(1, 0); allotment.ReclaimAndCharge(writer, kLayerModularTree, aux_out); return true; } writer->Write(1, 1); allotment.ReclaimAndCharge(writer, kLayerModularTree, aux_out); // Write tree HistogramParams params = HistogramParams::ForModular(cparams_, extra_dc_precision, streaming_mode); { EntropyEncodingData tree_code; std::vector tree_context_map; BuildAndEncodeHistograms(params, kNumTreeContexts, tree_tokens_, &tree_code, &tree_context_map, writer, kLayerModularTree, aux_out); WriteTokens(tree_tokens_[0], tree_code, tree_context_map, 0, writer, kLayerModularTree, aux_out); } params.streaming_mode = streaming_mode; params.add_missing_symbols = streaming_mode; params.image_widths = image_widths_; // Write histograms. BuildAndEncodeHistograms(params, (tree_.size() + 1) / 2, tokens_, &code_, &context_map_, writer, kLayerModularGlobal, aux_out); return true; } Status ModularFrameEncoder::EncodeStream(BitWriter* writer, AuxOut* aux_out, size_t layer, const ModularStreamId& stream) { size_t stream_id = stream.ID(frame_dim_); if (stream_images_[stream_id].channel.empty()) { JXL_DEBUG_V(10, "Modular stream %" PRIuS " is empty.", stream_id); return true; // Image with no channels, header never gets decoded. } if (tokens_.empty()) { JXL_RETURN_IF_ERROR(ModularGenericCompress( stream_images_[stream_id], stream_options_[stream_id], writer, aux_out, layer, stream_id)); } else { JXL_RETURN_IF_ERROR( Bundle::Write(stream_headers_[stream_id], writer, layer, aux_out)); WriteTokens(tokens_[stream_id], code_, context_map_, 0, writer, layer, aux_out); } return true; } void ModularFrameEncoder::ClearStreamData(const ModularStreamId& stream) { size_t stream_id = stream.ID(frame_dim_); Image empty_image; std::swap(stream_images_[stream_id], empty_image); } void ModularFrameEncoder::ClearModularStreamData() { for (const auto& group : stream_params_) { ClearStreamData(group.id); } stream_params_.clear(); } size_t ModularFrameEncoder::ComputeStreamingAbsoluteAcGroupId( size_t dc_group_id, size_t ac_group_id, const FrameDimensions& patch_dim) const { size_t dc_group_x = dc_group_id % frame_dim_.xsize_dc_groups; size_t dc_group_y = dc_group_id / frame_dim_.xsize_dc_groups; size_t ac_group_x = ac_group_id % patch_dim.xsize_groups; size_t ac_group_y = ac_group_id / patch_dim.xsize_groups; return (dc_group_x * 8 + ac_group_x) + (dc_group_y * 8 + ac_group_y) * frame_dim_.xsize_groups; } Status ModularFrameEncoder::PrepareStreamParams(const Rect& rect, const CompressParams& cparams_, int minShift, int maxShift, const ModularStreamId& stream, bool do_color, bool groupwise) { size_t stream_id = stream.ID(frame_dim_); Image& full_image = stream_images_[0]; const size_t xsize = rect.xsize(); const size_t ysize = rect.ysize(); Image& gi = stream_images_[stream_id]; if (stream_id > 0) { JXL_ASSIGN_OR_RETURN(gi, Image::Create(xsize, ysize, full_image.bitdepth, 0)); // start at the first bigger-than-frame_dim.group_dim non-metachannel size_t c = full_image.nb_meta_channels; if (!groupwise) { for (; c < full_image.channel.size(); c++) { Channel& fc = full_image.channel[c]; if (fc.w > frame_dim_.group_dim || fc.h > frame_dim_.group_dim) break; } } for (; c < full_image.channel.size(); c++) { Channel& fc = full_image.channel[c]; int shift = std::min(fc.hshift, fc.vshift); if (shift > maxShift) continue; if (shift < minShift) continue; Rect r(rect.x0() >> fc.hshift, rect.y0() >> fc.vshift, rect.xsize() >> fc.hshift, rect.ysize() >> fc.vshift, fc.w, fc.h); if (r.xsize() == 0 || r.ysize() == 0) continue; gi_channel_[stream_id].push_back(c); JXL_ASSIGN_OR_RETURN(Channel gc, Channel::Create(r.xsize(), r.ysize())); gc.hshift = fc.hshift; gc.vshift = fc.vshift; for (size_t y = 0; y < r.ysize(); ++y) { memcpy(gc.Row(y), r.ConstRow(fc.plane, y), r.xsize() * sizeof(pixel_type)); } gi.channel.emplace_back(std::move(gc)); } if (gi.channel.empty()) return true; // Do some per-group transforms // Local palette transforms // TODO(veluca): make this work with quantize-after-prediction in lossy // mode. if (cparams_.butteraugli_distance == 0.f && !cparams_.lossy_palette && cparams_.speed_tier < SpeedTier::kCheetah) { int max_bitdepth = 0, maxval = 0; // don't care about that here float channel_color_percent = 0; if (!(cparams_.responsive && cparams_.decoding_speed_tier >= 1)) { channel_color_percent = cparams_.channel_colors_percent; } try_palettes(gi, max_bitdepth, maxval, cparams_, channel_color_percent); } } // lossless and no specific color transform specified: try Nothing, YCoCg, // and 17 RCTs if (cparams_.color_transform == ColorTransform::kNone && cparams_.IsLossless() && cparams_.colorspace < 0 && gi.channel.size() - gi.nb_meta_channels >= 3 && cparams_.responsive == JXL_FALSE && do_color && cparams_.speed_tier <= SpeedTier::kHare) { Transform sg(TransformId::kRCT); sg.begin_c = gi.nb_meta_channels; size_t nb_rcts_to_try = 0; switch (cparams_.speed_tier) { case SpeedTier::kLightning: case SpeedTier::kThunder: case SpeedTier::kFalcon: case SpeedTier::kCheetah: nb_rcts_to_try = 0; // Just do global YCoCg break; case SpeedTier::kHare: nb_rcts_to_try = 4; break; case SpeedTier::kWombat: nb_rcts_to_try = 5; break; case SpeedTier::kSquirrel: nb_rcts_to_try = 7; break; case SpeedTier::kKitten: nb_rcts_to_try = 9; break; case SpeedTier::kTectonicPlate: case SpeedTier::kGlacier: case SpeedTier::kTortoise: nb_rcts_to_try = 19; break; } float best_cost = std::numeric_limits::max(); size_t best_rct = 0; // These should be 19 actually different transforms; the remaining ones // are equivalent to one of these (note that the first two are do-nothing // and YCoCg) modulo channel reordering (which only matters in the case of // MA-with-prev-channels-properties) and/or sign (e.g. RmG vs GmR) for (int i : {0 * 7 + 0, 0 * 7 + 6, 0 * 7 + 5, 1 * 7 + 3, 3 * 7 + 5, 5 * 7 + 5, 1 * 7 + 5, 2 * 7 + 5, 1 * 7 + 1, 0 * 7 + 4, 1 * 7 + 2, 2 * 7 + 1, 2 * 7 + 2, 2 * 7 + 3, 4 * 7 + 4, 4 * 7 + 5, 0 * 7 + 2, 0 * 7 + 1, 0 * 7 + 3}) { if (nb_rcts_to_try == 0) break; sg.rct_type = i; nb_rcts_to_try--; if (do_transform(gi, sg, weighted::Header())) { float cost = EstimateCost(gi); if (cost < best_cost) { best_rct = i; best_cost = cost; } Transform t = gi.transform.back(); JXL_RETURN_IF_ERROR(t.Inverse(gi, weighted::Header(), nullptr)); gi.transform.pop_back(); } } // Apply the best RCT to the image for future encoding. sg.rct_type = best_rct; do_transform(gi, sg, weighted::Header()); } else { // No need to try anything, just use the default options. } size_t nb_wp_modes = 1; if (cparams_.speed_tier <= SpeedTier::kTortoise) { nb_wp_modes = 5; } else if (cparams_.speed_tier <= SpeedTier::kKitten) { nb_wp_modes = 2; } if (nb_wp_modes > 1 && (stream_options_[stream_id].predictor == Predictor::Weighted || stream_options_[stream_id].predictor == Predictor::Best || stream_options_[stream_id].predictor == Predictor::Variable)) { float best_cost = std::numeric_limits::max(); stream_options_[stream_id].wp_mode = 0; for (size_t i = 0; i < nb_wp_modes; i++) { float cost = EstimateWPCost(gi, i); if (cost < best_cost) { best_cost = cost; stream_options_[stream_id].wp_mode = i; } } } return true; } constexpr float q_deadzone = 0.62f; int QuantizeWP(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y, size_t w, weighted::State* wp_state, float value, float inv_factor) { float svalue = value * inv_factor; PredictionResult pred = PredictNoTreeWP(w, qrow + x, onerow, x, y, Predictor::Weighted, wp_state); svalue -= pred.guess; if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0; int residual = roundf(svalue); if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2; return residual + pred.guess; } int QuantizeGradient(const int32_t* qrow, size_t onerow, size_t c, size_t x, size_t y, size_t w, float value, float inv_factor) { float svalue = value * inv_factor; PredictionResult pred = PredictNoTreeNoWP(w, qrow + x, onerow, x, y, Predictor::Gradient); svalue -= pred.guess; if (svalue > -q_deadzone && svalue < q_deadzone) svalue = 0; int residual = roundf(svalue); if (residual > 2 || residual < -2) residual = roundf(svalue * 0.5) * 2; return residual + pred.guess; } Status ModularFrameEncoder::AddVarDCTDC(const FrameHeader& frame_header, const Image3F& dc, const Rect& r, size_t group_index, bool nl_dc, PassesEncoderState* enc_state, bool jpeg_transcode) { extra_dc_precision[group_index] = nl_dc ? 1 : 0; float mul = 1 << extra_dc_precision[group_index]; size_t stream_id = ModularStreamId::VarDCTDC(group_index).ID(frame_dim_); stream_options_[stream_id].max_chan_size = 0xFFFFFF; stream_options_[stream_id].predictor = Predictor::Weighted; stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kWPOnly; if (cparams_.speed_tier >= SpeedTier::kSquirrel) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kWPFixedDC; } if (cparams_.speed_tier < SpeedTier::kSquirrel && !nl_dc) { stream_options_[stream_id].predictor = (cparams_.speed_tier < SpeedTier::kKitten ? Predictor::Variable : Predictor::Best); stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kDefault; stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn; } if (cparams_.decoding_speed_tier >= 1) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kGradientFixedDC; } stream_options_[stream_id].histogram_params = stream_options_[0].histogram_params; JXL_ASSIGN_OR_RETURN(stream_images_[stream_id], Image::Create(r.xsize(), r.ysize(), 8, 3)); if (nl_dc && stream_options_[stream_id].tree_kind == ModularOptions::TreeKind::kGradientFixedDC) { JXL_ASSERT(frame_header.chroma_subsampling.Is444()); for (size_t c : {1, 0, 2}) { float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; float cfl_factor = enc_state->shared.cmap.DCFactors()[c]; for (size_t y = 0; y < r.ysize(); y++) { int32_t* quant_row = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); size_t stride = stream_images_[stream_id] .channel[c < 2 ? c ^ 1 : c] .plane.PixelsPerRow(); const float* row = r.ConstPlaneRow(dc, c, y); if (c == 1) { for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = QuantizeGradient(quant_row, stride, c, x, y, r.xsize(), row[x], inv_factor); } } else { int32_t* quant_row_y = stream_images_[stream_id].channel[0].plane.Row(y); for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = QuantizeGradient( quant_row, stride, c, x, y, r.xsize(), row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor); } } } } } else if (nl_dc) { JXL_ASSERT(frame_header.chroma_subsampling.Is444()); for (size_t c : {1, 0, 2}) { float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; float cfl_factor = enc_state->shared.cmap.DCFactors()[c]; weighted::Header header; weighted::State wp_state(header, r.xsize(), r.ysize()); for (size_t y = 0; y < r.ysize(); y++) { int32_t* quant_row = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); size_t stride = stream_images_[stream_id] .channel[c < 2 ? c ^ 1 : c] .plane.PixelsPerRow(); const float* row = r.ConstPlaneRow(dc, c, y); if (c == 1) { for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = QuantizeWP(quant_row, stride, c, x, y, r.xsize(), &wp_state, row[x], inv_factor); wp_state.UpdateErrors(quant_row[x], x, y, r.xsize()); } } else { int32_t* quant_row_y = stream_images_[stream_id].channel[0].plane.Row(y); for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = QuantizeWP( quant_row, stride, c, x, y, r.xsize(), &wp_state, row[x] - quant_row_y[x] * (y_factor * cfl_factor), inv_factor); wp_state.UpdateErrors(quant_row[x], x, y, r.xsize()); } } } } } else if (frame_header.chroma_subsampling.Is444()) { for (size_t c : {1, 0, 2}) { float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; float y_factor = enc_state->shared.quantizer.GetDcStep(1) / mul; float cfl_factor = enc_state->shared.cmap.DCFactors()[c]; for (size_t y = 0; y < r.ysize(); y++) { int32_t* quant_row = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c].plane.Row(y); const float* row = r.ConstPlaneRow(dc, c, y); if (c == 1) { for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = roundf(row[x] * inv_factor); } } else { int32_t* quant_row_y = stream_images_[stream_id].channel[0].plane.Row(y); for (size_t x = 0; x < r.xsize(); x++) { quant_row[x] = roundf((row[x] - quant_row_y[x] * (y_factor * cfl_factor)) * inv_factor); } } } } } else { for (size_t c : {1, 0, 2}) { Rect rect(r.x0() >> frame_header.chroma_subsampling.HShift(c), r.y0() >> frame_header.chroma_subsampling.VShift(c), r.xsize() >> frame_header.chroma_subsampling.HShift(c), r.ysize() >> frame_header.chroma_subsampling.VShift(c)); float inv_factor = enc_state->shared.quantizer.GetInvDcStep(c) * mul; size_t ys = rect.ysize(); size_t xs = rect.xsize(); Channel& ch = stream_images_[stream_id].channel[c < 2 ? c ^ 1 : c]; ch.w = xs; ch.h = ys; JXL_RETURN_IF_ERROR(ch.shrink()); for (size_t y = 0; y < ys; y++) { int32_t* quant_row = ch.plane.Row(y); const float* row = rect.ConstPlaneRow(dc, c, y); for (size_t x = 0; x < xs; x++) { quant_row[x] = roundf(row[x] * inv_factor); } } } } DequantDC(r, &enc_state->shared.dc_storage, &enc_state->shared.quant_dc, stream_images_[stream_id], enc_state->shared.quantizer.MulDC(), 1.0 / mul, enc_state->shared.cmap.DCFactors(), frame_header.chroma_subsampling, enc_state->shared.block_ctx_map); return true; } Status ModularFrameEncoder::AddACMetadata(const Rect& r, size_t group_index, bool jpeg_transcode, PassesEncoderState* enc_state) { size_t stream_id = ModularStreamId::ACMetadata(group_index).ID(frame_dim_); stream_options_[stream_id].max_chan_size = 0xFFFFFF; if (stream_options_[stream_id].predictor != Predictor::Weighted) { stream_options_[stream_id].wp_tree_mode = ModularOptions::TreeMode::kNoWP; } if (jpeg_transcode) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kJpegTranscodeACMeta; } else if (cparams_.speed_tier >= SpeedTier::kFalcon) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kFalconACMeta; } else if (cparams_.speed_tier > SpeedTier::kKitten) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kACMeta; } // If we are using a non-constant CfL field, and are in a slow enough mode, // re-enable tree computation for it. if (cparams_.speed_tier < SpeedTier::kSquirrel && cparams_.force_cfl_jpeg_recompression) { stream_options_[stream_id].tree_kind = ModularOptions::TreeKind::kLearn; } stream_options_[stream_id].histogram_params = stream_options_[0].histogram_params; // YToX, YToB, ACS + QF, EPF Image& image = stream_images_[stream_id]; JXL_ASSIGN_OR_RETURN(image, Image::Create(r.xsize(), r.ysize(), 8, 4)); static_assert(kColorTileDimInBlocks == 8, "Color tile size changed"); Rect cr(r.x0() >> 3, r.y0() >> 3, (r.xsize() + 7) >> 3, (r.ysize() + 7) >> 3); JXL_ASSIGN_OR_RETURN(image.channel[0], Channel::Create(cr.xsize(), cr.ysize(), 3, 3)); JXL_ASSIGN_OR_RETURN(image.channel[1], Channel::Create(cr.xsize(), cr.ysize(), 3, 3)); JXL_ASSIGN_OR_RETURN(image.channel[2], Channel::Create(r.xsize() * r.ysize(), 2, 0, 0)); ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytox_map, Rect(image.channel[0].plane), &image.channel[0].plane); ConvertPlaneAndClamp(cr, enc_state->shared.cmap.ytob_map, Rect(image.channel[1].plane), &image.channel[1].plane); size_t num = 0; for (size_t y = 0; y < r.ysize(); y++) { AcStrategyRow row_acs = enc_state->shared.ac_strategy.ConstRow(r, y); const int32_t* row_qf = r.ConstRow(enc_state->shared.raw_quant_field, y); const uint8_t* row_epf = r.ConstRow(enc_state->shared.epf_sharpness, y); int32_t* out_acs = image.channel[2].plane.Row(0); int32_t* out_qf = image.channel[2].plane.Row(1); int32_t* row_out_epf = image.channel[3].plane.Row(y); for (size_t x = 0; x < r.xsize(); x++) { row_out_epf[x] = row_epf[x]; if (!row_acs[x].IsFirstBlock()) continue; out_acs[num] = row_acs[x].RawStrategy(); out_qf[num] = row_qf[x] - 1; num++; } } image.channel[2].w = num; ac_metadata_size[group_index] = num; return true; } Status ModularFrameEncoder::EncodeQuantTable( size_t size_x, size_t size_y, BitWriter* writer, const QuantEncoding& encoding, size_t idx, ModularFrameEncoder* modular_frame_encoder) { JXL_ASSERT(encoding.qraw.qtable != nullptr); JXL_ASSERT(size_x * size_y * 3 == encoding.qraw.qtable->size()); JXL_CHECK(F16Coder::Write(encoding.qraw.qtable_den, writer)); if (modular_frame_encoder) { JXL_CHECK(modular_frame_encoder->EncodeStream( writer, nullptr, 0, ModularStreamId::QuantTable(idx))); return true; } JXL_ASSIGN_OR_RETURN(Image image, Image::Create(size_x, size_y, 8, 3)); for (size_t c = 0; c < 3; c++) { for (size_t y = 0; y < size_y; y++) { int32_t* JXL_RESTRICT row = image.channel[c].Row(y); for (size_t x = 0; x < size_x; x++) { row[x] = (*encoding.qraw.qtable)[c * size_x * size_y + y * size_x + x]; } } } ModularOptions cfopts; JXL_CHECK(ModularGenericCompress(image, cfopts, writer)); return true; } Status ModularFrameEncoder::AddQuantTable(size_t size_x, size_t size_y, const QuantEncoding& encoding, size_t idx) { size_t stream_id = ModularStreamId::QuantTable(idx).ID(frame_dim_); JXL_ASSERT(encoding.qraw.qtable != nullptr); JXL_ASSERT(size_x * size_y * 3 == encoding.qraw.qtable->size()); Image& image = stream_images_[stream_id]; JXL_ASSIGN_OR_RETURN(image, Image::Create(size_x, size_y, 8, 3)); for (size_t c = 0; c < 3; c++) { for (size_t y = 0; y < size_y; y++) { int32_t* JXL_RESTRICT row = image.channel[c].Row(y); for (size_t x = 0; x < size_x; x++) { row[x] = (*encoding.qraw.qtable)[c * size_x * size_y + y * size_x + x]; } } } return true; } } // namespace jxl