// Copyright (c) the JPEG XL Project Authors. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. #include "lib/jxl/modular/encoding/enc_ma.h" #include #include #include #include #include #include #include "lib/jxl/modular/encoding/ma_common.h" #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "lib/jxl/modular/encoding/enc_ma.cc" #include #include #include "lib/jxl/base/fast_math-inl.h" #include "lib/jxl/base/random.h" #include "lib/jxl/enc_ans.h" #include "lib/jxl/modular/encoding/context_predict.h" #include "lib/jxl/modular/options.h" #include "lib/jxl/pack_signed.h" HWY_BEFORE_NAMESPACE(); namespace jxl { namespace HWY_NAMESPACE { // These templates are not found via ADL. using hwy::HWY_NAMESPACE::Eq; using hwy::HWY_NAMESPACE::IfThenElse; using hwy::HWY_NAMESPACE::Lt; using hwy::HWY_NAMESPACE::Max; const HWY_FULL(float) df; const HWY_FULL(int32_t) di; size_t Padded(size_t x) { return RoundUpTo(x, Lanes(df)); } // Compute entropy of the histogram, taking into account the minimum probability // for symbols with non-zero counts. float EstimateBits(const int32_t *counts, size_t num_symbols) { int32_t total = std::accumulate(counts, counts + num_symbols, 0); const auto zero = Zero(df); const auto minprob = Set(df, 1.0f / ANS_TAB_SIZE); const auto inv_total = Set(df, 1.0f / total); auto bits_lanes = Zero(df); auto total_v = Set(di, total); for (size_t i = 0; i < num_symbols; i += Lanes(df)) { const auto counts_iv = LoadU(di, &counts[i]); const auto counts_fv = ConvertTo(df, counts_iv); const auto probs = Mul(counts_fv, inv_total); const auto mprobs = Max(probs, minprob); const auto nbps = IfThenElse(Eq(counts_iv, total_v), BitCast(di, zero), BitCast(di, FastLog2f(df, mprobs))); bits_lanes = Sub(bits_lanes, Mul(counts_fv, BitCast(df, nbps))); } return GetLane(SumOfLanes(df, bits_lanes)); } void MakeSplitNode(size_t pos, int property, int splitval, Predictor lpred, int64_t loff, Predictor rpred, int64_t roff, Tree *tree) { // Note that the tree splits on *strictly greater*. (*tree)[pos].lchild = tree->size(); (*tree)[pos].rchild = tree->size() + 1; (*tree)[pos].splitval = splitval; (*tree)[pos].property = property; tree->emplace_back(); tree->back().property = -1; tree->back().predictor = rpred; tree->back().predictor_offset = roff; tree->back().multiplier = 1; tree->emplace_back(); tree->back().property = -1; tree->back().predictor = lpred; tree->back().predictor_offset = loff; tree->back().multiplier = 1; } enum class IntersectionType { kNone, kPartial, kInside }; IntersectionType BoxIntersects(StaticPropRange needle, StaticPropRange haystack, uint32_t &partial_axis, uint32_t &partial_val) { bool partial = false; for (size_t i = 0; i < kNumStaticProperties; i++) { if (haystack[i][0] >= needle[i][1]) { return IntersectionType::kNone; } if (haystack[i][1] <= needle[i][0]) { return IntersectionType::kNone; } if (haystack[i][0] <= needle[i][0] && haystack[i][1] >= needle[i][1]) { continue; } partial = true; partial_axis = i; if (haystack[i][0] > needle[i][0] && haystack[i][0] < needle[i][1]) { partial_val = haystack[i][0] - 1; } else { JXL_DASSERT(haystack[i][1] > needle[i][0] && haystack[i][1] < needle[i][1]); partial_val = haystack[i][1] - 1; } } return partial ? IntersectionType::kPartial : IntersectionType::kInside; } void SplitTreeSamples(TreeSamples &tree_samples, size_t begin, size_t pos, size_t end, size_t prop) { auto cmp = [&](size_t a, size_t b) { return static_cast(tree_samples.Property(prop, a)) - static_cast(tree_samples.Property(prop, b)); }; Rng rng(0); while (end > begin + 1) { { size_t pivot = rng.UniformU(begin, end); tree_samples.Swap(begin, pivot); } size_t pivot_begin = begin; size_t pivot_end = pivot_begin + 1; for (size_t i = begin + 1; i < end; i++) { JXL_DASSERT(i >= pivot_end); JXL_DASSERT(pivot_end > pivot_begin); int32_t cmp_result = cmp(i, pivot_begin); if (cmp_result < 0) { // i < pivot, move pivot forward and put i before // the pivot. tree_samples.ThreeShuffle(pivot_begin, pivot_end, i); pivot_begin++; pivot_end++; } else if (cmp_result == 0) { tree_samples.Swap(pivot_end, i); pivot_end++; } } JXL_DASSERT(pivot_begin >= begin); JXL_DASSERT(pivot_end > pivot_begin); JXL_DASSERT(pivot_end <= end); for (size_t i = begin; i < pivot_begin; i++) { JXL_DASSERT(cmp(i, pivot_begin) < 0); } for (size_t i = pivot_end; i < end; i++) { JXL_DASSERT(cmp(i, pivot_begin) > 0); } for (size_t i = pivot_begin; i < pivot_end; i++) { JXL_DASSERT(cmp(i, pivot_begin) == 0); } // We now have that [begin, pivot_begin) is < pivot, [pivot_begin, // pivot_end) is = pivot, and [pivot_end, end) is > pivot. // If pos falls in the first or the last interval, we continue in that // interval; otherwise, we are done. if (pivot_begin > pos) { end = pivot_begin; } else if (pivot_end < pos) { begin = pivot_end; } else { break; } } } void FindBestSplit(TreeSamples &tree_samples, float threshold, const std::vector &mul_info, StaticPropRange initial_static_prop_range, float fast_decode_multiplier, Tree *tree) { struct NodeInfo { size_t pos; size_t begin; size_t end; uint64_t used_properties; StaticPropRange static_prop_range; }; std::vector nodes; nodes.push_back(NodeInfo{0, 0, tree_samples.NumDistinctSamples(), 0, initial_static_prop_range}); size_t num_predictors = tree_samples.NumPredictors(); size_t num_properties = tree_samples.NumProperties(); // TODO(veluca): consider parallelizing the search (processing multiple nodes // at a time). while (!nodes.empty()) { size_t pos = nodes.back().pos; size_t begin = nodes.back().begin; size_t end = nodes.back().end; uint64_t used_properties = nodes.back().used_properties; StaticPropRange static_prop_range = nodes.back().static_prop_range; nodes.pop_back(); if (begin == end) continue; struct SplitInfo { size_t prop = 0; uint32_t val = 0; size_t pos = 0; float lcost = std::numeric_limits::max(); float rcost = std::numeric_limits::max(); Predictor lpred = Predictor::Zero; Predictor rpred = Predictor::Zero; float Cost() const { return lcost + rcost; } }; SplitInfo best_split_static_constant; SplitInfo best_split_static; SplitInfo best_split_nonstatic; SplitInfo best_split_nowp; JXL_DASSERT(begin <= end); JXL_DASSERT(end <= tree_samples.NumDistinctSamples()); // Compute the maximum token in the range. size_t max_symbols = 0; for (size_t pred = 0; pred < num_predictors; pred++) { for (size_t i = begin; i < end; i++) { uint32_t tok = tree_samples.Token(pred, i); max_symbols = max_symbols > tok + 1 ? max_symbols : tok + 1; } } max_symbols = Padded(max_symbols); std::vector counts(max_symbols * num_predictors); std::vector tot_extra_bits(num_predictors); for (size_t pred = 0; pred < num_predictors; pred++) { for (size_t i = begin; i < end; i++) { counts[pred * max_symbols + tree_samples.Token(pred, i)] += tree_samples.Count(i); tot_extra_bits[pred] += tree_samples.NBits(pred, i) * tree_samples.Count(i); } } float base_bits; { size_t pred = tree_samples.PredictorIndex((*tree)[pos].predictor); base_bits = EstimateBits(counts.data() + pred * max_symbols, max_symbols) + tot_extra_bits[pred]; } SplitInfo *best = &best_split_nonstatic; SplitInfo forced_split; // The multiplier ranges cut halfway through the current ranges of static // properties. We do this even if the current node is not a leaf, to // minimize the number of nodes in the resulting tree. for (const auto &mmi : mul_info) { uint32_t axis; uint32_t val; IntersectionType t = BoxIntersects(static_prop_range, mmi.range, axis, val); if (t == IntersectionType::kNone) continue; if (t == IntersectionType::kInside) { (*tree)[pos].multiplier = mmi.multiplier; break; } if (t == IntersectionType::kPartial) { forced_split.val = tree_samples.QuantizeProperty(axis, val); forced_split.prop = axis; forced_split.lcost = forced_split.rcost = base_bits / 2 - threshold; forced_split.lpred = forced_split.rpred = (*tree)[pos].predictor; best = &forced_split; best->pos = begin; JXL_ASSERT(best->prop == tree_samples.PropertyFromIndex(best->prop)); for (size_t x = begin; x < end; x++) { if (tree_samples.Property(best->prop, x) <= best->val) { best->pos++; } } break; } } if (best != &forced_split) { std::vector prop_value_used_count; std::vector count_increase; std::vector extra_bits_increase; // For each property, compute which of its values are used, and what // tokens correspond to those usages. Then, iterate through the values, // and compute the entropy of each side of the split (of the form `prop > // threshold`). Finally, find the split that minimizes the cost. struct CostInfo { float cost = std::numeric_limits::max(); float extra_cost = 0; float Cost() const { return cost + extra_cost; } Predictor pred; // will be uninitialized in some cases, but never used. }; std::vector costs_l; std::vector costs_r; std::vector counts_above(max_symbols); std::vector counts_below(max_symbols); // The lower the threshold, the higher the expected noisiness of the // estimate. Thus, discourage changing predictors. float change_pred_penalty = 800.0f / (100.0f + threshold); for (size_t prop = 0; prop < num_properties && base_bits > threshold; prop++) { costs_l.clear(); costs_r.clear(); size_t prop_size = tree_samples.NumPropertyValues(prop); if (extra_bits_increase.size() < prop_size) { count_increase.resize(prop_size * max_symbols); extra_bits_increase.resize(prop_size); } // Clear prop_value_used_count (which cannot be cleared "on the go") prop_value_used_count.clear(); prop_value_used_count.resize(prop_size); size_t first_used = prop_size; size_t last_used = 0; // TODO(veluca): consider finding multiple splits along a single // property at the same time, possibly with a bottom-up approach. for (size_t i = begin; i < end; i++) { size_t p = tree_samples.Property(prop, i); prop_value_used_count[p]++; last_used = std::max(last_used, p); first_used = std::min(first_used, p); } costs_l.resize(last_used - first_used); costs_r.resize(last_used - first_used); // For all predictors, compute the right and left costs of each split. for (size_t pred = 0; pred < num_predictors; pred++) { // Compute cost and histogram increments for each property value. for (size_t i = begin; i < end; i++) { size_t p = tree_samples.Property(prop, i); size_t cnt = tree_samples.Count(i); size_t sym = tree_samples.Token(pred, i); count_increase[p * max_symbols + sym] += cnt; extra_bits_increase[p] += tree_samples.NBits(pred, i) * cnt; } memcpy(counts_above.data(), counts.data() + pred * max_symbols, max_symbols * sizeof counts_above[0]); memset(counts_below.data(), 0, max_symbols * sizeof counts_below[0]); size_t extra_bits_below = 0; // Exclude last used: this ensures neither counts_above nor // counts_below is empty. for (size_t i = first_used; i < last_used; i++) { if (!prop_value_used_count[i]) continue; extra_bits_below += extra_bits_increase[i]; // The increase for this property value has been used, and will not // be used again: clear it. Also below. extra_bits_increase[i] = 0; for (size_t sym = 0; sym < max_symbols; sym++) { counts_above[sym] -= count_increase[i * max_symbols + sym]; counts_below[sym] += count_increase[i * max_symbols + sym]; count_increase[i * max_symbols + sym] = 0; } float rcost = EstimateBits(counts_above.data(), max_symbols) + tot_extra_bits[pred] - extra_bits_below; float lcost = EstimateBits(counts_below.data(), max_symbols) + extra_bits_below; JXL_DASSERT(extra_bits_below <= tot_extra_bits[pred]); float penalty = 0; // Never discourage moving away from the Weighted predictor. if (tree_samples.PredictorFromIndex(pred) != (*tree)[pos].predictor && (*tree)[pos].predictor != Predictor::Weighted) { penalty = change_pred_penalty; } // If everything else is equal, disfavour Weighted (slower) and // favour Zero (faster if it's the only predictor used in a // group+channel combination) if (tree_samples.PredictorFromIndex(pred) == Predictor::Weighted) { penalty += 1e-8; } if (tree_samples.PredictorFromIndex(pred) == Predictor::Zero) { penalty -= 1e-8; } if (rcost + penalty < costs_r[i - first_used].Cost()) { costs_r[i - first_used].cost = rcost; costs_r[i - first_used].extra_cost = penalty; costs_r[i - first_used].pred = tree_samples.PredictorFromIndex(pred); } if (lcost + penalty < costs_l[i - first_used].Cost()) { costs_l[i - first_used].cost = lcost; costs_l[i - first_used].extra_cost = penalty; costs_l[i - first_used].pred = tree_samples.PredictorFromIndex(pred); } } } // Iterate through the possible splits and find the one with minimum sum // of costs of the two sides. size_t split = begin; for (size_t i = first_used; i < last_used; i++) { if (!prop_value_used_count[i]) continue; split += prop_value_used_count[i]; float rcost = costs_r[i - first_used].cost; float lcost = costs_l[i - first_used].cost; // WP was not used + we would use the WP property or predictor bool adds_wp = (tree_samples.PropertyFromIndex(prop) == kWPProp && (used_properties & (1LU << prop)) == 0) || ((costs_l[i - first_used].pred == Predictor::Weighted || costs_r[i - first_used].pred == Predictor::Weighted) && (*tree)[pos].predictor != Predictor::Weighted); bool zero_entropy_side = rcost == 0 || lcost == 0; SplitInfo &best = prop < kNumStaticProperties ? (zero_entropy_side ? best_split_static_constant : best_split_static) : (adds_wp ? best_split_nonstatic : best_split_nowp); if (lcost + rcost < best.Cost()) { best.prop = prop; best.val = i; best.pos = split; best.lcost = lcost; best.lpred = costs_l[i - first_used].pred; best.rcost = rcost; best.rpred = costs_r[i - first_used].pred; } } // Clear extra_bits_increase and cost_increase for last_used. extra_bits_increase[last_used] = 0; for (size_t sym = 0; sym < max_symbols; sym++) { count_increase[last_used * max_symbols + sym] = 0; } } // Try to avoid introducing WP. if (best_split_nowp.Cost() + threshold < base_bits && best_split_nowp.Cost() <= fast_decode_multiplier * best->Cost()) { best = &best_split_nowp; } // Split along static props if possible and not significantly more // expensive. if (best_split_static.Cost() + threshold < base_bits && best_split_static.Cost() <= fast_decode_multiplier * best->Cost()) { best = &best_split_static; } // Split along static props to create constant nodes if possible. if (best_split_static_constant.Cost() + threshold < base_bits) { best = &best_split_static_constant; } } if (best->Cost() + threshold < base_bits) { uint32_t p = tree_samples.PropertyFromIndex(best->prop); pixel_type dequant = tree_samples.UnquantizeProperty(best->prop, best->val); // Split node and try to split children. MakeSplitNode(pos, p, dequant, best->lpred, 0, best->rpred, 0, tree); // "Sort" according to winning property SplitTreeSamples(tree_samples, begin, best->pos, end, best->prop); if (p >= kNumStaticProperties) { used_properties |= 1 << best->prop; } auto new_sp_range = static_prop_range; if (p < kNumStaticProperties) { JXL_ASSERT(static_cast(dequant + 1) <= new_sp_range[p][1]); new_sp_range[p][1] = dequant + 1; JXL_ASSERT(new_sp_range[p][0] < new_sp_range[p][1]); } nodes.push_back(NodeInfo{(*tree)[pos].rchild, begin, best->pos, used_properties, new_sp_range}); new_sp_range = static_prop_range; if (p < kNumStaticProperties) { JXL_ASSERT(new_sp_range[p][0] <= static_cast(dequant + 1)); new_sp_range[p][0] = dequant + 1; JXL_ASSERT(new_sp_range[p][0] < new_sp_range[p][1]); } nodes.push_back(NodeInfo{(*tree)[pos].lchild, best->pos, end, used_properties, new_sp_range}); } } } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace jxl HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace jxl { HWY_EXPORT(FindBestSplit); // Local function. void ComputeBestTree(TreeSamples &tree_samples, float threshold, const std::vector &mul_info, StaticPropRange static_prop_range, float fast_decode_multiplier, Tree *tree) { // TODO(veluca): take into account that different contexts can have different // uint configs. // // Initialize tree. tree->emplace_back(); tree->back().property = -1; tree->back().predictor = tree_samples.PredictorFromIndex(0); tree->back().predictor_offset = 0; tree->back().multiplier = 1; JXL_ASSERT(tree_samples.NumProperties() < 64); JXL_ASSERT(tree_samples.NumDistinctSamples() <= std::numeric_limits::max()); HWY_DYNAMIC_DISPATCH(FindBestSplit) (tree_samples, threshold, mul_info, static_prop_range, fast_decode_multiplier, tree); } constexpr int32_t TreeSamples::kPropertyRange; constexpr uint32_t TreeSamples::kDedupEntryUnused; Status TreeSamples::SetPredictor(Predictor predictor, ModularOptions::TreeMode wp_tree_mode) { if (wp_tree_mode == ModularOptions::TreeMode::kWPOnly) { predictors = {Predictor::Weighted}; residuals.resize(1); return true; } if (wp_tree_mode == ModularOptions::TreeMode::kNoWP && predictor == Predictor::Weighted) { return JXL_FAILURE("Invalid predictor settings"); } if (predictor == Predictor::Variable) { for (size_t i = 0; i < kNumModularPredictors; i++) { predictors.push_back(static_cast(i)); } std::swap(predictors[0], predictors[static_cast(Predictor::Weighted)]); std::swap(predictors[1], predictors[static_cast(Predictor::Gradient)]); } else if (predictor == Predictor::Best) { predictors = {Predictor::Weighted, Predictor::Gradient}; } else { predictors = {predictor}; } if (wp_tree_mode == ModularOptions::TreeMode::kNoWP) { auto wp_it = std::find(predictors.begin(), predictors.end(), Predictor::Weighted); if (wp_it != predictors.end()) { predictors.erase(wp_it); } } residuals.resize(predictors.size()); return true; } Status TreeSamples::SetProperties(const std::vector &properties, ModularOptions::TreeMode wp_tree_mode) { props_to_use = properties; if (wp_tree_mode == ModularOptions::TreeMode::kWPOnly) { props_to_use = {static_cast(kWPProp)}; } if (wp_tree_mode == ModularOptions::TreeMode::kGradientOnly) { props_to_use = {static_cast(kGradientProp)}; } if (wp_tree_mode == ModularOptions::TreeMode::kNoWP) { auto it = std::find(props_to_use.begin(), props_to_use.end(), kWPProp); if (it != props_to_use.end()) { props_to_use.erase(it); } } if (props_to_use.empty()) { return JXL_FAILURE("Invalid property set configuration"); } props.resize(props_to_use.size()); return true; } void TreeSamples::InitTable(size_t size) { JXL_DASSERT((size & (size - 1)) == 0); if (dedup_table_.size() == size) return; dedup_table_.resize(size, kDedupEntryUnused); for (size_t i = 0; i < NumDistinctSamples(); i++) { if (sample_counts[i] != std::numeric_limits::max()) { AddToTable(i); } } } bool TreeSamples::AddToTableAndMerge(size_t a) { size_t pos1 = Hash1(a); size_t pos2 = Hash2(a); if (dedup_table_[pos1] != kDedupEntryUnused && IsSameSample(a, dedup_table_[pos1])) { JXL_DASSERT(sample_counts[a] == 1); sample_counts[dedup_table_[pos1]]++; // Remove from hash table samples that are saturated. if (sample_counts[dedup_table_[pos1]] == std::numeric_limits::max()) { dedup_table_[pos1] = kDedupEntryUnused; } return true; } if (dedup_table_[pos2] != kDedupEntryUnused && IsSameSample(a, dedup_table_[pos2])) { JXL_DASSERT(sample_counts[a] == 1); sample_counts[dedup_table_[pos2]]++; // Remove from hash table samples that are saturated. if (sample_counts[dedup_table_[pos2]] == std::numeric_limits::max()) { dedup_table_[pos2] = kDedupEntryUnused; } return true; } AddToTable(a); return false; } void TreeSamples::AddToTable(size_t a) { size_t pos1 = Hash1(a); size_t pos2 = Hash2(a); if (dedup_table_[pos1] == kDedupEntryUnused) { dedup_table_[pos1] = a; } else if (dedup_table_[pos2] == kDedupEntryUnused) { dedup_table_[pos2] = a; } } void TreeSamples::PrepareForSamples(size_t num_samples) { for (auto &res : residuals) { res.reserve(res.size() + num_samples); } for (auto &p : props) { p.reserve(p.size() + num_samples); } size_t total_num_samples = num_samples + sample_counts.size(); size_t next_pow2 = 1LLU << CeilLog2Nonzero(total_num_samples * 3 / 2); InitTable(next_pow2); } size_t TreeSamples::Hash1(size_t a) const { constexpr uint64_t constant = 0x1e35a7bd; uint64_t h = constant; for (const auto &r : residuals) { h = h * constant + r[a].tok; h = h * constant + r[a].nbits; } for (const auto &p : props) { h = h * constant + p[a]; } return (h >> 16) & (dedup_table_.size() - 1); } size_t TreeSamples::Hash2(size_t a) const { constexpr uint64_t constant = 0x1e35a7bd1e35a7bd; uint64_t h = constant; for (const auto &p : props) { h = h * constant ^ p[a]; } for (const auto &r : residuals) { h = h * constant ^ r[a].tok; h = h * constant ^ r[a].nbits; } return (h >> 16) & (dedup_table_.size() - 1); } bool TreeSamples::IsSameSample(size_t a, size_t b) const { bool ret = true; for (const auto &r : residuals) { if (r[a].tok != r[b].tok) { ret = false; } if (r[a].nbits != r[b].nbits) { ret = false; } } for (const auto &p : props) { if (p[a] != p[b]) { ret = false; } } return ret; } void TreeSamples::AddSample(pixel_type_w pixel, const Properties &properties, const pixel_type_w *predictions) { for (size_t i = 0; i < predictors.size(); i++) { pixel_type v = pixel - predictions[static_cast(predictors[i])]; uint32_t tok, nbits, bits; HybridUintConfig(4, 1, 2).Encode(PackSigned(v), &tok, &nbits, &bits); JXL_DASSERT(tok < 256); JXL_DASSERT(nbits < 256); residuals[i].emplace_back( ResidualToken{static_cast(tok), static_cast(nbits)}); } for (size_t i = 0; i < props_to_use.size(); i++) { props[i].push_back(QuantizeProperty(i, properties[props_to_use[i]])); } sample_counts.push_back(1); num_samples++; if (AddToTableAndMerge(sample_counts.size() - 1)) { for (auto &r : residuals) r.pop_back(); for (auto &p : props) p.pop_back(); sample_counts.pop_back(); } } void TreeSamples::Swap(size_t a, size_t b) { if (a == b) return; for (auto &r : residuals) { std::swap(r[a], r[b]); } for (auto &p : props) { std::swap(p[a], p[b]); } std::swap(sample_counts[a], sample_counts[b]); } void TreeSamples::ThreeShuffle(size_t a, size_t b, size_t c) { if (b == c) { Swap(a, b); return; } for (auto &r : residuals) { auto tmp = r[a]; r[a] = r[c]; r[c] = r[b]; r[b] = tmp; } for (auto &p : props) { auto tmp = p[a]; p[a] = p[c]; p[c] = p[b]; p[b] = tmp; } auto tmp = sample_counts[a]; sample_counts[a] = sample_counts[c]; sample_counts[c] = sample_counts[b]; sample_counts[b] = tmp; } namespace { std::vector QuantizeHistogram(const std::vector &histogram, size_t num_chunks) { if (histogram.empty()) return {}; // TODO(veluca): selecting distinct quantiles is likely not the best // way to go about this. std::vector thresholds; uint64_t sum = std::accumulate(histogram.begin(), histogram.end(), 0LU); uint64_t cumsum = 0; uint64_t threshold = 1; for (size_t i = 0; i + 1 < histogram.size(); i++) { cumsum += histogram[i]; if (cumsum >= threshold * sum / num_chunks) { thresholds.push_back(i); while (cumsum > threshold * sum / num_chunks) threshold++; } } return thresholds; } std::vector QuantizeSamples(const std::vector &samples, size_t num_chunks) { if (samples.empty()) return {}; int min = *std::min_element(samples.begin(), samples.end()); constexpr int kRange = 512; min = std::min(std::max(min, -kRange), kRange); std::vector counts(2 * kRange + 1); for (int s : samples) { uint32_t sample_offset = std::min(std::max(s, -kRange), kRange) - min; counts[sample_offset]++; } std::vector thresholds = QuantizeHistogram(counts, num_chunks); for (auto &v : thresholds) v += min; return thresholds; } } // namespace void TreeSamples::PreQuantizeProperties( const StaticPropRange &range, const std::vector &multiplier_info, const std::vector &group_pixel_count, const std::vector &channel_pixel_count, std::vector &pixel_samples, std::vector &diff_samples, size_t max_property_values) { // If we have forced splits because of multipliers, choose channel and group // thresholds accordingly. std::vector group_multiplier_thresholds; std::vector channel_multiplier_thresholds; for (const auto &v : multiplier_info) { if (v.range[0][0] != range[0][0]) { channel_multiplier_thresholds.push_back(v.range[0][0] - 1); } if (v.range[0][1] != range[0][1]) { channel_multiplier_thresholds.push_back(v.range[0][1] - 1); } if (v.range[1][0] != range[1][0]) { group_multiplier_thresholds.push_back(v.range[1][0] - 1); } if (v.range[1][1] != range[1][1]) { group_multiplier_thresholds.push_back(v.range[1][1] - 1); } } std::sort(channel_multiplier_thresholds.begin(), channel_multiplier_thresholds.end()); channel_multiplier_thresholds.resize( std::unique(channel_multiplier_thresholds.begin(), channel_multiplier_thresholds.end()) - channel_multiplier_thresholds.begin()); std::sort(group_multiplier_thresholds.begin(), group_multiplier_thresholds.end()); group_multiplier_thresholds.resize( std::unique(group_multiplier_thresholds.begin(), group_multiplier_thresholds.end()) - group_multiplier_thresholds.begin()); compact_properties.resize(props_to_use.size()); auto quantize_channel = [&]() { if (!channel_multiplier_thresholds.empty()) { return channel_multiplier_thresholds; } return QuantizeHistogram(channel_pixel_count, max_property_values); }; auto quantize_group_id = [&]() { if (!group_multiplier_thresholds.empty()) { return group_multiplier_thresholds; } return QuantizeHistogram(group_pixel_count, max_property_values); }; auto quantize_coordinate = [&]() { std::vector quantized; quantized.reserve(max_property_values - 1); for (size_t i = 0; i + 1 < max_property_values; i++) { quantized.push_back((i + 1) * 256 / max_property_values - 1); } return quantized; }; std::vector abs_pixel_thr; std::vector pixel_thr; auto quantize_pixel_property = [&]() { if (pixel_thr.empty()) { pixel_thr = QuantizeSamples(pixel_samples, max_property_values); } return pixel_thr; }; auto quantize_abs_pixel_property = [&]() { if (abs_pixel_thr.empty()) { quantize_pixel_property(); // Compute the non-abs thresholds. for (auto &v : pixel_samples) v = std::abs(v); abs_pixel_thr = QuantizeSamples(pixel_samples, max_property_values); } return abs_pixel_thr; }; std::vector abs_diff_thr; std::vector diff_thr; auto quantize_diff_property = [&]() { if (diff_thr.empty()) { diff_thr = QuantizeSamples(diff_samples, max_property_values); } return diff_thr; }; auto quantize_abs_diff_property = [&]() { if (abs_diff_thr.empty()) { quantize_diff_property(); // Compute the non-abs thresholds. for (auto &v : diff_samples) v = std::abs(v); abs_diff_thr = QuantizeSamples(diff_samples, max_property_values); } return abs_diff_thr; }; auto quantize_wp = [&]() { if (max_property_values < 32) { return std::vector{-127, -63, -31, -15, -7, -3, -1, 0, 1, 3, 7, 15, 31, 63, 127}; } if (max_property_values < 64) { return std::vector{-255, -191, -127, -95, -63, -47, -31, -23, -15, -11, -7, -5, -3, -1, 0, 1, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255}; } return std::vector{ -255, -223, -191, -159, -127, -111, -95, -79, -63, -55, -47, -39, -31, -27, -23, -19, -15, -13, -11, -9, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 19, 23, 27, 31, 39, 47, 55, 63, 79, 95, 111, 127, 159, 191, 223, 255}; }; property_mapping.resize(props_to_use.size()); for (size_t i = 0; i < props_to_use.size(); i++) { if (props_to_use[i] == 0) { compact_properties[i] = quantize_channel(); } else if (props_to_use[i] == 1) { compact_properties[i] = quantize_group_id(); } else if (props_to_use[i] == 2 || props_to_use[i] == 3) { compact_properties[i] = quantize_coordinate(); } else if (props_to_use[i] == 6 || props_to_use[i] == 7 || props_to_use[i] == 8 || (props_to_use[i] >= kNumNonrefProperties && (props_to_use[i] - kNumNonrefProperties) % 4 == 1)) { compact_properties[i] = quantize_pixel_property(); } else if (props_to_use[i] == 4 || props_to_use[i] == 5 || (props_to_use[i] >= kNumNonrefProperties && (props_to_use[i] - kNumNonrefProperties) % 4 == 0)) { compact_properties[i] = quantize_abs_pixel_property(); } else if (props_to_use[i] >= kNumNonrefProperties && (props_to_use[i] - kNumNonrefProperties) % 4 == 2) { compact_properties[i] = quantize_abs_diff_property(); } else if (props_to_use[i] == kWPProp) { compact_properties[i] = quantize_wp(); } else { compact_properties[i] = quantize_diff_property(); } property_mapping[i].resize(kPropertyRange * 2 + 1); size_t mapped = 0; for (size_t j = 0; j < property_mapping[i].size(); j++) { while (mapped < compact_properties[i].size() && static_cast(j) - kPropertyRange > compact_properties[i][mapped]) { mapped++; } // property_mapping[i] of a value V is `mapped` if // compact_properties[i][mapped] <= j and // compact_properties[i][mapped-1] > j // This is because the decision node in the tree splits on (property) > j, // hence everything that is not > of a threshold should be clustered // together. property_mapping[i][j] = mapped; } } } void CollectPixelSamples(const Image &image, const ModularOptions &options, size_t group_id, std::vector &group_pixel_count, std::vector &channel_pixel_count, std::vector &pixel_samples, std::vector &diff_samples) { if (options.nb_repeats == 0) return; if (group_pixel_count.size() <= group_id) { group_pixel_count.resize(group_id + 1); } if (channel_pixel_count.size() < image.channel.size()) { channel_pixel_count.resize(image.channel.size()); } Rng rng(group_id); // Sample 10% of the final number of samples for property quantization. float fraction = std::min(options.nb_repeats * 0.1, 0.99); Rng::GeometricDistribution dist = Rng::MakeGeometric(fraction); size_t total_pixels = 0; std::vector channel_ids; for (size_t i = 0; i < image.channel.size(); i++) { if (image.channel[i].w <= 1 || image.channel[i].h == 0) { continue; // skip empty or width-1 channels. } if (i >= image.nb_meta_channels && (image.channel[i].w > options.max_chan_size || image.channel[i].h > options.max_chan_size)) { break; } channel_ids.push_back(i); group_pixel_count[group_id] += image.channel[i].w * image.channel[i].h; channel_pixel_count[i] += image.channel[i].w * image.channel[i].h; total_pixels += image.channel[i].w * image.channel[i].h; } if (channel_ids.empty()) return; pixel_samples.reserve(pixel_samples.size() + fraction * total_pixels); diff_samples.reserve(diff_samples.size() + fraction * total_pixels); size_t i = 0; size_t y = 0; size_t x = 0; auto advance = [&](size_t amount) { x += amount; // Detect row overflow (rare). while (x >= image.channel[channel_ids[i]].w) { x -= image.channel[channel_ids[i]].w; y++; // Detect end-of-channel (even rarer). if (y == image.channel[channel_ids[i]].h) { i++; y = 0; if (i >= channel_ids.size()) { return; } } } }; advance(rng.Geometric(dist)); for (; i < channel_ids.size(); advance(rng.Geometric(dist) + 1)) { const pixel_type *row = image.channel[channel_ids[i]].Row(y); pixel_samples.push_back(row[x]); size_t xp = x == 0 ? 1 : x - 1; diff_samples.push_back(static_cast(row[x]) - row[xp]); } } // TODO(veluca): very simple encoding scheme. This should be improved. void TokenizeTree(const Tree &tree, std::vector *tokens, Tree *decoder_tree) { JXL_ASSERT(tree.size() <= kMaxTreeSize); std::queue q; q.push(0); size_t leaf_id = 0; decoder_tree->clear(); while (!q.empty()) { int cur = q.front(); q.pop(); JXL_ASSERT(tree[cur].property >= -1); tokens->emplace_back(kPropertyContext, tree[cur].property + 1); if (tree[cur].property == -1) { tokens->emplace_back(kPredictorContext, static_cast(tree[cur].predictor)); tokens->emplace_back(kOffsetContext, PackSigned(tree[cur].predictor_offset)); uint32_t mul_log = Num0BitsBelowLS1Bit_Nonzero(tree[cur].multiplier); uint32_t mul_bits = (tree[cur].multiplier >> mul_log) - 1; tokens->emplace_back(kMultiplierLogContext, mul_log); tokens->emplace_back(kMultiplierBitsContext, mul_bits); JXL_ASSERT(tree[cur].predictor < Predictor::Best); decoder_tree->emplace_back(-1, 0, leaf_id++, 0, tree[cur].predictor, tree[cur].predictor_offset, tree[cur].multiplier); continue; } decoder_tree->emplace_back(tree[cur].property, tree[cur].splitval, decoder_tree->size() + q.size() + 1, decoder_tree->size() + q.size() + 2, Predictor::Zero, 0, 1); q.push(tree[cur].lchild); q.push(tree[cur].rchild); tokens->emplace_back(kSplitValContext, PackSigned(tree[cur].splitval)); } } } // namespace jxl #endif // HWY_ONCE