/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "call/receive_time_calculator.h" #include #include #include #include #include #include "absl/types/optional.h" #include "rtc_base/random.h" #include "rtc_base/time_utils.h" #include "test/gtest.h" #include "test/scoped_key_value_config.h" namespace webrtc { namespace test { namespace { class EmulatedClock { public: explicit EmulatedClock(int seed, float drift = 0.0f) : random_(seed), clock_us_(random_.Rand()), drift_(drift) {} virtual ~EmulatedClock() = default; int64_t GetClockUs() const { return clock_us_; } protected: int64_t UpdateClock(int64_t time_us) { if (!last_query_us_) last_query_us_ = time_us; int64_t skip_us = time_us - *last_query_us_; accumulated_drift_us_ += skip_us * drift_; int64_t drift_correction_us = static_cast(accumulated_drift_us_); accumulated_drift_us_ -= drift_correction_us; clock_us_ += skip_us + drift_correction_us; last_query_us_ = time_us; return skip_us; } Random random_; private: int64_t clock_us_; absl::optional last_query_us_; float drift_; float accumulated_drift_us_ = 0; }; class EmulatedMonotoneousClock : public EmulatedClock { public: explicit EmulatedMonotoneousClock(int seed) : EmulatedClock(seed) {} ~EmulatedMonotoneousClock() = default; int64_t Query(int64_t time_us) { int64_t skip_us = UpdateClock(time_us); // In a stall if (stall_recovery_time_us_ > 0) { if (GetClockUs() > stall_recovery_time_us_) { stall_recovery_time_us_ = 0; return GetClockUs(); } else { return stall_recovery_time_us_; } } // Check if we enter a stall for (int k = 0; k < skip_us; ++k) { if (random_.Rand() < kChanceOfStallPerUs) { int64_t stall_duration_us = static_cast(random_.Rand() * kMaxStallDurationUs); stall_recovery_time_us_ = GetClockUs() + stall_duration_us; return stall_recovery_time_us_; } } return GetClockUs(); } void ForceStallUs() { int64_t stall_duration_us = static_cast(random_.Rand() * kMaxStallDurationUs); stall_recovery_time_us_ = GetClockUs() + stall_duration_us; } bool Stalled() const { return stall_recovery_time_us_ > 0; } int64_t GetRemainingStall(int64_t time_us) const { return stall_recovery_time_us_ > 0 ? stall_recovery_time_us_ - GetClockUs() : 0; } const int64_t kMaxStallDurationUs = rtc::kNumMicrosecsPerSec; private: const float kChanceOfStallPerUs = 5e-6f; int64_t stall_recovery_time_us_ = 0; }; class EmulatedNonMonotoneousClock : public EmulatedClock { public: EmulatedNonMonotoneousClock(int seed, int64_t duration_us, float drift = 0) : EmulatedClock(seed, drift) { Pregenerate(duration_us); } ~EmulatedNonMonotoneousClock() = default; void Pregenerate(int64_t duration_us) { int64_t time_since_reset_us = kMinTimeBetweenResetsUs; int64_t clock_offset_us = 0; for (int64_t time_us = 0; time_us < duration_us; time_us += kResolutionUs) { int64_t skip_us = UpdateClock(time_us); time_since_reset_us += skip_us; int64_t reset_us = 0; if (time_since_reset_us >= kMinTimeBetweenResetsUs) { for (int k = 0; k < skip_us; ++k) { if (random_.Rand() < kChanceOfResetPerUs) { reset_us = static_cast(2 * random_.Rand() * kMaxAbsResetUs) - kMaxAbsResetUs; clock_offset_us += reset_us; time_since_reset_us = 0; break; } } } pregenerated_clock_.emplace_back(GetClockUs() + clock_offset_us); resets_us_.emplace_back(reset_us); } } int64_t Query(int64_t time_us) { size_t ixStart = (last_reset_query_time_us_ + (kResolutionUs >> 1)) / kResolutionUs + 1; size_t ixEnd = (time_us + (kResolutionUs >> 1)) / kResolutionUs; if (ixEnd >= pregenerated_clock_.size()) return -1; last_reset_size_us_ = 0; for (size_t ix = ixStart; ix <= ixEnd; ++ix) { if (resets_us_[ix] != 0) { last_reset_size_us_ = resets_us_[ix]; } } last_reset_query_time_us_ = time_us; return pregenerated_clock_[ixEnd]; } bool WasReset() const { return last_reset_size_us_ != 0; } bool WasNegativeReset() const { return last_reset_size_us_ < 0; } int64_t GetLastResetUs() const { return last_reset_size_us_; } private: const float kChanceOfResetPerUs = 1e-6f; const int64_t kMaxAbsResetUs = rtc::kNumMicrosecsPerSec; const int64_t kMinTimeBetweenResetsUs = 3 * rtc::kNumMicrosecsPerSec; const int64_t kResolutionUs = rtc::kNumMicrosecsPerMillisec; int64_t last_reset_query_time_us_ = 0; int64_t last_reset_size_us_ = 0; std::vector pregenerated_clock_; std::vector resets_us_; }; TEST(ClockRepair, NoClockDrift) { webrtc::test::ScopedKeyValueConfig field_trials; const int kSeeds = 10; const int kFirstSeed = 1; const int64_t kRuntimeUs = 10 * rtc::kNumMicrosecsPerSec; const float kDrift = 0.0f; const int64_t kMaxPacketInterarrivalUs = 50 * rtc::kNumMicrosecsPerMillisec; for (int seed = kFirstSeed; seed < kSeeds + kFirstSeed; ++seed) { EmulatedMonotoneousClock monotone_clock(seed); EmulatedNonMonotoneousClock non_monotone_clock( seed + 1, kRuntimeUs + rtc::kNumMicrosecsPerSec, kDrift); ReceiveTimeCalculator reception_time_tracker(field_trials); int64_t corrected_clock_0 = 0; int64_t reset_during_stall_tol_us = 0; bool initial_clock_stall = true; int64_t accumulated_upper_bound_tolerance_us = 0; int64_t accumulated_lower_bound_tolerance_us = 0; Random random(1); monotone_clock.ForceStallUs(); int64_t last_time_us = 0; bool add_tolerance_on_next_packet = false; int64_t monotone_noise_us = 1000; for (int64_t time_us = 0; time_us < kRuntimeUs; time_us += static_cast(random.Rand() * kMaxPacketInterarrivalUs)) { int64_t socket_time_us = non_monotone_clock.Query(time_us); int64_t monotone_us = monotone_clock.Query(time_us) + 2 * random.Rand() * monotone_noise_us - monotone_noise_us; int64_t system_time_us = non_monotone_clock.Query( time_us + monotone_clock.GetRemainingStall(time_us)); int64_t corrected_clock_us = reception_time_tracker.ReconcileReceiveTimes( socket_time_us, system_time_us, monotone_us); if (time_us == 0) corrected_clock_0 = corrected_clock_us; if (add_tolerance_on_next_packet) accumulated_lower_bound_tolerance_us -= (time_us - last_time_us); // Perfect repair cannot be achiveved if non-monotone clock resets during // a monotone clock stall. add_tolerance_on_next_packet = false; if (monotone_clock.Stalled() && non_monotone_clock.WasReset()) { reset_during_stall_tol_us = std::max(reset_during_stall_tol_us, time_us - last_time_us); if (non_monotone_clock.WasNegativeReset()) { add_tolerance_on_next_packet = true; } if (initial_clock_stall && !non_monotone_clock.WasNegativeReset()) { // Positive resets during an initial clock stall cannot be repaired // and error will propagate through rest of trace. accumulated_upper_bound_tolerance_us += std::abs(non_monotone_clock.GetLastResetUs()); } } else { reset_during_stall_tol_us = 0; initial_clock_stall = false; } int64_t err = corrected_clock_us - corrected_clock_0 - time_us; // Resets during stalls may lead to small errors temporarily. int64_t lower_tol_us = accumulated_lower_bound_tolerance_us - reset_during_stall_tol_us - monotone_noise_us - 2 * rtc::kNumMicrosecsPerMillisec; EXPECT_GE(err, lower_tol_us); int64_t upper_tol_us = accumulated_upper_bound_tolerance_us + monotone_noise_us + 2 * rtc::kNumMicrosecsPerMillisec; EXPECT_LE(err, upper_tol_us); last_time_us = time_us; } } } } // namespace } // namespace test } // namespace webrtc