/* * Copyright (c) 2023 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "common_video/h265/h265_sps_parser.h" #include #include #include #include "common_video/h265/h265_common.h" #include "rtc_base/bit_buffer.h" #include "rtc_base/logging.h" #define IN_RANGE_OR_RETURN_NULL(val, min, max) \ do { \ if (!reader.Ok() || (val) < (min) || (val) > (max)) { \ RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " #val \ " to be" \ << " in range [" << (min) << ":" << (max) << "]" \ << " found " << (val) << " instead"; \ return absl::nullopt; \ } \ } while (0) #define IN_RANGE_OR_RETURN_FALSE(val, min, max) \ do { \ if (!reader.Ok() || (val) < (min) || (val) > (max)) { \ RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " #val \ " to be" \ << " in range [" << (min) << ":" << (max) << "]" \ << " found " << (val) << " instead"; \ return false; \ } \ } while (0) #define TRUE_OR_RETURN(a) \ do { \ if (!reader.Ok() || !(a)) { \ RTC_LOG(LS_WARNING) << "Error in stream: invalid value, expected " \ << #a; \ return absl::nullopt; \ } \ } while (0) namespace { using OptionalSps = absl::optional; using OptionalShortTermRefPicSet = absl::optional; using OptionalProfileTierLevel = absl::optional; constexpr int kMaxNumSizeIds = 4; constexpr int kMaxNumMatrixIds = 6; constexpr int kMaxNumCoefs = 64; } // namespace namespace webrtc { H265SpsParser::ShortTermRefPicSet::ShortTermRefPicSet() = default; H265SpsParser::ProfileTierLevel::ProfileTierLevel() = default; int H265SpsParser::GetMaxLumaPs(int general_level_idc) { // From Table A.8 - General tier and level limits. // |general_level_idc| is 30x the actual level. if (general_level_idc <= 30) // level 1 return 36864; if (general_level_idc <= 60) // level 2 return 122880; if (general_level_idc <= 63) // level 2.1 return 245760; if (general_level_idc <= 90) // level 3 return 552960; if (general_level_idc <= 93) // level 3.1 return 983040; if (general_level_idc <= 123) // level 4, 4.1 return 2228224; if (general_level_idc <= 156) // level 5, 5.1, 5.2 return 8912896; // level 6, 6.1, 6.2 - beyond that there's no actual limit. return 35651584; } size_t H265SpsParser::GetDpbMaxPicBuf(int general_profile_idc) { // From A.4.2 - Profile-specific level limits for the video profiles. // If sps_curr_pic_ref_enabled_flag is required to be zero, than this is 6 // otherwise it is 7. return (general_profile_idc >= kProfileIdcMain && general_profile_idc <= kProfileIdcHighThroughput) ? 6 : 7; } // General note: this is based off the 08/2021 version of the H.265 standard. // You can find it on this page: // http://www.itu.int/rec/T-REC-H.265 // Unpack RBSP and parse SPS state from the supplied buffer. absl::optional H265SpsParser::ParseSps( const uint8_t* data, size_t length) { RTC_DCHECK(data); return ParseSpsInternal(H265::ParseRbsp(data, length)); } bool H265SpsParser::ParseScalingListData(BitstreamReader& reader) { int32_t scaling_list_dc_coef_minus8[kMaxNumSizeIds][kMaxNumMatrixIds] = {}; for (int size_id = 0; size_id < kMaxNumSizeIds; size_id++) { for (int matrix_id = 0; matrix_id < kMaxNumMatrixIds; matrix_id += (size_id == 3) ? 3 : 1) { // scaling_list_pred_mode_flag: u(1) bool scaling_list_pred_mode_flag = reader.Read(); if (!scaling_list_pred_mode_flag) { // scaling_list_pred_matrix_id_delta: ue(v) int scaling_list_pred_matrix_id_delta = reader.ReadExponentialGolomb(); if (size_id <= 2) { IN_RANGE_OR_RETURN_FALSE(scaling_list_pred_matrix_id_delta, 0, matrix_id); } else { // size_id == 3 IN_RANGE_OR_RETURN_FALSE(scaling_list_pred_matrix_id_delta, 0, matrix_id / 3); } } else { uint32_t coef_num = std::min(kMaxNumCoefs, 1 << (4 + (size_id << 1))); if (size_id > 1) { // scaling_list_dc_coef_minus8: se(v) scaling_list_dc_coef_minus8[size_id - 2][matrix_id] = reader.ReadSignedExponentialGolomb(); IN_RANGE_OR_RETURN_FALSE( scaling_list_dc_coef_minus8[size_id - 2][matrix_id], -7, 247); } for (uint32_t i = 0; i < coef_num; i++) { // scaling_list_delta_coef: se(v) int32_t scaling_list_delta_coef = reader.ReadSignedExponentialGolomb(); IN_RANGE_OR_RETURN_FALSE(scaling_list_delta_coef, -128, 127); } } } } return reader.Ok(); } absl::optional H265SpsParser::ParseShortTermRefPicSet( uint32_t st_rps_idx, uint32_t num_short_term_ref_pic_sets, const std::vector& short_term_ref_pic_set, uint32_t sps_max_dec_pic_buffering_minus1, BitstreamReader& reader) { H265SpsParser::ShortTermRefPicSet st_ref_pic_set; bool inter_ref_pic_set_prediction_flag = false; if (st_rps_idx != 0) { // inter_ref_pic_set_prediction_flag: u(1) inter_ref_pic_set_prediction_flag = reader.Read(); } if (inter_ref_pic_set_prediction_flag) { uint32_t delta_idx_minus1 = 0; if (st_rps_idx == num_short_term_ref_pic_sets) { // delta_idx_minus1: ue(v) delta_idx_minus1 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(delta_idx_minus1, 0, st_rps_idx - 1); } // delta_rps_sign: u(1) int delta_rps_sign = reader.ReadBits(1); // abs_delta_rps_minus1: ue(v) int abs_delta_rps_minus1 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(abs_delta_rps_minus1, 0, 0x7FFF); int delta_rps = (1 - 2 * delta_rps_sign) * (abs_delta_rps_minus1 + 1); uint32_t ref_rps_idx = st_rps_idx - (delta_idx_minus1 + 1); uint32_t num_delta_pocs = short_term_ref_pic_set[ref_rps_idx].num_delta_pocs; IN_RANGE_OR_RETURN_NULL(num_delta_pocs, 0, kMaxShortTermRefPicSets); const ShortTermRefPicSet& ref_set = short_term_ref_pic_set[ref_rps_idx]; bool used_by_curr_pic_flag[kMaxShortTermRefPicSets] = {}; bool use_delta_flag[kMaxShortTermRefPicSets] = {}; // 7.4.8 - use_delta_flag defaults to 1 if not present. std::fill_n(use_delta_flag, kMaxShortTermRefPicSets, true); for (uint32_t j = 0; j <= num_delta_pocs; j++) { // used_by_curr_pic_flag: u(1) used_by_curr_pic_flag[j] = reader.Read(); if (!used_by_curr_pic_flag[j]) { // use_delta_flag: u(1) use_delta_flag[j] = reader.Read(); } } // Calculate delta_poc_s{0,1}, used_by_curr_pic_s{0,1}, num_negative_pics // and num_positive_pics. // Equation 7-61 int i = 0; IN_RANGE_OR_RETURN_NULL( ref_set.num_negative_pics + ref_set.num_positive_pics, 0, kMaxShortTermRefPicSets); for (int j = ref_set.num_positive_pics - 1; j >= 0; --j) { int d_poc = ref_set.delta_poc_s1[j] + delta_rps; if (d_poc < 0 && use_delta_flag[ref_set.num_negative_pics + j]) { st_ref_pic_set.delta_poc_s0[i] = d_poc; st_ref_pic_set.used_by_curr_pic_s0[i++] = used_by_curr_pic_flag[ref_set.num_negative_pics + j]; } } if (delta_rps < 0 && use_delta_flag[ref_set.num_delta_pocs]) { st_ref_pic_set.delta_poc_s0[i] = delta_rps; st_ref_pic_set.used_by_curr_pic_s0[i++] = used_by_curr_pic_flag[ref_set.num_delta_pocs]; } for (uint32_t j = 0; j < ref_set.num_negative_pics; ++j) { int d_poc = ref_set.delta_poc_s0[j] + delta_rps; if (d_poc < 0 && use_delta_flag[j]) { st_ref_pic_set.delta_poc_s0[i] = d_poc; st_ref_pic_set.used_by_curr_pic_s0[i++] = used_by_curr_pic_flag[j]; } } st_ref_pic_set.num_negative_pics = i; // Equation 7-62 i = 0; for (int j = ref_set.num_negative_pics - 1; j >= 0; --j) { int d_poc = ref_set.delta_poc_s0[j] + delta_rps; if (d_poc > 0 && use_delta_flag[j]) { st_ref_pic_set.delta_poc_s1[i] = d_poc; st_ref_pic_set.used_by_curr_pic_s1[i++] = used_by_curr_pic_flag[j]; } } if (delta_rps > 0 && use_delta_flag[ref_set.num_delta_pocs]) { st_ref_pic_set.delta_poc_s1[i] = delta_rps; st_ref_pic_set.used_by_curr_pic_s1[i++] = used_by_curr_pic_flag[ref_set.num_delta_pocs]; } for (uint32_t j = 0; j < ref_set.num_positive_pics; ++j) { int d_poc = ref_set.delta_poc_s1[j] + delta_rps; if (d_poc > 0 && use_delta_flag[ref_set.num_negative_pics + j]) { st_ref_pic_set.delta_poc_s1[i] = d_poc; st_ref_pic_set.used_by_curr_pic_s1[i++] = used_by_curr_pic_flag[ref_set.num_negative_pics + j]; } } st_ref_pic_set.num_positive_pics = i; IN_RANGE_OR_RETURN_NULL(st_ref_pic_set.num_negative_pics, 0, sps_max_dec_pic_buffering_minus1); IN_RANGE_OR_RETURN_NULL( st_ref_pic_set.num_positive_pics, 0, sps_max_dec_pic_buffering_minus1 - st_ref_pic_set.num_negative_pics); } else { // num_negative_pics: ue(v) st_ref_pic_set.num_negative_pics = reader.ReadExponentialGolomb(); // num_positive_pics: ue(v) st_ref_pic_set.num_positive_pics = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(st_ref_pic_set.num_negative_pics, 0, sps_max_dec_pic_buffering_minus1); IN_RANGE_OR_RETURN_NULL( st_ref_pic_set.num_positive_pics, 0, sps_max_dec_pic_buffering_minus1 - st_ref_pic_set.num_negative_pics); for (uint32_t i = 0; i < st_ref_pic_set.num_negative_pics; i++) { // delta_poc_s0_minus1: ue(v) int delta_poc_s0_minus1 = 0; delta_poc_s0_minus1 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(delta_poc_s0_minus1, 0, 0x7FFF); if (i == 0) { st_ref_pic_set.delta_poc_s0[i] = -(delta_poc_s0_minus1 + 1); } else { st_ref_pic_set.delta_poc_s0[i] = st_ref_pic_set.delta_poc_s0[i - 1] - (delta_poc_s0_minus1 + 1); } // used_by_curr_pic_s0_flag: u(1) st_ref_pic_set.used_by_curr_pic_s0[i] = reader.Read(); } for (uint32_t i = 0; i < st_ref_pic_set.num_positive_pics; i++) { // delta_poc_s1_minus1: ue(v) int delta_poc_s1_minus1 = 0; delta_poc_s1_minus1 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(delta_poc_s1_minus1, 0, 0x7FFF); if (i == 0) { st_ref_pic_set.delta_poc_s1[i] = delta_poc_s1_minus1 + 1; } else { st_ref_pic_set.delta_poc_s1[i] = st_ref_pic_set.delta_poc_s1[i - 1] + delta_poc_s1_minus1 + 1; } // used_by_curr_pic_s1_flag: u(1) st_ref_pic_set.used_by_curr_pic_s1[i] = reader.Read(); } } st_ref_pic_set.num_delta_pocs = st_ref_pic_set.num_negative_pics + st_ref_pic_set.num_positive_pics; if (!reader.Ok()) { return absl::nullopt; } return OptionalShortTermRefPicSet(st_ref_pic_set); } absl::optional H265SpsParser::ParseProfileTierLevel(bool profile_present, int max_num_sub_layers_minus1, BitstreamReader& reader) { H265SpsParser::ProfileTierLevel pf_tier_level; // 7.4.4 if (profile_present) { int general_profile_space; general_profile_space = reader.ReadBits(2); TRUE_OR_RETURN(general_profile_space == 0); // general_tier_flag or reserved 0: u(1) reader.ConsumeBits(1); pf_tier_level.general_profile_idc = reader.ReadBits(5); IN_RANGE_OR_RETURN_NULL(pf_tier_level.general_profile_idc, 0, 11); uint16_t general_profile_compatibility_flag_high16 = reader.ReadBits(16); uint16_t general_profile_compatibility_flag_low16 = reader.ReadBits(16); pf_tier_level.general_profile_compatibility_flags = (general_profile_compatibility_flag_high16 << 16) + general_profile_compatibility_flag_low16; pf_tier_level.general_progressive_source_flag = reader.ReadBits(1); pf_tier_level.general_interlaced_source_flag = reader.ReadBits(1); if (!reader.Ok() || (!pf_tier_level.general_progressive_source_flag && pf_tier_level.general_interlaced_source_flag)) { RTC_LOG(LS_WARNING) << "Interlaced streams not supported"; return absl::nullopt; } pf_tier_level.general_non_packed_constraint_flag = reader.ReadBits(1); pf_tier_level.general_frame_only_constraint_flag = reader.ReadBits(1); // general_reserved_zero_7bits reader.ConsumeBits(7); pf_tier_level.general_one_picture_only_constraint_flag = reader.ReadBits(1); // general_reserved_zero_35bits reader.ConsumeBits(35); // general_inbld_flag reader.ConsumeBits(1); } pf_tier_level.general_level_idc = reader.ReadBits(8); bool sub_layer_profile_present_flag[8] = {}; bool sub_layer_level_present_flag[8] = {}; for (int i = 0; i < max_num_sub_layers_minus1; ++i) { sub_layer_profile_present_flag[i] = reader.ReadBits(1); sub_layer_level_present_flag[i] = reader.ReadBits(1); } if (max_num_sub_layers_minus1 > 0) { for (int i = max_num_sub_layers_minus1; i < 8; i++) { reader.ConsumeBits(2); } } for (int i = 0; i < max_num_sub_layers_minus1; i++) { if (sub_layer_profile_present_flag[i]) { // sub_layer_profile_space reader.ConsumeBits(2); // sub_layer_tier_flag reader.ConsumeBits(1); // sub_layer_profile_idc reader.ConsumeBits(5); // sub_layer_profile_compatibility_flag reader.ConsumeBits(32); // sub_layer_{progressive,interlaced}_source_flag reader.ConsumeBits(2); // Ignore sub_layer_non_packed_constraint_flag and // sub_layer_frame_only_constraint_flag. reader.ConsumeBits(2); // Skip the compatibility flags, they are always 43 bits. reader.ConsumeBits(43); // sub_layer_inbld_flag reader.ConsumeBits(1); } if (sub_layer_level_present_flag[i]) { // sub_layer_level_idc reader.ConsumeBits(8); } } if (!reader.Ok()) { return absl::nullopt; } return OptionalProfileTierLevel(pf_tier_level); } absl::optional H265SpsParser::ParseSpsInternal( rtc::ArrayView buffer) { BitstreamReader reader(buffer); // Now, we need to use a bit buffer to parse through the actual H265 SPS // format. See Section 7.3.2.2.1 ("General sequence parameter set data // syntax") of the H.265 standard for a complete description. // Since we only care about resolution, we ignore the majority of fields, but // we still have to actively parse through a lot of the data, since many of // the fields have variable size. // We're particularly interested in: // chroma_format_idc -> affects crop units // pic_{width,height}_* -> resolution of the frame in macroblocks (16x16). // frame_crop_*_offset -> crop information SpsState sps; // sps_video_parameter_set_id: u(4) uint32_t sps_video_parameter_set_id = 0; sps_video_parameter_set_id = reader.ReadBits(4); IN_RANGE_OR_RETURN_NULL(sps_video_parameter_set_id, 0, 15); // sps_max_sub_layers_minus1: u(3) uint32_t sps_max_sub_layers_minus1 = 0; sps_max_sub_layers_minus1 = reader.ReadBits(3); IN_RANGE_OR_RETURN_NULL(sps_max_sub_layers_minus1, 0, kMaxSubLayers - 1); sps.sps_max_sub_layers_minus1 = sps_max_sub_layers_minus1; // sps_temporal_id_nesting_flag: u(1) reader.ConsumeBits(1); // profile_tier_level(1, sps_max_sub_layers_minus1). OptionalProfileTierLevel profile_tier_level = ParseProfileTierLevel(true, sps.sps_max_sub_layers_minus1, reader); if (!profile_tier_level) { return absl::nullopt; } // sps_seq_parameter_set_id: ue(v) sps.sps_id = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.sps_id, 0, 15); // chrome_format_idc: ue(v) sps.chroma_format_idc = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.chroma_format_idc, 0, 3); if (sps.chroma_format_idc == 3) { // seperate_colour_plane_flag: u(1) sps.separate_colour_plane_flag = reader.Read(); } uint32_t pic_width_in_luma_samples = 0; uint32_t pic_height_in_luma_samples = 0; // pic_width_in_luma_samples: ue(v) pic_width_in_luma_samples = reader.ReadExponentialGolomb(); TRUE_OR_RETURN(pic_width_in_luma_samples != 0); // pic_height_in_luma_samples: ue(v) pic_height_in_luma_samples = reader.ReadExponentialGolomb(); TRUE_OR_RETURN(pic_height_in_luma_samples != 0); // Equation A-2: Calculate max_dpb_size. uint32_t max_luma_ps = GetMaxLumaPs(profile_tier_level->general_level_idc); uint32_t max_dpb_size = 0; uint32_t pic_size_in_samples_y = pic_height_in_luma_samples; pic_size_in_samples_y *= pic_width_in_luma_samples; size_t max_dpb_pic_buf = GetDpbMaxPicBuf(profile_tier_level->general_profile_idc); if (pic_size_in_samples_y <= (max_luma_ps >> 2)) max_dpb_size = std::min(4 * max_dpb_pic_buf, size_t{16}); else if (pic_size_in_samples_y <= (max_luma_ps >> 1)) max_dpb_size = std::min(2 * max_dpb_pic_buf, size_t{16}); else if (pic_size_in_samples_y <= ((3 * max_luma_ps) >> 2)) max_dpb_size = std::min((4 * max_dpb_pic_buf) / 3, size_t{16}); else max_dpb_size = max_dpb_pic_buf; // conformance_window_flag: u(1) bool conformance_window_flag = reader.Read(); uint32_t conf_win_left_offset = 0; uint32_t conf_win_right_offset = 0; uint32_t conf_win_top_offset = 0; uint32_t conf_win_bottom_offset = 0; int sub_width_c = ((1 == sps.chroma_format_idc) || (2 == sps.chroma_format_idc)) && (0 == sps.separate_colour_plane_flag) ? 2 : 1; int sub_height_c = (1 == sps.chroma_format_idc) && (0 == sps.separate_colour_plane_flag) ? 2 : 1; if (conformance_window_flag) { // conf_win_left_offset: ue(v) conf_win_left_offset = reader.ReadExponentialGolomb(); // conf_win_right_offset: ue(v) conf_win_right_offset = reader.ReadExponentialGolomb(); // conf_win_top_offset: ue(v) conf_win_top_offset = reader.ReadExponentialGolomb(); // conf_win_bottom_offset: ue(v) conf_win_bottom_offset = reader.ReadExponentialGolomb(); uint32_t width_crop = conf_win_left_offset; width_crop += conf_win_right_offset; width_crop *= sub_width_c; TRUE_OR_RETURN(width_crop < pic_width_in_luma_samples); uint32_t height_crop = conf_win_top_offset; height_crop += conf_win_bottom_offset; height_crop *= sub_height_c; TRUE_OR_RETURN(height_crop < pic_height_in_luma_samples); } // bit_depth_luma_minus8: ue(v) sps.bit_depth_luma_minus8 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.bit_depth_luma_minus8, 0, 8); // bit_depth_chroma_minus8: ue(v) uint32_t bit_depth_chroma_minus8 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(bit_depth_chroma_minus8, 0, 8); // log2_max_pic_order_cnt_lsb_minus4: ue(v) sps.log2_max_pic_order_cnt_lsb_minus4 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.log2_max_pic_order_cnt_lsb_minus4, 0, 12); uint32_t sps_sub_layer_ordering_info_present_flag = 0; // sps_sub_layer_ordering_info_present_flag: u(1) sps_sub_layer_ordering_info_present_flag = reader.Read(); uint32_t sps_max_num_reorder_pics[kMaxSubLayers] = {}; for (uint32_t i = (sps_sub_layer_ordering_info_present_flag != 0) ? 0 : sps_max_sub_layers_minus1; i <= sps_max_sub_layers_minus1; i++) { // sps_max_dec_pic_buffering_minus1: ue(v) sps.sps_max_dec_pic_buffering_minus1[i] = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.sps_max_dec_pic_buffering_minus1[i], 0, max_dpb_size - 1); // sps_max_num_reorder_pics: ue(v) sps_max_num_reorder_pics[i] = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps_max_num_reorder_pics[i], 0, sps.sps_max_dec_pic_buffering_minus1[i]); if (i > 0) { TRUE_OR_RETURN(sps.sps_max_dec_pic_buffering_minus1[i] >= sps.sps_max_dec_pic_buffering_minus1[i - 1]); TRUE_OR_RETURN(sps_max_num_reorder_pics[i] >= sps_max_num_reorder_pics[i - 1]); } // sps_max_latency_increase_plus1: ue(v) reader.ReadExponentialGolomb(); } if (!sps_sub_layer_ordering_info_present_flag) { // Fill in the default values for the other sublayers. for (uint32_t i = 0; i < sps_max_sub_layers_minus1; ++i) { sps.sps_max_dec_pic_buffering_minus1[i] = sps.sps_max_dec_pic_buffering_minus1[sps_max_sub_layers_minus1]; } } // log2_min_luma_coding_block_size_minus3: ue(v) sps.log2_min_luma_coding_block_size_minus3 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.log2_min_luma_coding_block_size_minus3, 0, 27); // log2_diff_max_min_luma_coding_block_size: ue(v) sps.log2_diff_max_min_luma_coding_block_size = reader.ReadExponentialGolomb(); int min_cb_log2_size_y = sps.log2_min_luma_coding_block_size_minus3 + 3; int ctb_log2_size_y = min_cb_log2_size_y; ctb_log2_size_y += sps.log2_diff_max_min_luma_coding_block_size; IN_RANGE_OR_RETURN_NULL(ctb_log2_size_y, 0, 30); int min_cb_size_y = 1 << min_cb_log2_size_y; int ctb_size_y = 1 << ctb_log2_size_y; sps.pic_width_in_ctbs_y = std::ceil(static_cast(pic_width_in_luma_samples) / ctb_size_y); sps.pic_height_in_ctbs_y = std::ceil(static_cast(pic_height_in_luma_samples) / ctb_size_y); TRUE_OR_RETURN(pic_width_in_luma_samples % min_cb_size_y == 0); TRUE_OR_RETURN(pic_height_in_luma_samples % min_cb_size_y == 0); // log2_min_luma_transform_block_size_minus2: ue(v) int log2_min_luma_transform_block_size_minus2 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(log2_min_luma_transform_block_size_minus2, 0, min_cb_log2_size_y - 3); int min_tb_log2_size_y = log2_min_luma_transform_block_size_minus2 + 2; // log2_diff_max_min_luma_transform_block_size: ue(v) int log2_diff_max_min_luma_transform_block_size = reader.ReadExponentialGolomb(); TRUE_OR_RETURN(log2_diff_max_min_luma_transform_block_size <= std::min(ctb_log2_size_y, 5) - min_tb_log2_size_y); // max_transform_hierarchy_depth_inter: ue(v) int max_transform_hierarchy_depth_inter = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(max_transform_hierarchy_depth_inter, 0, ctb_log2_size_y - min_tb_log2_size_y); // max_transform_hierarchy_depth_intra: ue(v) int max_transform_hierarchy_depth_intra = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(max_transform_hierarchy_depth_intra, 0, ctb_log2_size_y - min_tb_log2_size_y); // scaling_list_enabled_flag: u(1) bool scaling_list_enabled_flag = reader.Read(); if (scaling_list_enabled_flag) { // sps_scaling_list_data_present_flag: u(1) bool sps_scaling_list_data_present_flag = reader.Read(); if (sps_scaling_list_data_present_flag) { // scaling_list_data() if (!ParseScalingListData(reader)) { return absl::nullopt; } } } // amp_enabled_flag: u(1) reader.ConsumeBits(1); // sample_adaptive_offset_enabled_flag: u(1) sps.sample_adaptive_offset_enabled_flag = reader.Read(); // pcm_enabled_flag: u(1) bool pcm_enabled_flag = reader.Read(); if (pcm_enabled_flag) { // pcm_sample_bit_depth_luma_minus1: u(4) reader.ConsumeBits(4); // pcm_sample_bit_depth_chroma_minus1: u(4) reader.ConsumeBits(4); // log2_min_pcm_luma_coding_block_size_minus3: ue(v) int log2_min_pcm_luma_coding_block_size_minus3 = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(log2_min_pcm_luma_coding_block_size_minus3, 0, 2); int log2_min_ipcm_cb_size_y = log2_min_pcm_luma_coding_block_size_minus3 + 3; IN_RANGE_OR_RETURN_NULL(log2_min_ipcm_cb_size_y, std::min(min_cb_log2_size_y, 5), std::min(ctb_log2_size_y, 5)); // log2_diff_max_min_pcm_luma_coding_block_size: ue(v) int log2_diff_max_min_pcm_luma_coding_block_size = reader.ReadExponentialGolomb(); TRUE_OR_RETURN(log2_diff_max_min_pcm_luma_coding_block_size <= std::min(ctb_log2_size_y, 5) - log2_min_ipcm_cb_size_y); // pcm_loop_filter_disabled_flag: u(1) reader.ConsumeBits(1); } // num_short_term_ref_pic_sets: ue(v) sps.num_short_term_ref_pic_sets = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.num_short_term_ref_pic_sets, 0, kMaxShortTermRefPicSets); sps.short_term_ref_pic_set.resize(sps.num_short_term_ref_pic_sets); for (uint32_t st_rps_idx = 0; st_rps_idx < sps.num_short_term_ref_pic_sets; st_rps_idx++) { uint32_t sps_max_dec_pic_buffering_minus1 = sps.sps_max_dec_pic_buffering_minus1[sps.sps_max_sub_layers_minus1]; // st_ref_pic_set() OptionalShortTermRefPicSet ref_pic_set = ParseShortTermRefPicSet( st_rps_idx, sps.num_short_term_ref_pic_sets, sps.short_term_ref_pic_set, sps_max_dec_pic_buffering_minus1, reader); if (ref_pic_set) { sps.short_term_ref_pic_set[st_rps_idx] = *ref_pic_set; } else { return absl::nullopt; } } // long_term_ref_pics_present_flag: u(1) sps.long_term_ref_pics_present_flag = reader.Read(); if (sps.long_term_ref_pics_present_flag) { // num_long_term_ref_pics_sps: ue(v) sps.num_long_term_ref_pics_sps = reader.ReadExponentialGolomb(); IN_RANGE_OR_RETURN_NULL(sps.num_long_term_ref_pics_sps, 0, kMaxLongTermRefPicSets); sps.used_by_curr_pic_lt_sps_flag.resize(sps.num_long_term_ref_pics_sps, 0); for (uint32_t i = 0; i < sps.num_long_term_ref_pics_sps; i++) { // lt_ref_pic_poc_lsb_sps: u(v) uint32_t lt_ref_pic_poc_lsb_sps_bits = sps.log2_max_pic_order_cnt_lsb_minus4 + 4; reader.ConsumeBits(lt_ref_pic_poc_lsb_sps_bits); // used_by_curr_pic_lt_sps_flag: u(1) sps.used_by_curr_pic_lt_sps_flag[i] = reader.Read(); } } // sps_temporal_mvp_enabled_flag: u(1) sps.sps_temporal_mvp_enabled_flag = reader.Read(); // Far enough! We don't use the rest of the SPS. sps.vps_id = sps_video_parameter_set_id; sps.pic_width_in_luma_samples = pic_width_in_luma_samples; sps.pic_height_in_luma_samples = pic_height_in_luma_samples; // Start with the resolution determined by the pic_width/pic_height fields. sps.width = pic_width_in_luma_samples; sps.height = pic_height_in_luma_samples; if (conformance_window_flag) { int sub_width_c = ((1 == sps.chroma_format_idc) || (2 == sps.chroma_format_idc)) && (0 == sps.separate_colour_plane_flag) ? 2 : 1; int sub_height_c = (1 == sps.chroma_format_idc) && (0 == sps.separate_colour_plane_flag) ? 2 : 1; // the offset includes the pixel within conformance window. so don't need to // +1 as per spec sps.width -= sub_width_c * (conf_win_right_offset + conf_win_left_offset); sps.height -= sub_height_c * (conf_win_top_offset + conf_win_bottom_offset); } if (!reader.Ok()) { return absl::nullopt; } return OptionalSps(sps); } } // namespace webrtc