/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /****************************************************************** iLBC Speech Coder ANSI-C Source Code WebRtcIlbcfix_CbSearch.c ******************************************************************/ #include "modules/audio_coding/codecs/ilbc/cb_search.h" #include "modules/audio_coding/codecs/ilbc/augmented_cb_corr.h" #include "modules/audio_coding/codecs/ilbc/cb_mem_energy.h" #include "modules/audio_coding/codecs/ilbc/cb_mem_energy_augmentation.h" #include "modules/audio_coding/codecs/ilbc/cb_search_core.h" #include "modules/audio_coding/codecs/ilbc/cb_update_best_index.h" #include "modules/audio_coding/codecs/ilbc/constants.h" #include "modules/audio_coding/codecs/ilbc/create_augmented_vec.h" #include "modules/audio_coding/codecs/ilbc/defines.h" #include "modules/audio_coding/codecs/ilbc/energy_inverse.h" #include "modules/audio_coding/codecs/ilbc/filtered_cb_vecs.h" #include "modules/audio_coding/codecs/ilbc/gain_quant.h" #include "modules/audio_coding/codecs/ilbc/interpolate_samples.h" /*----------------------------------------------------------------* * Search routine for codebook encoding and gain quantization. *----------------------------------------------------------------*/ void WebRtcIlbcfix_CbSearch( IlbcEncoder *iLBCenc_inst, /* (i) the encoder state structure */ int16_t *index, /* (o) Codebook indices */ int16_t *gain_index, /* (o) Gain quantization indices */ int16_t *intarget, /* (i) Target vector for encoding */ int16_t *decResidual,/* (i) Decoded residual for codebook construction */ size_t lMem, /* (i) Length of buffer */ size_t lTarget, /* (i) Length of vector */ int16_t *weightDenum,/* (i) weighting filter coefficients in Q12 */ size_t block /* (i) the subblock number */ ) { size_t i, range; int16_t ii, j, stage; int16_t *pp; int16_t tmp; int scale; int16_t bits, temp1, temp2; size_t base_size; int32_t codedEner, targetEner; int16_t gains[CB_NSTAGES+1]; int16_t *cb_vecPtr; size_t indexOffset, sInd, eInd; int32_t CritMax=0; int16_t shTotMax=WEBRTC_SPL_WORD16_MIN; size_t bestIndex=0; int16_t bestGain=0; size_t indexNew; int16_t CritNewSh; int32_t CritNew; int32_t *cDotPtr; size_t noOfZeros; int16_t *gainPtr; int32_t t32, tmpW32; int16_t *WebRtcIlbcfix_kGainSq5_ptr; /* Stack based */ int16_t CBbuf[CB_MEML+LPC_FILTERORDER+CB_HALFFILTERLEN]; int32_t cDot[128]; int32_t Crit[128]; int16_t targetVec[SUBL+LPC_FILTERORDER]; int16_t cbvectors[CB_MEML + 1]; /* Adding one extra position for Coverity warnings. */ int16_t codedVec[SUBL]; int16_t interpSamples[20*4]; int16_t interpSamplesFilt[20*4]; int16_t energyW16[CB_EXPAND*128]; int16_t energyShifts[CB_EXPAND*128]; int16_t *inverseEnergy=energyW16; /* Reuse memory */ int16_t *inverseEnergyShifts=energyShifts; /* Reuse memory */ int16_t *buf = &CBbuf[LPC_FILTERORDER]; int16_t *target = &targetVec[LPC_FILTERORDER]; int16_t *aug_vec = (int16_t*)cDot; /* length [SUBL], reuse memory */ /* Determine size of codebook sections */ base_size=lMem-lTarget+1; if (lTarget==SUBL) { base_size=lMem-19; } /* weighting of the CB memory */ noOfZeros=lMem-WebRtcIlbcfix_kFilterRange[block]; WebRtcSpl_MemSetW16(&buf[-LPC_FILTERORDER], 0, noOfZeros+LPC_FILTERORDER); WebRtcSpl_FilterARFastQ12( decResidual+noOfZeros, buf+noOfZeros, weightDenum, LPC_FILTERORDER+1, WebRtcIlbcfix_kFilterRange[block]); /* weighting of the target vector */ WEBRTC_SPL_MEMCPY_W16(&target[-LPC_FILTERORDER], buf+noOfZeros+WebRtcIlbcfix_kFilterRange[block]-LPC_FILTERORDER, LPC_FILTERORDER); WebRtcSpl_FilterARFastQ12( intarget, target, weightDenum, LPC_FILTERORDER+1, lTarget); /* Store target, towards the end codedVec is calculated as the initial target minus the remaining target */ WEBRTC_SPL_MEMCPY_W16(codedVec, target, lTarget); /* Find the highest absolute value to calculate proper vector scale factor (so that it uses 12 bits) */ temp1 = WebRtcSpl_MaxAbsValueW16(buf, lMem); temp2 = WebRtcSpl_MaxAbsValueW16(target, lTarget); if ((temp1>0)&&(temp2>0)) { temp1 = WEBRTC_SPL_MAX(temp1, temp2); scale = WebRtcSpl_GetSizeInBits((uint32_t)(temp1 * temp1)); } else { /* temp1 or temp2 is negative (maximum was -32768) */ scale = 30; } /* Scale to so that a mul-add 40 times does not overflow */ scale = scale - 25; scale = WEBRTC_SPL_MAX(0, scale); /* Compute energy of the original target */ targetEner = WebRtcSpl_DotProductWithScale(target, target, lTarget, scale); /* Prepare search over one more codebook section. This section is created by filtering the original buffer with a filter. */ WebRtcIlbcfix_FilteredCbVecs(cbvectors, buf, lMem, WebRtcIlbcfix_kFilterRange[block]); range = WebRtcIlbcfix_kSearchRange[block][0]; if(lTarget == SUBL) { /* Create the interpolated samples and store them for use in all stages */ /* First section, non-filtered half of the cb */ WebRtcIlbcfix_InterpolateSamples(interpSamples, buf, lMem); /* Second section, filtered half of the cb */ WebRtcIlbcfix_InterpolateSamples(interpSamplesFilt, cbvectors, lMem); /* Compute the CB vectors' energies for the first cb section (non-filtered) */ WebRtcIlbcfix_CbMemEnergyAugmentation(interpSamples, buf, scale, 20, energyW16, energyShifts); /* Compute the CB vectors' energies for the second cb section (filtered cb) */ WebRtcIlbcfix_CbMemEnergyAugmentation(interpSamplesFilt, cbvectors, scale, base_size + 20, energyW16, energyShifts); /* Compute the CB vectors' energies and store them in the vector * energyW16. Also the corresponding shift values are stored. The * energy values are used in all three stages. */ WebRtcIlbcfix_CbMemEnergy(range, buf, cbvectors, lMem, lTarget, energyW16+20, energyShifts+20, scale, base_size); } else { /* Compute the CB vectors' energies and store them in the vector * energyW16. Also the corresponding shift values are stored. The * energy values are used in all three stages. */ WebRtcIlbcfix_CbMemEnergy(range, buf, cbvectors, lMem, lTarget, energyW16, energyShifts, scale, base_size); /* Set the energy positions 58-63 and 122-127 to zero (otherwise they are uninitialized) */ WebRtcSpl_MemSetW16(energyW16+range, 0, (base_size-range)); WebRtcSpl_MemSetW16(energyW16+range+base_size, 0, (base_size-range)); } /* Calculate Inverse Energy (energyW16 is already normalized and will contain the inverse energy in Q29 after this call */ WebRtcIlbcfix_EnergyInverse(energyW16, base_size*CB_EXPAND); /* The gain value computed in the previous stage is used * as an upper limit to what the next stage gain value * is allowed to be. In stage 0, 16384 (1.0 in Q14) is used as * the upper limit. */ gains[0] = 16384; for (stage=0; stage> 1) > bestIndex) ? 0 : (bestIndex - (CB_RESRANGE >> 1)); eInd=sInd+CB_RESRANGE; if (eInd>=range) { eInd=range-1; sInd=eInd-CB_RESRANGE; } range = WebRtcIlbcfix_kSearchRange[block][stage]; if (lTarget==SUBL) { i=sInd; if (sInd<20) { WebRtcIlbcfix_AugmentedCbCorr(target, cbvectors + lMem, interpSamplesFilt, cDot, sInd + 20, WEBRTC_SPL_MIN(39, (eInd + 20)), scale); i=20; cDotPtr = &cDot[20 - sInd]; } else { cDotPtr = cDot; } cb_vecPtr = cbvectors+lMem-20-i; /* Calculate the cross correlations (main part of the filtered CB) */ WebRtcSpl_CrossCorrelation(cDotPtr, target, cb_vecPtr, lTarget, eInd - i + 1, scale, -1); } else { cDotPtr = cDot; cb_vecPtr = cbvectors+lMem-lTarget-sInd; /* Calculate the cross correlations (main part of the filtered CB) */ WebRtcSpl_CrossCorrelation(cDotPtr, target, cb_vecPtr, lTarget, eInd - sInd + 1, scale, -1); } /* Adjust the search range for the augmented vectors */ indexOffset=base_size+sInd; /* Search for best index in this part of the vector */ WebRtcIlbcfix_CbSearchCore( cDot, eInd-sInd+1, stage, inverseEnergy+indexOffset, inverseEnergyShifts+indexOffset, Crit, &indexNew, &CritNew, &CritNewSh); /* Update the global best index and the corresponding gain */ WebRtcIlbcfix_CbUpdateBestIndex( CritNew, CritNewSh, indexNew+indexOffset, cDot[indexNew], inverseEnergy[indexNew+indexOffset], inverseEnergyShifts[indexNew+indexOffset], &CritMax, &shTotMax, &bestIndex, &bestGain); index[stage] = (int16_t)bestIndex; bestGain = WebRtcIlbcfix_GainQuant(bestGain, (int16_t)WEBRTC_SPL_ABS_W16(gains[stage]), stage, &gain_index[stage]); /* Extract the best (according to measure) codebook vector Also adjust the index, so that the augmented vectors are last. Above these vectors were first... */ if(lTarget==(STATE_LEN-iLBCenc_inst->state_short_len)) { if((size_t)index[stage]=20) { /* Adjust index and extract vector */ index[stage]-=20; pp=buf+lMem-lTarget-index[stage]; } else { /* Adjust index and extract vector */ index[stage]+=(int16_t)(base_size-20); WebRtcIlbcfix_CreateAugmentedVec(index[stage]-base_size+40, buf+lMem, aug_vec); pp = aug_vec; } } else { if ((index[stage] - base_size) >= 20) { /* Adjust index and extract vector */ index[stage]-=20; pp=cbvectors+lMem-lTarget- index[stage]+base_size; } else { /* Adjust index and extract vector */ index[stage]+=(int16_t)(base_size-20); WebRtcIlbcfix_CreateAugmentedVec(index[stage]-2*base_size+40, cbvectors+lMem, aug_vec); pp = aug_vec; } } } /* Subtract the best codebook vector, according to measure, from the target vector */ WebRtcSpl_AddAffineVectorToVector(target, pp, (int16_t)(-bestGain), (int32_t)8192, (int16_t)14, lTarget); /* record quantized gain */ gains[stage+1] = bestGain; } /* end of Main Loop. for (stage=0;... */ /* Calculte the coded vector (original target - what's left) */ for (i=0;i> 14); targetEner = (int16_t)WEBRTC_SPL_SHIFT_W32(targetEner, -bits) * tmp; tmpW32 = ((int32_t)(gains[1]-1))<<1; /* Pointer to the table that contains gain_sq5TblFIX * gain_sq5TblFIX in Q14 */ gainPtr=(int16_t*)WebRtcIlbcfix_kGainSq5Sq+gain_index[0]; temp1 = (int16_t)WEBRTC_SPL_SHIFT_W32(codedEner, -bits); WebRtcIlbcfix_kGainSq5_ptr = (int16_t*)&WebRtcIlbcfix_kGainSq5[j]; /* targetEner and codedEner are in Q(-2*scale) */ for (ii=gain_index[0];ii<32;ii++) { /* Change the index if (codedEnergy*gainTbl[i]*gainTbl[i])<(targetEn*gain[0]*gain[0]) AND gainTbl[i] < 2*gain[0] */ t32 = temp1 * *gainPtr; t32 = t32 - targetEner; if (t32 < 0) { if ((*WebRtcIlbcfix_kGainSq5_ptr) < tmpW32) { j=ii; WebRtcIlbcfix_kGainSq5_ptr = (int16_t*)&WebRtcIlbcfix_kGainSq5[ii]; } } gainPtr++; } gain_index[0]=j; return; }