/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/delay_manager.h" #include #include #include #include #include #include #include "modules/include/module_common_types_public.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/struct_parameters_parser.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/numerics/safe_minmax.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { constexpr int kMinBaseMinimumDelayMs = 0; constexpr int kMaxBaseMinimumDelayMs = 10000; constexpr int kStartDelayMs = 80; std::unique_ptr MaybeCreateReorderOptimizer( const DelayManager::Config& config) { if (!config.use_reorder_optimizer) { return nullptr; } return std::make_unique( (1 << 15) * config.reorder_forget_factor, config.ms_per_loss_percent, config.start_forget_weight); } } // namespace DelayManager::Config::Config() { StructParametersParser::Create( // "quantile", &quantile, // "forget_factor", &forget_factor, // "start_forget_weight", &start_forget_weight, // "resample_interval_ms", &resample_interval_ms, // "use_reorder_optimizer", &use_reorder_optimizer, // "reorder_forget_factor", &reorder_forget_factor, // "ms_per_loss_percent", &ms_per_loss_percent) ->Parse(webrtc::field_trial::FindFullName( "WebRTC-Audio-NetEqDelayManagerConfig")); } void DelayManager::Config::Log() { RTC_LOG(LS_INFO) << "Delay manager config:" " quantile=" << quantile << " forget_factor=" << forget_factor << " start_forget_weight=" << start_forget_weight.value_or(0) << " resample_interval_ms=" << resample_interval_ms.value_or(0) << " use_reorder_optimizer=" << use_reorder_optimizer << " reorder_forget_factor=" << reorder_forget_factor << " ms_per_loss_percent=" << ms_per_loss_percent; } DelayManager::DelayManager(const Config& config, const TickTimer* tick_timer) : max_packets_in_buffer_(config.max_packets_in_buffer), underrun_optimizer_(tick_timer, (1 << 30) * config.quantile, (1 << 15) * config.forget_factor, config.start_forget_weight, config.resample_interval_ms), reorder_optimizer_(MaybeCreateReorderOptimizer(config)), base_minimum_delay_ms_(config.base_minimum_delay_ms), effective_minimum_delay_ms_(config.base_minimum_delay_ms), minimum_delay_ms_(0), maximum_delay_ms_(0), target_level_ms_(kStartDelayMs) { RTC_DCHECK_GE(base_minimum_delay_ms_, 0); Reset(); } DelayManager::~DelayManager() {} void DelayManager::Update(int arrival_delay_ms, bool reordered) { if (!reorder_optimizer_ || !reordered) { underrun_optimizer_.Update(arrival_delay_ms); } target_level_ms_ = underrun_optimizer_.GetOptimalDelayMs().value_or(kStartDelayMs); if (reorder_optimizer_) { reorder_optimizer_->Update(arrival_delay_ms, reordered, target_level_ms_); target_level_ms_ = std::max( target_level_ms_, reorder_optimizer_->GetOptimalDelayMs().value_or(0)); } unlimited_target_level_ms_ = target_level_ms_; target_level_ms_ = std::max(target_level_ms_, effective_minimum_delay_ms_); if (maximum_delay_ms_ > 0) { target_level_ms_ = std::min(target_level_ms_, maximum_delay_ms_); } if (packet_len_ms_ > 0) { // Limit to 75% of maximum buffer size. target_level_ms_ = std::min( target_level_ms_, 3 * max_packets_in_buffer_ * packet_len_ms_ / 4); } } int DelayManager::SetPacketAudioLength(int length_ms) { if (length_ms <= 0) { RTC_LOG_F(LS_ERROR) << "length_ms = " << length_ms; return -1; } packet_len_ms_ = length_ms; return 0; } void DelayManager::Reset() { packet_len_ms_ = 0; underrun_optimizer_.Reset(); target_level_ms_ = kStartDelayMs; if (reorder_optimizer_) { reorder_optimizer_->Reset(); } } int DelayManager::TargetDelayMs() const { return target_level_ms_; } int DelayManager::UnlimitedTargetLevelMs() const { return unlimited_target_level_ms_; } bool DelayManager::IsValidMinimumDelay(int delay_ms) const { return 0 <= delay_ms && delay_ms <= MinimumDelayUpperBound(); } bool DelayManager::IsValidBaseMinimumDelay(int delay_ms) const { return kMinBaseMinimumDelayMs <= delay_ms && delay_ms <= kMaxBaseMinimumDelayMs; } bool DelayManager::SetMinimumDelay(int delay_ms) { if (!IsValidMinimumDelay(delay_ms)) { return false; } minimum_delay_ms_ = delay_ms; UpdateEffectiveMinimumDelay(); return true; } bool DelayManager::SetMaximumDelay(int delay_ms) { // If `delay_ms` is zero then it unsets the maximum delay and target level is // unconstrained by maximum delay. if (delay_ms != 0 && delay_ms < minimum_delay_ms_) { // Maximum delay shouldn't be less than minimum delay or less than a packet. return false; } maximum_delay_ms_ = delay_ms; UpdateEffectiveMinimumDelay(); return true; } bool DelayManager::SetBaseMinimumDelay(int delay_ms) { if (!IsValidBaseMinimumDelay(delay_ms)) { return false; } base_minimum_delay_ms_ = delay_ms; UpdateEffectiveMinimumDelay(); return true; } int DelayManager::GetBaseMinimumDelay() const { return base_minimum_delay_ms_; } void DelayManager::UpdateEffectiveMinimumDelay() { // Clamp `base_minimum_delay_ms_` into the range which can be effectively // used. const int base_minimum_delay_ms = rtc::SafeClamp(base_minimum_delay_ms_, 0, MinimumDelayUpperBound()); effective_minimum_delay_ms_ = std::max(minimum_delay_ms_, base_minimum_delay_ms); } int DelayManager::MinimumDelayUpperBound() const { // Choose the lowest possible bound discarding 0 cases which mean the value // is not set and unconstrained. int q75 = max_packets_in_buffer_ * packet_len_ms_ * 3 / 4; q75 = q75 > 0 ? q75 : kMaxBaseMinimumDelayMs; const int maximum_delay_ms = maximum_delay_ms_ > 0 ? maximum_delay_ms_ : kMaxBaseMinimumDelayMs; return std::min(maximum_delay_ms, q75); } } // namespace webrtc