/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for DelayManager class. #include "modules/audio_coding/neteq/delay_manager.h" #include #include #include "absl/types/optional.h" #include "modules/audio_coding/neteq/histogram.h" #include "modules/audio_coding/neteq/mock/mock_histogram.h" #include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h" #include "rtc_base/checks.h" #include "test/field_trial.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kMaxNumberOfPackets = 200; constexpr int kTimeStepMs = 10; constexpr int kFrameSizeMs = 20; constexpr int kMaxBufferSizeMs = kMaxNumberOfPackets * kFrameSizeMs; } // namespace class DelayManagerTest : public ::testing::Test { protected: DelayManagerTest(); virtual void SetUp(); void Update(int delay); void IncreaseTime(int inc_ms); TickTimer tick_timer_; DelayManager dm_; }; DelayManagerTest::DelayManagerTest() : dm_(DelayManager::Config(), &tick_timer_) {} void DelayManagerTest::SetUp() { dm_.SetPacketAudioLength(kFrameSizeMs); } void DelayManagerTest::Update(int delay) { dm_.Update(delay, false); } void DelayManagerTest::IncreaseTime(int inc_ms) { for (int t = 0; t < inc_ms; t += kTimeStepMs) { tick_timer_.Increment(); } } TEST_F(DelayManagerTest, CreateAndDestroy) { // Nothing to do here. The test fixture creates and destroys the DelayManager // object. } TEST_F(DelayManagerTest, UpdateNormal) { for (int i = 0; i < 50; ++i) { Update(0); IncreaseTime(kFrameSizeMs); } EXPECT_EQ(20, dm_.TargetDelayMs()); } TEST_F(DelayManagerTest, MaxDelay) { Update(0); const int kMaxDelayMs = 60; EXPECT_GT(dm_.TargetDelayMs(), kMaxDelayMs); EXPECT_TRUE(dm_.SetMaximumDelay(kMaxDelayMs)); Update(0); EXPECT_EQ(kMaxDelayMs, dm_.TargetDelayMs()); } TEST_F(DelayManagerTest, MinDelay) { Update(0); int kMinDelayMs = 7 * kFrameSizeMs; EXPECT_LT(dm_.TargetDelayMs(), kMinDelayMs); dm_.SetMinimumDelay(kMinDelayMs); IncreaseTime(kFrameSizeMs); Update(0); EXPECT_EQ(kMinDelayMs, dm_.TargetDelayMs()); } TEST_F(DelayManagerTest, BaseMinimumDelayCheckValidRange) { // Base minimum delay should be between [0, 10000] milliseconds. EXPECT_FALSE(dm_.SetBaseMinimumDelay(-1)); EXPECT_FALSE(dm_.SetBaseMinimumDelay(10001)); EXPECT_EQ(dm_.GetBaseMinimumDelay(), 0); EXPECT_TRUE(dm_.SetBaseMinimumDelay(7999)); EXPECT_EQ(dm_.GetBaseMinimumDelay(), 7999); } TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMinimumDelay) { constexpr int kBaseMinimumDelayMs = 100; constexpr int kMinimumDelayMs = 200; // Base minimum delay sets lower bound on minimum. That is why when base // minimum delay is lower than minimum delay we use minimum delay. RTC_DCHECK_LT(kBaseMinimumDelayMs, kMinimumDelayMs); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMinimumDelay) { constexpr int kBaseMinimumDelayMs = 70; constexpr int kMinimumDelayMs = 30; // Base minimum delay sets lower bound on minimum. That is why when base // minimum delay is greater than minimum delay we use base minimum delay. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanBufferSize) { constexpr int kBaseMinimumDelayMs = kMaxBufferSizeMs + 1; constexpr int kMinimumDelayMs = 12; constexpr int kMaximumDelayMs = 20; constexpr int kMaxBufferSizeMsQ75 = 3 * kMaxBufferSizeMs / 4; EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); // Base minimum delay is greater than minimum delay, that is why we clamp // it to current the highest possible value which is maximum delay. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaxBufferSizeMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMsQ75); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); // Unset maximum value. EXPECT_TRUE(dm_.SetMaximumDelay(0)); // With maximum value unset, the highest possible value now is 75% of // currently possible maximum buffer size. EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaxBufferSizeMsQ75); } TEST_F(DelayManagerTest, BaseMinimumDelayGreaterThanMaximumDelay) { constexpr int kMaximumDelayMs = 400; constexpr int kBaseMinimumDelayMs = kMaximumDelayMs + 1; constexpr int kMinimumDelayMs = 20; // Base minimum delay is greater than minimum delay, that is why we clamp // it to current the highest possible value which is kMaximumDelayMs. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_GT(kBaseMinimumDelayMs, kMaximumDelayMs); RTC_DCHECK_LT(kMaximumDelayMs, kMaxBufferSizeMs); EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMaximumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelayLowerThanMaxSize) { constexpr int kMaximumDelayMs = 400; constexpr int kBaseMinimumDelayMs = kMaximumDelayMs - 1; constexpr int kMinimumDelayMs = 20; // Base minimum delay is greater than minimum delay, and lower than maximum // delays that is why it is used. RTC_DCHECK_GT(kBaseMinimumDelayMs, kMinimumDelayMs); RTC_DCHECK_LT(kBaseMinimumDelayMs, kMaximumDelayMs); EXPECT_TRUE(dm_.SetMaximumDelay(kMaximumDelayMs)); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMs); } TEST_F(DelayManagerTest, MinimumDelayMemorization) { // Check that when we increase base minimum delay to value higher than // minimum delay then minimum delay is still memorized. This allows to // restore effective minimum delay to memorized minimum delay value when we // decrease base minimum delay. constexpr int kBaseMinimumDelayMsLow = 10; constexpr int kMinimumDelayMs = 20; constexpr int kBaseMinimumDelayMsHigh = 30; EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); EXPECT_TRUE(dm_.SetMinimumDelay(kMinimumDelayMs)); // Minimum delay is used as it is higher than base minimum delay. EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsHigh)); // Base minimum delay is used as it is now higher than minimum delay. EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kBaseMinimumDelayMsHigh); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMsLow)); // Check that minimum delay is memorized and is used again. EXPECT_EQ(dm_.effective_minimum_delay_ms_for_test(), kMinimumDelayMs); } TEST_F(DelayManagerTest, BaseMinimumDelay) { // First packet arrival. Update(0); constexpr int kBaseMinimumDelayMs = 7 * kFrameSizeMs; EXPECT_LT(dm_.TargetDelayMs(), kBaseMinimumDelayMs); EXPECT_TRUE(dm_.SetBaseMinimumDelay(kBaseMinimumDelayMs)); EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); IncreaseTime(kFrameSizeMs); Update(0); EXPECT_EQ(dm_.GetBaseMinimumDelay(), kBaseMinimumDelayMs); EXPECT_EQ(kBaseMinimumDelayMs, dm_.TargetDelayMs()); } TEST_F(DelayManagerTest, Failures) { // Wrong packet size. EXPECT_EQ(-1, dm_.SetPacketAudioLength(0)); EXPECT_EQ(-1, dm_.SetPacketAudioLength(-1)); // Minimum delay higher than a maximum delay is not accepted. EXPECT_TRUE(dm_.SetMaximumDelay(20)); EXPECT_FALSE(dm_.SetMinimumDelay(40)); // Maximum delay less than minimum delay is not accepted. EXPECT_TRUE(dm_.SetMaximumDelay(100)); EXPECT_TRUE(dm_.SetMinimumDelay(80)); EXPECT_FALSE(dm_.SetMaximumDelay(60)); } } // namespace webrtc