/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/normal.h" #include // memset, memcpy #include // min #include "common_audio/signal_processing/include/signal_processing_library.h" #include "modules/audio_coding/neteq/audio_multi_vector.h" #include "modules/audio_coding/neteq/background_noise.h" #include "modules/audio_coding/neteq/decoder_database.h" #include "modules/audio_coding/neteq/expand.h" #include "rtc_base/checks.h" namespace webrtc { int Normal::Process(const int16_t* input, size_t length, NetEq::Mode last_mode, AudioMultiVector* output) { if (length == 0) { // Nothing to process. output->Clear(); return static_cast(length); } RTC_DCHECK(output->Empty()); // Output should be empty at this point. if (length % output->Channels() != 0) { // The length does not match the number of channels. output->Clear(); return 0; } output->PushBackInterleaved(rtc::ArrayView(input, length)); const int fs_mult = fs_hz_ / 8000; RTC_DCHECK_GT(fs_mult, 0); // fs_shift = log2(fs_mult), rounded down. // Note that `fs_shift` is not "exact" for 48 kHz. // TODO(hlundin): Investigate this further. const int fs_shift = 30 - WebRtcSpl_NormW32(fs_mult); // If last call resulted in a CodedPlc we don't need to do cross-fading but we // need to report the end of the interruption once we are back to normal // operation. if (last_mode == NetEq::Mode::kCodecPlc) { statistics_->EndExpandEvent(fs_hz_); } // Check if last RecOut call resulted in an Expand. If so, we have to take // care of some cross-fading and unmuting. if (last_mode == NetEq::Mode::kExpand) { // Generate interpolation data using Expand. // First, set Expand parameters to appropriate values. expand_->SetParametersForNormalAfterExpand(); // Call Expand. AudioMultiVector expanded(output->Channels()); expand_->Process(&expanded); expand_->Reset(); size_t length_per_channel = length / output->Channels(); std::unique_ptr signal(new int16_t[length_per_channel]); for (size_t channel_ix = 0; channel_ix < output->Channels(); ++channel_ix) { // Set muting factor to the same as expand muting factor. int16_t mute_factor = expand_->MuteFactor(channel_ix); (*output)[channel_ix].CopyTo(length_per_channel, 0, signal.get()); // Find largest absolute value in new data. int16_t decoded_max = WebRtcSpl_MaxAbsValueW16(signal.get(), length_per_channel); // Adjust muting factor if needed (to BGN level). size_t energy_length = std::min(static_cast(fs_mult * 64), length_per_channel); int scaling = 6 + fs_shift - WebRtcSpl_NormW32(decoded_max * decoded_max); scaling = std::max(scaling, 0); // `scaling` should always be >= 0. int32_t energy = WebRtcSpl_DotProductWithScale(signal.get(), signal.get(), energy_length, scaling); int32_t scaled_energy_length = static_cast(energy_length >> scaling); if (scaled_energy_length > 0) { energy = energy / scaled_energy_length; } else { energy = 0; } int local_mute_factor = 16384; // 1.0 in Q14. if ((energy != 0) && (energy > background_noise_.Energy(channel_ix))) { // Normalize new frame energy to 15 bits. scaling = WebRtcSpl_NormW32(energy) - 16; // We want background_noise_.energy() / energy in Q14. int32_t bgn_energy = WEBRTC_SPL_SHIFT_W32( background_noise_.Energy(channel_ix), scaling + 14); int16_t energy_scaled = static_cast(WEBRTC_SPL_SHIFT_W32(energy, scaling)); int32_t ratio = WebRtcSpl_DivW32W16(bgn_energy, energy_scaled); local_mute_factor = std::min(local_mute_factor, WebRtcSpl_SqrtFloor(ratio << 14)); } mute_factor = std::max(mute_factor, local_mute_factor); RTC_DCHECK_LE(mute_factor, 16384); RTC_DCHECK_GE(mute_factor, 0); // If muted increase by 0.64 for every 20 ms (NB/WB 0.0040/0.0020 in Q14), // or as fast as it takes to come back to full gain within the frame // length. const int back_to_fullscale_inc = static_cast((16384 - mute_factor) / length_per_channel); const int increment = std::max(64 / fs_mult, back_to_fullscale_inc); for (size_t i = 0; i < length_per_channel; i++) { // Scale with mute factor. RTC_DCHECK_LT(channel_ix, output->Channels()); RTC_DCHECK_LT(i, output->Size()); int32_t scaled_signal = (*output)[channel_ix][i] * mute_factor; // Shift 14 with proper rounding. (*output)[channel_ix][i] = static_cast((scaled_signal + 8192) >> 14); // Increase mute_factor towards 16384. mute_factor = static_cast(std::min(mute_factor + increment, 16384)); } // Interpolate the expanded data into the new vector. // (NB/WB/SWB32/SWB48 8/16/32/48 samples.) size_t win_length = samples_per_ms_; int16_t win_slope_Q14 = default_win_slope_Q14_; RTC_DCHECK_LT(channel_ix, output->Channels()); if (win_length > output->Size()) { win_length = output->Size(); win_slope_Q14 = (1 << 14) / static_cast(win_length); } int16_t win_up_Q14 = 0; for (size_t i = 0; i < win_length; i++) { win_up_Q14 += win_slope_Q14; (*output)[channel_ix][i] = (win_up_Q14 * (*output)[channel_ix][i] + ((1 << 14) - win_up_Q14) * expanded[channel_ix][i] + (1 << 13)) >> 14; } RTC_DCHECK_GT(win_up_Q14, (1 << 14) - 32); // Worst case rouding is a length of 34 } } else if (last_mode == NetEq::Mode::kRfc3389Cng) { RTC_DCHECK_EQ(output->Channels(), 1); // Not adapted for multi-channel yet. static const size_t kCngLength = 48; RTC_DCHECK_LE(8 * fs_mult, kCngLength); int16_t cng_output[kCngLength]; ComfortNoiseDecoder* cng_decoder = decoder_database_->GetActiveCngDecoder(); if (cng_decoder) { // Generate long enough for 48kHz. if (!cng_decoder->Generate(cng_output, false)) { // Error returned; set return vector to all zeros. memset(cng_output, 0, sizeof(cng_output)); } } else { // If no CNG instance is defined, just copy from the decoded data. // (This will result in interpolating the decoded with itself.) (*output)[0].CopyTo(fs_mult * 8, 0, cng_output); } // Interpolate the CNG into the new vector. // (NB/WB/SWB32/SWB48 8/16/32/48 samples.) size_t win_length = samples_per_ms_; int16_t win_slope_Q14 = default_win_slope_Q14_; if (win_length > kCngLength) { win_length = kCngLength; win_slope_Q14 = (1 << 14) / static_cast(win_length); } int16_t win_up_Q14 = 0; for (size_t i = 0; i < win_length; i++) { win_up_Q14 += win_slope_Q14; (*output)[0][i] = (win_up_Q14 * (*output)[0][i] + ((1 << 14) - win_up_Q14) * cng_output[i] + (1 << 13)) >> 14; } RTC_DCHECK_GT(win_up_Q14, (1 << 14) - 32); // Worst case rouding is a length of 34 } return static_cast(length); } } // namespace webrtc