/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // Unit tests for PacketBuffer class. #include "modules/audio_coding/neteq/packet_buffer.h" #include #include "api/audio_codecs/builtin_audio_decoder_factory.h" #include "api/neteq/tick_timer.h" #include "modules/audio_coding/neteq/mock/mock_decoder_database.h" #include "modules/audio_coding/neteq/mock/mock_statistics_calculator.h" #include "modules/audio_coding/neteq/packet.h" #include "test/field_trial.h" #include "test/gmock.h" #include "test/gtest.h" using ::testing::_; using ::testing::InSequence; using ::testing::MockFunction; using ::testing::Return; using ::testing::StrictMock; namespace { class MockEncodedAudioFrame : public webrtc::AudioDecoder::EncodedAudioFrame { public: MOCK_METHOD(size_t, Duration, (), (const, override)); MOCK_METHOD(bool, IsDtxPacket, (), (const, override)); MOCK_METHOD(absl::optional, Decode, (rtc::ArrayView decoded), (const, override)); }; // Helper class to generate packets. Packets must be deleted by the user. class PacketGenerator { public: PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size); virtual ~PacketGenerator() {} void Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size); webrtc::Packet NextPacket( int payload_size_bytes, std::unique_ptr audio_frame); uint16_t seq_no_; uint32_t ts_; uint8_t pt_; int frame_size_; }; PacketGenerator::PacketGenerator(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size) { Reset(seq_no, ts, pt, frame_size); } void PacketGenerator::Reset(uint16_t seq_no, uint32_t ts, uint8_t pt, int frame_size) { seq_no_ = seq_no; ts_ = ts; pt_ = pt; frame_size_ = frame_size; } webrtc::Packet PacketGenerator::NextPacket( int payload_size_bytes, std::unique_ptr audio_frame) { webrtc::Packet packet; packet.sequence_number = seq_no_; packet.timestamp = ts_; packet.payload_type = pt_; packet.payload.SetSize(payload_size_bytes); ++seq_no_; ts_ += frame_size_; packet.frame = std::move(audio_frame); return packet; } struct PacketsToInsert { uint16_t sequence_number; uint32_t timestamp; uint8_t payload_type; bool primary; // Order of this packet to appear upon extraction, after inserting a series // of packets. A negative number means that it should have been discarded // before extraction. int extract_order; }; } // namespace namespace webrtc { // Start of test definitions. TEST(PacketBuffer, CreateAndDestroy) { TickTimer tick_timer; PacketBuffer* buffer = new PacketBuffer(10, &tick_timer); // 10 packets. EXPECT_TRUE(buffer->Empty()); delete buffer; } TEST(PacketBuffer, InsertPacket) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(17u, 4711u, 0, 10); StrictMock mock_stats; MockDecoderDatabase decoder_database; const int payload_len = 100; const Packet packet = gen.NextPacket(payload_len, nullptr); EXPECT_EQ(0, buffer.InsertPacket(/*packet=*/packet.Clone(), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/10000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); uint32_t next_ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); EXPECT_EQ(4711u, next_ts); EXPECT_FALSE(buffer.Empty()); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); const Packet* next_packet = buffer.PeekNextPacket(); EXPECT_EQ(packet, *next_packet); // Compare contents. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. // Do not explicitly flush buffer or delete packet to test that it is deleted // with the buffer. (Tested with Valgrind or similar tool.) } // Test to flush buffer. TEST(PacketBuffer, FlushBuffer) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); const int payload_len = 10; StrictMock mock_stats; MockDecoderDatabase decoder_database; // Insert 10 small packets; should be ok. for (int i = 0; i < 10; ++i) { EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); EXPECT_FALSE(buffer.Empty()); EXPECT_CALL(mock_stats, PacketsDiscarded(1)).Times(10); buffer.Flush(&mock_stats); // Buffer should delete the payloads itself. EXPECT_EQ(0u, buffer.NumPacketsInBuffer()); EXPECT_TRUE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test to fill the buffer over the limits, and verify that it flushes. TEST(PacketBuffer, OverfillBuffer) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); StrictMock mock_stats; MockDecoderDatabase decoder_database; // Insert 10 small packets; should be ok. const int payload_len = 10; int i; for (i = 0; i < 10; ++i) { EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); uint32_t next_ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line. EXPECT_CALL(mock_stats, PacketsDiscarded(1)).Times(10); const Packet packet = gen.NextPacket(payload_len, nullptr); // Insert 11th packet; should flush the buffer and insert it after flushing. EXPECT_EQ(PacketBuffer::kFlushed, buffer.InsertPacket(/*packet=*/packet.Clone(), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); // Expect last inserted packet to be first in line. EXPECT_EQ(packet.timestamp, next_ts); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test a partial buffer flush. TEST(PacketBuffer, PartialFlush) { // Use a field trial to configure smart flushing. test::ScopedFieldTrials field_trials( "WebRTC-Audio-NetEqSmartFlushing/enabled:true," "target_level_threshold_ms:0,target_level_multiplier:2/"); TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); const int payload_len = 10; StrictMock mock_stats; MockDecoderDatabase decoder_database; // Insert 10 small packets; should be ok. for (int i = 0; i < 10; ++i) { EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/100, /*decoder_database=*/decoder_database)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); EXPECT_FALSE(buffer.Empty()); EXPECT_CALL(mock_stats, PacketsDiscarded(1)).Times(7); buffer.PartialFlush(/*target_level_ms=*/30, /*sample_rate=*/1000, /*last_decoded_length=*/payload_len, /*stats=*/&mock_stats); // There should still be some packets left in the buffer. EXPECT_EQ(3u, buffer.NumPacketsInBuffer()); EXPECT_FALSE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test to fill the buffer over the limits, and verify that the smart flush // functionality works as expected. TEST(PacketBuffer, SmartFlushOverfillBuffer) { // Use a field trial to configure smart flushing. test::ScopedFieldTrials field_trials( "WebRTC-Audio-NetEqSmartFlushing/enabled:true," "target_level_threshold_ms:0,target_level_multiplier:2/"); TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); StrictMock mock_stats; MockDecoderDatabase decoder_database; // Insert 10 small packets; should be ok. const int payload_len = 10; int i; for (i = 0; i < 10; ++i) { EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/100, /*decoder_database=*/decoder_database)); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); uint32_t next_ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&next_ts)); EXPECT_EQ(0u, next_ts); // Expect first inserted packet to be first in line. const Packet packet = gen.NextPacket(payload_len, nullptr); EXPECT_CALL(mock_stats, PacketsDiscarded(1)).Times(6); // Insert 11th packet; should cause a partial flush and insert the packet // after flushing. EXPECT_EQ(PacketBuffer::kPartialFlush, buffer.InsertPacket(/*packet=*/packet.Clone(), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/40, /*decoder_database=*/decoder_database)); EXPECT_EQ(5u, buffer.NumPacketsInBuffer()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test inserting a list of packets. TEST(PacketBuffer, InsertPacketList) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { list.push_back(gen.NextPacket(payload_len, nullptr)); } MockDecoderDatabase decoder_database; auto factory = CreateBuiltinAudioDecoderFactory(); const DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(0)) .WillRepeatedly(Return(&info)); StrictMock mock_stats; absl::optional current_pt; absl::optional current_cng_pt; EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); EXPECT_EQ(0, current_pt); // Current payload type changed to 0. EXPECT_EQ(absl::nullopt, current_cng_pt); // CNG payload type not changed. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test inserting a list of packets. Last packet is of a different payload type. // Expecting the buffer to flush. // TODO(hlundin): Remove this test when legacy operation is no longer needed. TEST(PacketBuffer, InsertPacketListChangePayloadType) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. PacketGenerator gen(0, 0, 0, 10); PacketList list; const int payload_len = 10; // Insert 10 small packets. for (int i = 0; i < 10; ++i) { list.push_back(gen.NextPacket(payload_len, nullptr)); } // Insert 11th packet of another payload type (not CNG). { Packet packet = gen.NextPacket(payload_len, nullptr); packet.payload_type = 1; list.push_back(std::move(packet)); } MockDecoderDatabase decoder_database; auto factory = CreateBuiltinAudioDecoderFactory(); const DecoderDatabase::DecoderInfo info0(SdpAudioFormat("pcmu", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(0)) .WillRepeatedly(Return(&info0)); const DecoderDatabase::DecoderInfo info1(SdpAudioFormat("pcma", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(1)) .WillRepeatedly(Return(&info1)); StrictMock mock_stats; absl::optional current_pt; absl::optional current_cng_pt; EXPECT_CALL(mock_stats, PacketsDiscarded(1)).Times(10); EXPECT_EQ( PacketBuffer::kFlushed, buffer.InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); // Only the last packet. EXPECT_EQ(1, current_pt); // Current payload type changed to 1. EXPECT_EQ(absl::nullopt, current_cng_pt); // CNG payload type not changed. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, ExtractOrderRedundancy) { TickTimer tick_timer; PacketBuffer buffer(100, &tick_timer); // 100 packets. const int kPackets = 18; const int kFrameSize = 10; const int kPayloadLength = 10; PacketsToInsert packet_facts[kPackets] = { {0xFFFD, 0xFFFFFFD7, 0, true, 0}, {0xFFFE, 0xFFFFFFE1, 0, true, 1}, {0xFFFE, 0xFFFFFFD7, 1, false, -1}, {0xFFFF, 0xFFFFFFEB, 0, true, 2}, {0xFFFF, 0xFFFFFFE1, 1, false, -1}, {0x0000, 0xFFFFFFF5, 0, true, 3}, {0x0000, 0xFFFFFFEB, 1, false, -1}, {0x0001, 0xFFFFFFFF, 0, true, 4}, {0x0001, 0xFFFFFFF5, 1, false, -1}, {0x0002, 0x0000000A, 0, true, 5}, {0x0002, 0xFFFFFFFF, 1, false, -1}, {0x0003, 0x0000000A, 1, false, -1}, {0x0004, 0x0000001E, 0, true, 7}, {0x0004, 0x00000014, 1, false, 6}, {0x0005, 0x0000001E, 0, true, -1}, {0x0005, 0x00000014, 1, false, -1}, {0x0006, 0x00000028, 0, true, 8}, {0x0006, 0x0000001E, 1, false, -1}, }; MockDecoderDatabase decoder_database; const size_t kExpectPacketsInBuffer = 9; std::vector expect_order(kExpectPacketsInBuffer); PacketGenerator gen(0, 0, 0, kFrameSize); StrictMock mock_stats; // Interleaving the EXPECT_CALL sequence with expectations on the MockFunction // check ensures that exactly one call to PacketsDiscarded happens in each // DiscardNextPacket call. InSequence s; MockFunction check; for (int i = 0; i < kPackets; ++i) { gen.Reset(packet_facts[i].sequence_number, packet_facts[i].timestamp, packet_facts[i].payload_type, kFrameSize); Packet packet = gen.NextPacket(kPayloadLength, nullptr); packet.priority.codec_level = packet_facts[i].primary ? 0 : 1; if (packet_facts[i].extract_order < 0) { if (packet.priority.codec_level > 0) { EXPECT_CALL(mock_stats, SecondaryPacketsDiscarded(1)); } else { EXPECT_CALL(mock_stats, PacketsDiscarded(1)); } } EXPECT_CALL(check, Call(i)); EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/packet.Clone(), /*stats=*/&mock_stats, /*last_decoded_length=*/kPayloadLength, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); if (packet_facts[i].extract_order >= 0) { expect_order[packet_facts[i].extract_order] = std::move(packet); } check.Call(i); } EXPECT_EQ(kExpectPacketsInBuffer, buffer.NumPacketsInBuffer()); for (size_t i = 0; i < kExpectPacketsInBuffer; ++i) { const absl::optional packet = buffer.GetNextPacket(); EXPECT_EQ(packet, expect_order[i]); // Compare contents. } EXPECT_TRUE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, DiscardPackets) { TickTimer tick_timer; PacketBuffer buffer(100, &tick_timer); // 100 packets. const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); PacketList list; const int payload_len = 10; StrictMock mock_stats; MockDecoderDatabase decoder_database; constexpr int kTotalPackets = 10; // Insert 10 small packets. for (int i = 0; i < kTotalPackets; ++i) { buffer.InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database); } EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); uint32_t current_ts = start_ts; // Discard them one by one and make sure that the right packets are at the // front of the buffer. constexpr int kDiscardPackets = 5; // Interleaving the EXPECT_CALL sequence with expectations on the MockFunction // check ensures that exactly one call to PacketsDiscarded happens in each // DiscardNextPacket call. InSequence s; MockFunction check; for (int i = 0; i < kDiscardPackets; ++i) { uint32_t ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts)); EXPECT_EQ(current_ts, ts); EXPECT_CALL(mock_stats, PacketsDiscarded(1)); EXPECT_CALL(check, Call(i)); EXPECT_EQ(PacketBuffer::kOK, buffer.DiscardNextPacket(&mock_stats)); current_ts += ts_increment; check.Call(i); } constexpr int kRemainingPackets = kTotalPackets - kDiscardPackets; // This will discard all remaining packets but one. The oldest packet is older // than the indicated horizon_samples, and will thus be left in the buffer. constexpr size_t kSkipPackets = 1; EXPECT_CALL(mock_stats, PacketsDiscarded(1)) .Times(kRemainingPackets - kSkipPackets); EXPECT_CALL(check, Call(17)); // Arbitrary id number. buffer.DiscardOldPackets(start_ts + kTotalPackets * ts_increment, kRemainingPackets * ts_increment, &mock_stats); check.Call(17); // Same arbitrary id number. EXPECT_EQ(kSkipPackets, buffer.NumPacketsInBuffer()); uint32_t ts; EXPECT_EQ(PacketBuffer::kOK, buffer.NextTimestamp(&ts)); EXPECT_EQ(current_ts, ts); // Discard all remaining packets. EXPECT_CALL(mock_stats, PacketsDiscarded(kSkipPackets)); buffer.DiscardAllOldPackets(start_ts + kTotalPackets * ts_increment, &mock_stats); EXPECT_TRUE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, Reordering) { TickTimer tick_timer; PacketBuffer buffer(100, &tick_timer); // 100 packets. const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); const int payload_len = 10; // Generate 10 small packets and insert them into a PacketList. Insert every // odd packet to the front, and every even packet to the back, thus creating // a (rather strange) reordering. PacketList list; for (int i = 0; i < 10; ++i) { Packet packet = gen.NextPacket(payload_len, nullptr); if (i % 2) { list.push_front(std::move(packet)); } else { list.push_back(std::move(packet)); } } MockDecoderDatabase decoder_database; auto factory = CreateBuiltinAudioDecoderFactory(); const DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(0)) .WillRepeatedly(Return(&info)); absl::optional current_pt; absl::optional current_cng_pt; StrictMock mock_stats; EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_EQ(10u, buffer.NumPacketsInBuffer()); // Extract them and make sure that come out in the right order. uint32_t current_ts = start_ts; for (int i = 0; i < 10; ++i) { const absl::optional packet = buffer.GetNextPacket(); ASSERT_TRUE(packet); EXPECT_EQ(current_ts, packet->timestamp); current_ts += ts_increment; } EXPECT_TRUE(buffer.Empty()); EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // The test first inserts a packet with narrow-band CNG, then a packet with // wide-band speech. The expected behavior of the packet buffer is to detect a // change in sample rate, even though no speech packet has been inserted before, // and flush out the CNG packet. TEST(PacketBuffer, CngFirstThenSpeechWithNewSampleRate) { TickTimer tick_timer; PacketBuffer buffer(10, &tick_timer); // 10 packets. const uint8_t kCngPt = 13; const int kPayloadLen = 10; const uint8_t kSpeechPt = 100; MockDecoderDatabase decoder_database; auto factory = CreateBuiltinAudioDecoderFactory(); const DecoderDatabase::DecoderInfo info_cng(SdpAudioFormat("cn", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(kCngPt)) .WillRepeatedly(Return(&info_cng)); const DecoderDatabase::DecoderInfo info_speech( SdpAudioFormat("l16", 16000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(kSpeechPt)) .WillRepeatedly(Return(&info_speech)); // Insert first packet, which is narrow-band CNG. PacketGenerator gen(0, 0, kCngPt, 10); PacketList list; list.push_back(gen.NextPacket(kPayloadLen, nullptr)); absl::optional current_pt; absl::optional current_cng_pt; StrictMock mock_stats; EXPECT_EQ( PacketBuffer::kOK, buffer.InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/kPayloadLen, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_TRUE(list.empty()); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); ASSERT_TRUE(buffer.PeekNextPacket()); EXPECT_EQ(kCngPt, buffer.PeekNextPacket()->payload_type); EXPECT_EQ(current_pt, absl::nullopt); // Current payload type not set. EXPECT_EQ(kCngPt, current_cng_pt); // CNG payload type set. // Insert second packet, which is wide-band speech. { Packet packet = gen.NextPacket(kPayloadLen, nullptr); packet.payload_type = kSpeechPt; list.push_back(std::move(packet)); } // Expect the buffer to flush out the CNG packet, since it does not match the // new speech sample rate. EXPECT_CALL(mock_stats, PacketsDiscarded(1)); EXPECT_EQ( PacketBuffer::kFlushed, buffer.InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/kPayloadLen, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_TRUE(list.empty()); EXPECT_EQ(1u, buffer.NumPacketsInBuffer()); ASSERT_TRUE(buffer.PeekNextPacket()); EXPECT_EQ(kSpeechPt, buffer.PeekNextPacket()->payload_type); EXPECT_EQ(kSpeechPt, current_pt); // Current payload type set. EXPECT_EQ(absl::nullopt, current_cng_pt); // CNG payload type reset. EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } TEST(PacketBuffer, Failures) { const uint16_t start_seq_no = 17; const uint32_t start_ts = 4711; const uint32_t ts_increment = 10; int payload_len = 100; PacketGenerator gen(start_seq_no, start_ts, 0, ts_increment); TickTimer tick_timer; StrictMock mock_stats; MockDecoderDatabase decoder_database; PacketBuffer* buffer = new PacketBuffer(100, &tick_timer); // 100 packets. { Packet packet = gen.NextPacket(payload_len, nullptr); packet.payload.Clear(); EXPECT_EQ(PacketBuffer::kInvalidPacket, buffer->InsertPacket(/*packet=*/std::move(packet), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); } // Buffer should still be empty. Test all empty-checks. uint32_t temp_ts; EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextTimestamp(&temp_ts)); EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->NextHigherTimestamp(0, &temp_ts)); EXPECT_EQ(NULL, buffer->PeekNextPacket()); EXPECT_FALSE(buffer->GetNextPacket()); // Discarding packets will not invoke mock_stats.PacketDiscarded() because the // packet buffer is empty. EXPECT_EQ(PacketBuffer::kBufferEmpty, buffer->DiscardNextPacket(&mock_stats)); buffer->DiscardAllOldPackets(0, &mock_stats); // Insert one packet to make the buffer non-empty. EXPECT_EQ( PacketBuffer::kOK, buffer->InsertPacket(/*packet=*/gen.NextPacket(payload_len, nullptr), /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextTimestamp(NULL)); EXPECT_EQ(PacketBuffer::kInvalidPointer, buffer->NextHigherTimestamp(0, NULL)); delete buffer; // Insert packet list of three packets, where the second packet has an invalid // payload. Expect first packet to be inserted, and the remaining two to be // discarded. buffer = new PacketBuffer(100, &tick_timer); // 100 packets. PacketList list; list.push_back(gen.NextPacket(payload_len, nullptr)); // Valid packet. { Packet packet = gen.NextPacket(payload_len, nullptr); packet.payload.Clear(); // Invalid. list.push_back(std::move(packet)); } list.push_back(gen.NextPacket(payload_len, nullptr)); // Valid packet. auto factory = CreateBuiltinAudioDecoderFactory(); const DecoderDatabase::DecoderInfo info(SdpAudioFormat("pcmu", 8000, 1), absl::nullopt, factory.get()); EXPECT_CALL(decoder_database, GetDecoderInfo(0)) .WillRepeatedly(Return(&info)); absl::optional current_pt; absl::optional current_cng_pt; EXPECT_EQ( PacketBuffer::kInvalidPacket, buffer->InsertPacketList(/*packet_list=*/&list, /*decoder_database=*/decoder_database, /*current_rtp_payload_type=*/¤t_pt, /*current_cng_rtp_payload_type=*/¤t_cng_pt, /*stats=*/&mock_stats, /*last_decoded_length=*/payload_len, /*sample_rate=*/1000, /*target_level_ms=*/30)); EXPECT_TRUE(list.empty()); // The PacketBuffer should have depleted the list. EXPECT_EQ(1u, buffer->NumPacketsInBuffer()); delete buffer; EXPECT_CALL(decoder_database, Die()); // Called when object is deleted. } // Test packet comparison function. // The function should return true if the first packet "goes before" the second. TEST(PacketBuffer, ComparePackets) { PacketGenerator gen(0, 0, 0, 10); Packet a(gen.NextPacket(10, nullptr)); // SN = 0, TS = 0. Packet b(gen.NextPacket(10, nullptr)); // SN = 1, TS = 10. EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a < b); EXPECT_FALSE(a > b); EXPECT_TRUE(a <= b); EXPECT_FALSE(a >= b); // Testing wrap-around case; 'a' is earlier but has a larger timestamp value. a.timestamp = 0xFFFFFFFF - 10; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a < b); EXPECT_FALSE(a > b); EXPECT_TRUE(a <= b); EXPECT_FALSE(a >= b); // Test equal packets. EXPECT_TRUE(a == a); EXPECT_FALSE(a != a); EXPECT_FALSE(a < a); EXPECT_FALSE(a > a); EXPECT_TRUE(a <= a); EXPECT_TRUE(a >= a); // Test equal timestamps but different sequence numbers (0 and 1). a.timestamp = b.timestamp; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a < b); EXPECT_FALSE(a > b); EXPECT_TRUE(a <= b); EXPECT_FALSE(a >= b); // Test equal timestamps but different sequence numbers (32767 and 1). a.sequence_number = 0xFFFF; EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_TRUE(a < b); EXPECT_FALSE(a > b); EXPECT_TRUE(a <= b); EXPECT_FALSE(a >= b); // Test equal timestamps and sequence numbers, but differing priorities. a.sequence_number = b.sequence_number; a.priority = {1, 0}; b.priority = {0, 0}; // a after b EXPECT_FALSE(a == b); EXPECT_TRUE(a != b); EXPECT_FALSE(a < b); EXPECT_TRUE(a > b); EXPECT_FALSE(a <= b); EXPECT_TRUE(a >= b); Packet c(gen.NextPacket(0, nullptr)); // SN = 2, TS = 20. Packet d(gen.NextPacket(0, nullptr)); // SN = 3, TS = 20. c.timestamp = b.timestamp; d.timestamp = b.timestamp; c.sequence_number = b.sequence_number; d.sequence_number = b.sequence_number; c.priority = {1, 1}; d.priority = {0, 1}; // c after d EXPECT_FALSE(c == d); EXPECT_TRUE(c != d); EXPECT_FALSE(c < d); EXPECT_TRUE(c > d); EXPECT_FALSE(c <= d); EXPECT_TRUE(c >= d); // c after a EXPECT_FALSE(c == a); EXPECT_TRUE(c != a); EXPECT_FALSE(c < a); EXPECT_TRUE(c > a); EXPECT_FALSE(c <= a); EXPECT_TRUE(c >= a); // c after b EXPECT_FALSE(c == b); EXPECT_TRUE(c != b); EXPECT_FALSE(c < b); EXPECT_TRUE(c > b); EXPECT_FALSE(c <= b); EXPECT_TRUE(c >= b); // a after d EXPECT_FALSE(a == d); EXPECT_TRUE(a != d); EXPECT_FALSE(a < d); EXPECT_TRUE(a > d); EXPECT_FALSE(a <= d); EXPECT_TRUE(a >= d); // d after b EXPECT_FALSE(d == b); EXPECT_TRUE(d != b); EXPECT_FALSE(d < b); EXPECT_TRUE(d > b); EXPECT_FALSE(d <= b); EXPECT_TRUE(d >= b); } TEST(PacketBuffer, GetSpanSamples) { constexpr size_t kFrameSizeSamples = 10; constexpr int kPayloadSizeBytes = 1; // Does not matter to this test; constexpr uint32_t kStartTimeStamp = 0xFFFFFFFE; // Close to wrap around. constexpr int kSampleRateHz = 48000; constexpr bool kCountWaitingTime = false; TickTimer tick_timer; PacketBuffer buffer(3, &tick_timer); PacketGenerator gen(0, kStartTimeStamp, 0, kFrameSizeSamples); StrictMock mock_stats; MockDecoderDatabase decoder_database; Packet packet_1 = gen.NextPacket(kPayloadSizeBytes, nullptr); std::unique_ptr mock_audio_frame = std::make_unique(); EXPECT_CALL(*mock_audio_frame, Duration()) .WillRepeatedly(Return(kFrameSizeSamples)); Packet packet_2 = gen.NextPacket(kPayloadSizeBytes, std::move(mock_audio_frame)); RTC_DCHECK_GT(packet_1.timestamp, packet_2.timestamp); // Tmestamp wrapped around. EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/std::move(packet_1), /*stats=*/&mock_stats, /*last_decoded_length=*/kFrameSizeSamples, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); constexpr size_t kLastDecodedSizeSamples = 2; // packet_1 has no access to duration, and relies last decoded duration as // input. EXPECT_EQ(kLastDecodedSizeSamples, buffer.GetSpanSamples(kLastDecodedSizeSamples, kSampleRateHz, kCountWaitingTime)); EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/std::move(packet_2), /*stats=*/&mock_stats, /*last_decoded_length=*/kFrameSizeSamples, /*sample_rate=*/1000, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); EXPECT_EQ(kFrameSizeSamples * 2, buffer.GetSpanSamples(0, kSampleRateHz, kCountWaitingTime)); // packet_2 has access to duration, and ignores last decoded duration as // input. EXPECT_EQ(kFrameSizeSamples * 2, buffer.GetSpanSamples(kLastDecodedSizeSamples, kSampleRateHz, kCountWaitingTime)); } TEST(PacketBuffer, GetSpanSamplesCountWaitingTime) { constexpr size_t kFrameSizeSamples = 10; constexpr int kPayloadSizeBytes = 1; // Does not matter to this test; constexpr uint32_t kStartTimeStamp = 0xFFFFFFFE; // Close to wrap around. constexpr int kSampleRateHz = 48000; constexpr bool kCountWaitingTime = true; constexpr size_t kLastDecodedSizeSamples = 0; TickTimer tick_timer; PacketBuffer buffer(3, &tick_timer); PacketGenerator gen(0, kStartTimeStamp, 0, kFrameSizeSamples); StrictMock mock_stats; MockDecoderDatabase decoder_database; Packet packet = gen.NextPacket(kPayloadSizeBytes, nullptr); EXPECT_EQ(PacketBuffer::kOK, buffer.InsertPacket(/*packet=*/std::move(packet), /*stats=*/&mock_stats, /*last_decoded_length=*/kFrameSizeSamples, /*sample_rate=*/kSampleRateHz, /*target_level_ms=*/60, /*decoder_database=*/decoder_database)); EXPECT_EQ(0u, buffer.GetSpanSamples(kLastDecodedSizeSamples, kSampleRateHz, kCountWaitingTime)); tick_timer.Increment(); EXPECT_EQ(480u, buffer.GetSpanSamples(0, kSampleRateHz, kCountWaitingTime)); tick_timer.Increment(); EXPECT_EQ(960u, buffer.GetSpanSamples(0, kSampleRateHz, kCountWaitingTime)); } namespace { void TestIsObsoleteTimestamp(uint32_t limit_timestamp) { // Check with zero horizon, which implies that the horizon is at 2^31, i.e., // half the timestamp range. static const uint32_t kZeroHorizon = 0; static const uint32_t k2Pow31Minus1 = 0x7FFFFFFF; // Timestamp on the limit is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp, limit_timestamp, kZeroHorizon)); // 1 sample behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp - 1, limit_timestamp, kZeroHorizon)); // 2^31 - 1 samples behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp - k2Pow31Minus1, limit_timestamp, kZeroHorizon)); // 1 sample ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp + 1, limit_timestamp, kZeroHorizon)); // If |t1-t2|=2^31 and t1>t2, t2 is older than t1 but not the opposite. uint32_t other_timestamp = limit_timestamp + (1 << 31); uint32_t lowest_timestamp = std::min(limit_timestamp, other_timestamp); uint32_t highest_timestamp = std::max(limit_timestamp, other_timestamp); EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp( lowest_timestamp, highest_timestamp, kZeroHorizon)); EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( highest_timestamp, lowest_timestamp, kZeroHorizon)); // Fixed horizon at 10 samples. static const uint32_t kHorizon = 10; // Timestamp on the limit is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp, limit_timestamp, kHorizon)); // 1 sample behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp - 1, limit_timestamp, kHorizon)); // 9 samples behind is old. EXPECT_TRUE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp - 9, limit_timestamp, kHorizon)); // 10 samples behind is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp - 10, limit_timestamp, kHorizon)); // 2^31 - 1 samples behind is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp( limit_timestamp - k2Pow31Minus1, limit_timestamp, kHorizon)); // 1 sample ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp + 1, limit_timestamp, kHorizon)); // 2^31 samples ahead is not old. EXPECT_FALSE(PacketBuffer::IsObsoleteTimestamp(limit_timestamp + (1 << 31), limit_timestamp, kHorizon)); } } // namespace // Test the IsObsoleteTimestamp method with different limit timestamps. TEST(PacketBuffer, IsObsoleteTimestamp) { TestIsObsoleteTimestamp(0); TestIsObsoleteTimestamp(1); TestIsObsoleteTimestamp(0xFFFFFFFF); // -1 in uint32_t. TestIsObsoleteTimestamp(0x80000000); // 2^31. TestIsObsoleteTimestamp(0x80000001); // 2^31 + 1. TestIsObsoleteTimestamp(0x7FFFFFFF); // 2^31 - 1. } } // namespace webrtc