/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/statistics_calculator.h" #include // memset #include #include "absl/strings/string_view.h" #include "modules/audio_coding/neteq/delay_manager.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/metrics.h" namespace webrtc { namespace { size_t AddIntToSizeTWithLowerCap(int a, size_t b) { const size_t ret = b + a; // If a + b is negative, resulting in a negative wrap, cap it to zero instead. static_assert(sizeof(size_t) >= sizeof(int), "int must not be wider than size_t for this to work"); return (a < 0 && ret > b) ? 0 : ret; } constexpr int kInterruptionLenMs = 150; } // namespace // Allocating the static const so that it can be passed by reference to // RTC_DCHECK. const size_t StatisticsCalculator::kLenWaitingTimes; StatisticsCalculator::PeriodicUmaLogger::PeriodicUmaLogger( absl::string_view uma_name, int report_interval_ms, int max_value) : uma_name_(uma_name), report_interval_ms_(report_interval_ms), max_value_(max_value), timer_(0) {} StatisticsCalculator::PeriodicUmaLogger::~PeriodicUmaLogger() = default; void StatisticsCalculator::PeriodicUmaLogger::AdvanceClock(int step_ms) { timer_ += step_ms; if (timer_ < report_interval_ms_) { return; } LogToUma(Metric()); Reset(); timer_ -= report_interval_ms_; RTC_DCHECK_GE(timer_, 0); } void StatisticsCalculator::PeriodicUmaLogger::LogToUma(int value) const { RTC_HISTOGRAM_COUNTS_SPARSE(uma_name_, value, 1, max_value_, 50); } StatisticsCalculator::PeriodicUmaCount::PeriodicUmaCount( absl::string_view uma_name, int report_interval_ms, int max_value) : PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {} StatisticsCalculator::PeriodicUmaCount::~PeriodicUmaCount() { // Log the count for the current (incomplete) interval. LogToUma(Metric()); } void StatisticsCalculator::PeriodicUmaCount::RegisterSample() { ++counter_; } int StatisticsCalculator::PeriodicUmaCount::Metric() const { return counter_; } void StatisticsCalculator::PeriodicUmaCount::Reset() { counter_ = 0; } StatisticsCalculator::PeriodicUmaAverage::PeriodicUmaAverage( absl::string_view uma_name, int report_interval_ms, int max_value) : PeriodicUmaLogger(uma_name, report_interval_ms, max_value) {} StatisticsCalculator::PeriodicUmaAverage::~PeriodicUmaAverage() { // Log the average for the current (incomplete) interval. LogToUma(Metric()); } void StatisticsCalculator::PeriodicUmaAverage::RegisterSample(int value) { sum_ += value; ++counter_; } int StatisticsCalculator::PeriodicUmaAverage::Metric() const { return counter_ == 0 ? 0 : static_cast(sum_ / counter_); } void StatisticsCalculator::PeriodicUmaAverage::Reset() { sum_ = 0.0; counter_ = 0; } StatisticsCalculator::StatisticsCalculator() : preemptive_samples_(0), accelerate_samples_(0), expanded_speech_samples_(0), expanded_noise_samples_(0), timestamps_since_last_report_(0), secondary_decoded_samples_(0), discarded_secondary_packets_(0), delayed_packet_outage_counter_( "WebRTC.Audio.DelayedPacketOutageEventsPerMinute", 60000, // 60 seconds report interval. 100), excess_buffer_delay_("WebRTC.Audio.AverageExcessBufferDelayMs", 60000, // 60 seconds report interval. 1000), buffer_full_counter_("WebRTC.Audio.JitterBufferFullPerMinute", 60000, // 60 seconds report interval. 100) {} StatisticsCalculator::~StatisticsCalculator() = default; void StatisticsCalculator::Reset() { preemptive_samples_ = 0; accelerate_samples_ = 0; expanded_speech_samples_ = 0; expanded_noise_samples_ = 0; secondary_decoded_samples_ = 0; discarded_secondary_packets_ = 0; waiting_times_.clear(); } void StatisticsCalculator::ResetMcu() { timestamps_since_last_report_ = 0; } void StatisticsCalculator::ExpandedVoiceSamples(size_t num_samples, bool is_new_concealment_event) { expanded_speech_samples_ += num_samples; ConcealedSamplesCorrection(rtc::dchecked_cast(num_samples), true); lifetime_stats_.concealment_events += is_new_concealment_event; } void StatisticsCalculator::ExpandedNoiseSamples(size_t num_samples, bool is_new_concealment_event) { expanded_noise_samples_ += num_samples; ConcealedSamplesCorrection(rtc::dchecked_cast(num_samples), false); lifetime_stats_.concealment_events += is_new_concealment_event; } void StatisticsCalculator::ExpandedVoiceSamplesCorrection(int num_samples) { expanded_speech_samples_ = AddIntToSizeTWithLowerCap(num_samples, expanded_speech_samples_); ConcealedSamplesCorrection(num_samples, true); } void StatisticsCalculator::ExpandedNoiseSamplesCorrection(int num_samples) { expanded_noise_samples_ = AddIntToSizeTWithLowerCap(num_samples, expanded_noise_samples_); ConcealedSamplesCorrection(num_samples, false); } void StatisticsCalculator::DecodedOutputPlayed() { decoded_output_played_ = true; } void StatisticsCalculator::EndExpandEvent(int fs_hz) { RTC_DCHECK_GE(lifetime_stats_.concealed_samples, concealed_samples_at_event_end_); const int event_duration_ms = 1000 * (lifetime_stats_.concealed_samples - concealed_samples_at_event_end_) / fs_hz; if (event_duration_ms >= kInterruptionLenMs && decoded_output_played_) { lifetime_stats_.interruption_count++; lifetime_stats_.total_interruption_duration_ms += event_duration_ms; RTC_HISTOGRAM_COUNTS("WebRTC.Audio.AudioInterruptionMs", event_duration_ms, /*min=*/150, /*max=*/5000, /*bucket_count=*/50); } concealed_samples_at_event_end_ = lifetime_stats_.concealed_samples; } void StatisticsCalculator::ConcealedSamplesCorrection(int num_samples, bool is_voice) { if (num_samples < 0) { // Store negative correction to subtract from future positive additions. // See also the function comment in the header file. concealed_samples_correction_ -= num_samples; if (!is_voice) { silent_concealed_samples_correction_ -= num_samples; } return; } const size_t canceled_out = std::min(static_cast(num_samples), concealed_samples_correction_); concealed_samples_correction_ -= canceled_out; lifetime_stats_.concealed_samples += num_samples - canceled_out; if (!is_voice) { const size_t silent_canceled_out = std::min( static_cast(num_samples), silent_concealed_samples_correction_); silent_concealed_samples_correction_ -= silent_canceled_out; lifetime_stats_.silent_concealed_samples += num_samples - silent_canceled_out; } } void StatisticsCalculator::PreemptiveExpandedSamples(size_t num_samples) { preemptive_samples_ += num_samples; operations_and_state_.preemptive_samples += num_samples; lifetime_stats_.inserted_samples_for_deceleration += num_samples; } void StatisticsCalculator::AcceleratedSamples(size_t num_samples) { accelerate_samples_ += num_samples; operations_and_state_.accelerate_samples += num_samples; lifetime_stats_.removed_samples_for_acceleration += num_samples; } void StatisticsCalculator::GeneratedNoiseSamples(size_t num_samples) { lifetime_stats_.generated_noise_samples += num_samples; } void StatisticsCalculator::PacketsDiscarded(size_t num_packets) { lifetime_stats_.packets_discarded += num_packets; } void StatisticsCalculator::SecondaryPacketsDiscarded(size_t num_packets) { discarded_secondary_packets_ += num_packets; lifetime_stats_.fec_packets_discarded += num_packets; } void StatisticsCalculator::SecondaryPacketsReceived(size_t num_packets) { lifetime_stats_.fec_packets_received += num_packets; } void StatisticsCalculator::IncreaseCounter(size_t num_samples, int fs_hz) { const int time_step_ms = rtc::CheckedDivExact(static_cast(1000 * num_samples), fs_hz); delayed_packet_outage_counter_.AdvanceClock(time_step_ms); excess_buffer_delay_.AdvanceClock(time_step_ms); buffer_full_counter_.AdvanceClock(time_step_ms); timestamps_since_last_report_ += static_cast(num_samples); if (timestamps_since_last_report_ > static_cast(fs_hz * kMaxReportPeriod)) { timestamps_since_last_report_ = 0; } lifetime_stats_.total_samples_received += num_samples; } void StatisticsCalculator::JitterBufferDelay( size_t num_samples, uint64_t waiting_time_ms, uint64_t target_delay_ms, uint64_t unlimited_target_delay_ms) { lifetime_stats_.jitter_buffer_delay_ms += waiting_time_ms * num_samples; lifetime_stats_.jitter_buffer_target_delay_ms += target_delay_ms * num_samples; lifetime_stats_.jitter_buffer_minimum_delay_ms += unlimited_target_delay_ms * num_samples; lifetime_stats_.jitter_buffer_emitted_count += num_samples; } void StatisticsCalculator::SecondaryDecodedSamples(int num_samples) { secondary_decoded_samples_ += num_samples; } void StatisticsCalculator::FlushedPacketBuffer() { operations_and_state_.packet_buffer_flushes++; buffer_full_counter_.RegisterSample(); } void StatisticsCalculator::ReceivedPacket() { ++lifetime_stats_.jitter_buffer_packets_received; } void StatisticsCalculator::RelativePacketArrivalDelay(size_t delay_ms) { lifetime_stats_.relative_packet_arrival_delay_ms += delay_ms; } void StatisticsCalculator::LogDelayedPacketOutageEvent(int num_samples, int fs_hz) { int outage_duration_ms = num_samples / (fs_hz / 1000); RTC_HISTOGRAM_COUNTS("WebRTC.Audio.DelayedPacketOutageEventMs", outage_duration_ms, 1 /* min */, 2000 /* max */, 100 /* bucket count */); delayed_packet_outage_counter_.RegisterSample(); lifetime_stats_.delayed_packet_outage_samples += num_samples; ++lifetime_stats_.delayed_packet_outage_events; } void StatisticsCalculator::StoreWaitingTime(int waiting_time_ms) { excess_buffer_delay_.RegisterSample(waiting_time_ms); RTC_DCHECK_LE(waiting_times_.size(), kLenWaitingTimes); if (waiting_times_.size() == kLenWaitingTimes) { // Erase first value. waiting_times_.pop_front(); } waiting_times_.push_back(waiting_time_ms); operations_and_state_.last_waiting_time_ms = waiting_time_ms; } void StatisticsCalculator::GetNetworkStatistics(size_t samples_per_packet, NetEqNetworkStatistics* stats) { RTC_DCHECK(stats); stats->accelerate_rate = CalculateQ14Ratio(accelerate_samples_, timestamps_since_last_report_); stats->preemptive_rate = CalculateQ14Ratio(preemptive_samples_, timestamps_since_last_report_); stats->expand_rate = CalculateQ14Ratio(expanded_speech_samples_ + expanded_noise_samples_, timestamps_since_last_report_); stats->speech_expand_rate = CalculateQ14Ratio(expanded_speech_samples_, timestamps_since_last_report_); stats->secondary_decoded_rate = CalculateQ14Ratio( secondary_decoded_samples_, timestamps_since_last_report_); const size_t discarded_secondary_samples = discarded_secondary_packets_ * samples_per_packet; stats->secondary_discarded_rate = CalculateQ14Ratio(discarded_secondary_samples, static_cast(discarded_secondary_samples + secondary_decoded_samples_)); if (waiting_times_.size() == 0) { stats->mean_waiting_time_ms = -1; stats->median_waiting_time_ms = -1; stats->min_waiting_time_ms = -1; stats->max_waiting_time_ms = -1; } else { std::sort(waiting_times_.begin(), waiting_times_.end()); // Find mid-point elements. If the size is odd, the two values // `middle_left` and `middle_right` will both be the one middle element; if // the size is even, they will be the the two neighboring elements at the // middle of the list. const int middle_left = waiting_times_[(waiting_times_.size() - 1) / 2]; const int middle_right = waiting_times_[waiting_times_.size() / 2]; // Calculate the average of the two. (Works also for odd sizes.) stats->median_waiting_time_ms = (middle_left + middle_right) / 2; stats->min_waiting_time_ms = waiting_times_.front(); stats->max_waiting_time_ms = waiting_times_.back(); double sum = 0; for (auto time : waiting_times_) { sum += time; } stats->mean_waiting_time_ms = static_cast(sum / waiting_times_.size()); } // Reset counters. ResetMcu(); Reset(); } NetEqLifetimeStatistics StatisticsCalculator::GetLifetimeStatistics() const { return lifetime_stats_; } NetEqOperationsAndState StatisticsCalculator::GetOperationsAndState() const { return operations_and_state_; } uint16_t StatisticsCalculator::CalculateQ14Ratio(size_t numerator, uint32_t denominator) { if (numerator == 0) { return 0; } else if (numerator < denominator) { // Ratio must be smaller than 1 in Q14. RTC_DCHECK_LT((numerator << 14) / denominator, (1 << 14)); return static_cast((numerator << 14) / denominator); } else { // Will not produce a ratio larger than 1, since this is probably an error. return 1 << 14; } } } // namespace webrtc