/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/neteq/test/neteq_decoding_test.h" #include "absl/strings/string_view.h" #include "api/audio_codecs/builtin_audio_decoder_factory.h" #include "api/rtp_headers.h" #include "modules/audio_coding/neteq/default_neteq_factory.h" #include "modules/audio_coding/neteq/test/result_sink.h" #include "rtc_base/strings/string_builder.h" #include "test/testsupport/file_utils.h" #ifdef WEBRTC_NETEQ_UNITTEST_BITEXACT RTC_PUSH_IGNORING_WUNDEF() #ifdef WEBRTC_ANDROID_PLATFORM_BUILD #include "external/webrtc/webrtc/modules/audio_coding/neteq/neteq_unittest.pb.h" #else #include "modules/audio_coding/neteq/neteq_unittest.pb.h" #endif RTC_POP_IGNORING_WUNDEF() #endif namespace webrtc { namespace { void LoadDecoders(webrtc::NetEq* neteq) { ASSERT_EQ(true, neteq->RegisterPayloadType(0, SdpAudioFormat("pcmu", 8000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(8, SdpAudioFormat("pcma", 8000, 1))); #ifdef WEBRTC_CODEC_ILBC ASSERT_EQ(true, neteq->RegisterPayloadType(102, SdpAudioFormat("ilbc", 8000, 1))); #endif #if defined(WEBRTC_CODEC_ISAC) || defined(WEBRTC_CODEC_ISACFX) ASSERT_EQ(true, neteq->RegisterPayloadType(103, SdpAudioFormat("isac", 16000, 1))); #endif #ifdef WEBRTC_CODEC_ISAC ASSERT_EQ(true, neteq->RegisterPayloadType(104, SdpAudioFormat("isac", 32000, 1))); #endif #ifdef WEBRTC_CODEC_OPUS ASSERT_EQ(true, neteq->RegisterPayloadType( 111, SdpAudioFormat("opus", 48000, 2, {{"stereo", "0"}}))); #endif ASSERT_EQ(true, neteq->RegisterPayloadType(93, SdpAudioFormat("L16", 8000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(94, SdpAudioFormat("L16", 16000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(95, SdpAudioFormat("L16", 32000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(13, SdpAudioFormat("cn", 8000, 1))); ASSERT_EQ(true, neteq->RegisterPayloadType(98, SdpAudioFormat("cn", 16000, 1))); } } // namespace const int NetEqDecodingTest::kTimeStepMs; const size_t NetEqDecodingTest::kBlockSize8kHz; const size_t NetEqDecodingTest::kBlockSize16kHz; const size_t NetEqDecodingTest::kBlockSize32kHz; const int NetEqDecodingTest::kInitSampleRateHz; NetEqDecodingTest::NetEqDecodingTest() : clock_(0), config_(), output_sample_rate_(kInitSampleRateHz), algorithmic_delay_ms_(0) { config_.sample_rate_hz = kInitSampleRateHz; } void NetEqDecodingTest::SetUp() { auto decoder_factory = CreateBuiltinAudioDecoderFactory(); neteq_ = DefaultNetEqFactory().CreateNetEq(config_, decoder_factory, &clock_); NetEqNetworkStatistics stat; ASSERT_EQ(0, neteq_->NetworkStatistics(&stat)); algorithmic_delay_ms_ = stat.current_buffer_size_ms; ASSERT_TRUE(neteq_); LoadDecoders(neteq_.get()); } void NetEqDecodingTest::TearDown() {} void NetEqDecodingTest::OpenInputFile(absl::string_view rtp_file) { rtp_source_.reset(test::RtpFileSource::Create(rtp_file)); } void NetEqDecodingTest::Process() { // Check if time to receive. while (packet_ && clock_.TimeInMilliseconds() >= packet_->time_ms()) { if (packet_->payload_length_bytes() > 0) { #ifndef WEBRTC_CODEC_ISAC // Ignore payload type 104 (iSAC-swb) if ISAC is not supported. if (packet_->header().payloadType != 104) #endif ASSERT_EQ( 0, neteq_->InsertPacket( packet_->header(), rtc::ArrayView( packet_->payload(), packet_->payload_length_bytes()))); } // Get next packet. packet_ = rtp_source_->NextPacket(); } // Get audio from NetEq. bool muted; ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_FALSE(muted); ASSERT_TRUE((out_frame_.samples_per_channel_ == kBlockSize8kHz) || (out_frame_.samples_per_channel_ == kBlockSize16kHz) || (out_frame_.samples_per_channel_ == kBlockSize32kHz) || (out_frame_.samples_per_channel_ == kBlockSize48kHz)); output_sample_rate_ = out_frame_.sample_rate_hz_; EXPECT_EQ(output_sample_rate_, neteq_->last_output_sample_rate_hz()); // Increase time. clock_.AdvanceTimeMilliseconds(kTimeStepMs); } void NetEqDecodingTest::DecodeAndCompare( absl::string_view rtp_file, absl::string_view output_checksum, absl::string_view network_stats_checksum, bool gen_ref) { OpenInputFile(rtp_file); std::string ref_out_file = gen_ref ? webrtc::test::OutputPath() + "neteq_universal_ref.pcm" : ""; ResultSink output(ref_out_file); std::string stat_out_file = gen_ref ? webrtc::test::OutputPath() + "neteq_network_stats.dat" : ""; ResultSink network_stats(stat_out_file); packet_ = rtp_source_->NextPacket(); int i = 0; uint64_t last_concealed_samples = 0; uint64_t last_total_samples_received = 0; while (packet_) { rtc::StringBuilder ss; ss << "Lap number " << i++ << " in DecodeAndCompare while loop"; SCOPED_TRACE(ss.str()); // Print out the parameter values on failure. ASSERT_NO_FATAL_FAILURE(Process()); ASSERT_NO_FATAL_FAILURE( output.AddResult(out_frame_.data(), out_frame_.samples_per_channel_)); // Query the network statistics API once per second if (clock_.TimeInMilliseconds() % 1000 == 0) { // Process NetworkStatistics. NetEqNetworkStatistics current_network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(¤t_network_stats)); ASSERT_NO_FATAL_FAILURE(network_stats.AddResult(current_network_stats)); // Verify that liftime stats and network stats report similar loss // concealment rates. auto lifetime_stats = neteq_->GetLifetimeStatistics(); const uint64_t delta_concealed_samples = lifetime_stats.concealed_samples - last_concealed_samples; last_concealed_samples = lifetime_stats.concealed_samples; const uint64_t delta_total_samples_received = lifetime_stats.total_samples_received - last_total_samples_received; last_total_samples_received = lifetime_stats.total_samples_received; // The tolerance is 1% but expressed in Q14. EXPECT_NEAR( (delta_concealed_samples << 14) / delta_total_samples_received, current_network_stats.expand_rate, (2 << 14) / 100.0); } } SCOPED_TRACE("Check output audio."); output.VerifyChecksum(output_checksum); SCOPED_TRACE("Check network stats."); network_stats.VerifyChecksum(network_stats_checksum); } void NetEqDecodingTest::PopulateRtpInfo(int frame_index, int timestamp, RTPHeader* rtp_info) { rtp_info->sequenceNumber = frame_index; rtp_info->timestamp = timestamp; rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->payloadType = 94; // PCM16b WB codec. rtp_info->markerBit = false; } void NetEqDecodingTest::PopulateCng(int frame_index, int timestamp, RTPHeader* rtp_info, uint8_t* payload, size_t* payload_len) { rtp_info->sequenceNumber = frame_index; rtp_info->timestamp = timestamp; rtp_info->ssrc = 0x1234; // Just an arbitrary SSRC. rtp_info->payloadType = 98; // WB CNG. rtp_info->markerBit = false; payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen. *payload_len = 1; // Only noise level, no spectral parameters. } void NetEqDecodingTest::WrapTest(uint16_t start_seq_no, uint32_t start_timestamp, const std::set& drop_seq_numbers, bool expect_seq_no_wrap, bool expect_timestamp_wrap) { uint16_t seq_no = start_seq_no; uint32_t timestamp = start_timestamp; const int kBlocksPerFrame = 3; // Number of 10 ms blocks per frame. const int kFrameSizeMs = kBlocksPerFrame * kTimeStepMs; const int kSamples = kBlockSize16kHz * kBlocksPerFrame; const size_t kPayloadBytes = kSamples * sizeof(int16_t); double next_input_time_ms = 0.0; // Insert speech for 2 seconds. const int kSpeechDurationMs = 2000; uint16_t last_seq_no; uint32_t last_timestamp; bool timestamp_wrapped = false; bool seq_no_wrapped = false; for (double t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); if (drop_seq_numbers.find(seq_no) == drop_seq_numbers.end()) { // This sequence number was not in the set to drop. Insert it. ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); } NetEqNetworkStatistics network_stats; ASSERT_EQ(0, neteq_->NetworkStatistics(&network_stats)); EXPECT_LE(network_stats.preferred_buffer_size_ms, 80); EXPECT_LE(network_stats.current_buffer_size_ms, 80 + algorithmic_delay_ms_); last_seq_no = seq_no; last_timestamp = timestamp; ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs); seq_no_wrapped |= seq_no < last_seq_no; timestamp_wrapped |= timestamp < last_timestamp; } // Pull out data once. AudioFrame output; bool muted; ASSERT_EQ(0, neteq_->GetAudio(&output, &muted)); ASSERT_EQ(kBlockSize16kHz, output.samples_per_channel_); ASSERT_EQ(1u, output.num_channels_); // Expect delay (in samples) to be less than 2 packets. absl::optional playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); EXPECT_LE(timestamp - *playout_timestamp, static_cast(kSamples * 2)); } // Make sure we have actually tested wrap-around. ASSERT_EQ(expect_seq_no_wrap, seq_no_wrapped); ASSERT_EQ(expect_timestamp_wrap, timestamp_wrapped); } void NetEqDecodingTest::LongCngWithClockDrift(double drift_factor, double network_freeze_ms, bool pull_audio_during_freeze, int delay_tolerance_ms, int max_time_to_speech_ms) { uint16_t seq_no = 0; uint32_t timestamp = 0; const int kFrameSizeMs = 30; const size_t kSamples = kFrameSizeMs * 16; const size_t kPayloadBytes = kSamples * 2; double next_input_time_ms = 0.0; double t_ms; bool muted; // Insert speech for 5 seconds. const int kSpeechDurationMs = 5000; for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); ++seq_no; timestamp += kSamples; next_input_time_ms += static_cast(kFrameSizeMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } EXPECT_EQ(AudioFrame::kNormalSpeech, out_frame_.speech_type_); absl::optional playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); int32_t delay_before = timestamp - *playout_timestamp; // Insert CNG for 1 minute (= 60000 ms). const int kCngPeriodMs = 100; const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples. const int kCngDurationMs = 60000; for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; size_t payload_len; RTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView( payload, payload_len))); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += static_cast(kCngPeriodMs) * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); } EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); if (network_freeze_ms > 0) { // First keep pulling audio for `network_freeze_ms` without inserting // any data, then insert CNG data corresponding to `network_freeze_ms` // without pulling any output audio. const double loop_end_time = t_ms + network_freeze_ms; for (; t_ms < loop_end_time; t_ms += 10) { // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); } bool pull_once = pull_audio_during_freeze; // If `pull_once` is true, GetAudio will be called once half-way through // the network recovery period. double pull_time_ms = (t_ms + next_input_time_ms) / 2; while (next_input_time_ms <= t_ms) { if (pull_once && next_input_time_ms >= pull_time_ms) { pull_once = false; // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); EXPECT_EQ(AudioFrame::kCNG, out_frame_.speech_type_); t_ms += 10; } // Insert one CNG frame each 100 ms. uint8_t payload[kPayloadBytes]; size_t payload_len; RTPHeader rtp_info; PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, rtc::ArrayView( payload, payload_len))); ++seq_no; timestamp += kCngPeriodSamples; next_input_time_ms += kCngPeriodMs * drift_factor; } } // Insert speech again until output type is speech. double speech_restart_time_ms = t_ms; while (out_frame_.speech_type_ != AudioFrame::kNormalSpeech) { // Each turn in this for loop is 10 ms. while (next_input_time_ms <= t_ms) { // Insert one 30 ms speech frame. uint8_t payload[kPayloadBytes] = {0}; RTPHeader rtp_info; PopulateRtpInfo(seq_no, timestamp, &rtp_info); ASSERT_EQ(0, neteq_->InsertPacket(rtp_info, payload)); ++seq_no; timestamp += kSamples; next_input_time_ms += kFrameSizeMs * drift_factor; } // Pull out data once. ASSERT_EQ(0, neteq_->GetAudio(&out_frame_, &muted)); ASSERT_EQ(kBlockSize16kHz, out_frame_.samples_per_channel_); // Increase clock. t_ms += 10; } // Check that the speech starts again within reasonable time. double time_until_speech_returns_ms = t_ms - speech_restart_time_ms; EXPECT_LT(time_until_speech_returns_ms, max_time_to_speech_ms); playout_timestamp = neteq_->GetPlayoutTimestamp(); ASSERT_TRUE(playout_timestamp); int32_t delay_after = timestamp - *playout_timestamp; // Compare delay before and after, and make sure it differs less than 20 ms. EXPECT_LE(delay_after, delay_before + delay_tolerance_ms * 16); EXPECT_GE(delay_after, delay_before - delay_tolerance_ms * 16); } void NetEqDecodingTestTwoInstances::SetUp() { NetEqDecodingTest::SetUp(); config2_ = config_; } void NetEqDecodingTestTwoInstances::CreateSecondInstance() { auto decoder_factory = CreateBuiltinAudioDecoderFactory(); neteq2_ = DefaultNetEqFactory().CreateNetEq(config2_, decoder_factory, &clock_); ASSERT_TRUE(neteq2_); LoadDecoders(neteq2_.get()); } } // namespace webrtc