/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_coding/test/TestAllCodecs.h" #include #include #include #include "absl/strings/match.h" #include "api/audio_codecs/builtin_audio_decoder_factory.h" #include "api/audio_codecs/builtin_audio_encoder_factory.h" #include "modules/audio_coding/include/audio_coding_module_typedefs.h" #include "modules/include/module_common_types.h" #include "rtc_base/logging.h" #include "rtc_base/string_encode.h" #include "rtc_base/strings/string_builder.h" #include "test/gtest.h" #include "test/testsupport/file_utils.h" // Description of the test: // In this test we set up a one-way communication channel from a participant // called "a" to a participant called "b". // a -> channel_a_to_b -> b // // The test loops through all available mono codecs, encode at "a" sends over // the channel, and decodes at "b". #define CHECK_ERROR(f) \ do { \ EXPECT_GE(f, 0) << "Error Calling API"; \ } while (0) namespace { const size_t kVariableSize = std::numeric_limits::max(); } namespace webrtc { // Class for simulating packet handling. TestPack::TestPack() : receiver_acm_(NULL), sequence_number_(0), timestamp_diff_(0), last_in_timestamp_(0), total_bytes_(0), payload_size_(0) {} TestPack::~TestPack() {} void TestPack::RegisterReceiverACM(acm2::AcmReceiver* acm_receiver) { receiver_acm_ = acm_receiver; return; } int32_t TestPack::SendData(AudioFrameType frame_type, uint8_t payload_type, uint32_t timestamp, const uint8_t* payload_data, size_t payload_size, int64_t absolute_capture_timestamp_ms) { RTPHeader rtp_header; int32_t status; rtp_header.markerBit = false; rtp_header.ssrc = 0; rtp_header.sequenceNumber = sequence_number_++; rtp_header.payloadType = payload_type; rtp_header.timestamp = timestamp; if (frame_type == AudioFrameType::kEmptyFrame) { // Skip this frame. return 0; } // Only run mono for all test cases. memcpy(payload_data_, payload_data, payload_size); status = receiver_acm_->InsertPacket( rtp_header, rtc::ArrayView(payload_data_, payload_size)); payload_size_ = payload_size; timestamp_diff_ = timestamp - last_in_timestamp_; last_in_timestamp_ = timestamp; total_bytes_ += payload_size; return status; } size_t TestPack::payload_size() { return payload_size_; } uint32_t TestPack::timestamp_diff() { return timestamp_diff_; } void TestPack::reset_payload_size() { payload_size_ = 0; } TestAllCodecs::TestAllCodecs() : acm_a_(AudioCodingModule::Create()), acm_b_(std::make_unique( acm2::AcmReceiver::Config(CreateBuiltinAudioDecoderFactory()))), channel_a_to_b_(NULL), test_count_(0), packet_size_samples_(0), packet_size_bytes_(0) {} TestAllCodecs::~TestAllCodecs() { if (channel_a_to_b_ != NULL) { delete channel_a_to_b_; channel_a_to_b_ = NULL; } } void TestAllCodecs::Perform() { const std::string file_name = webrtc::test::ResourcePath("audio_coding/testfile32kHz", "pcm"); infile_a_.Open(file_name, 32000, "rb"); acm_b_->SetCodecs({{107, {"L16", 8000, 1}}, {108, {"L16", 16000, 1}}, {109, {"L16", 32000, 1}}, {111, {"L16", 8000, 2}}, {112, {"L16", 16000, 2}}, {113, {"L16", 32000, 2}}, {0, {"PCMU", 8000, 1}}, {110, {"PCMU", 8000, 2}}, {8, {"PCMA", 8000, 1}}, {118, {"PCMA", 8000, 2}}, {102, {"ILBC", 8000, 1}}, {9, {"G722", 8000, 1}}, {119, {"G722", 8000, 2}}, {120, {"OPUS", 48000, 2, {{"stereo", "1"}}}}, {13, {"CN", 8000, 1}}, {98, {"CN", 16000, 1}}, {99, {"CN", 32000, 1}}}); // Create and connect the channel channel_a_to_b_ = new TestPack; acm_a_->RegisterTransportCallback(channel_a_to_b_); channel_a_to_b_->RegisterReceiverACM(acm_b_.get()); // All codecs are tested for all allowed sampling frequencies, rates and // packet sizes. test_count_++; OpenOutFile(test_count_); char codec_g722[] = "G722"; RegisterSendCodec(codec_g722, 16000, 64000, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_g722, 16000, 64000, 320, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_g722, 16000, 64000, 480, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_g722, 16000, 64000, 640, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_g722, 16000, 64000, 800, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_g722, 16000, 64000, 960, 0); Run(channel_a_to_b_); outfile_b_.Close(); #ifdef WEBRTC_CODEC_ILBC test_count_++; OpenOutFile(test_count_); char codec_ilbc[] = "ILBC"; RegisterSendCodec(codec_ilbc, 8000, 13300, 240, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_ilbc, 8000, 13300, 480, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_ilbc, 8000, 15200, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_ilbc, 8000, 15200, 320, 0); Run(channel_a_to_b_); outfile_b_.Close(); #endif test_count_++; OpenOutFile(test_count_); char codec_l16[] = "L16"; RegisterSendCodec(codec_l16, 8000, 128000, 80, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 8000, 128000, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 8000, 128000, 240, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 8000, 128000, 320, 0); Run(channel_a_to_b_); outfile_b_.Close(); test_count_++; OpenOutFile(test_count_); RegisterSendCodec(codec_l16, 16000, 256000, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 16000, 256000, 320, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 16000, 256000, 480, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 16000, 256000, 640, 0); Run(channel_a_to_b_); outfile_b_.Close(); test_count_++; OpenOutFile(test_count_); RegisterSendCodec(codec_l16, 32000, 512000, 320, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_l16, 32000, 512000, 640, 0); Run(channel_a_to_b_); outfile_b_.Close(); test_count_++; OpenOutFile(test_count_); char codec_pcma[] = "PCMA"; RegisterSendCodec(codec_pcma, 8000, 64000, 80, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcma, 8000, 64000, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcma, 8000, 64000, 240, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcma, 8000, 64000, 320, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcma, 8000, 64000, 400, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcma, 8000, 64000, 480, 0); Run(channel_a_to_b_); char codec_pcmu[] = "PCMU"; RegisterSendCodec(codec_pcmu, 8000, 64000, 80, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcmu, 8000, 64000, 160, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcmu, 8000, 64000, 240, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcmu, 8000, 64000, 320, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcmu, 8000, 64000, 400, 0); Run(channel_a_to_b_); RegisterSendCodec(codec_pcmu, 8000, 64000, 480, 0); Run(channel_a_to_b_); outfile_b_.Close(); #ifdef WEBRTC_CODEC_OPUS test_count_++; OpenOutFile(test_count_); char codec_opus[] = "OPUS"; RegisterSendCodec(codec_opus, 48000, 6000, 480, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 20000, 480 * 2, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 32000, 480 * 4, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 48000, 480, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 64000, 480 * 4, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 96000, 480 * 6, kVariableSize); Run(channel_a_to_b_); RegisterSendCodec(codec_opus, 48000, 500000, 480 * 2, kVariableSize); Run(channel_a_to_b_); outfile_b_.Close(); #endif } // Register Codec to use in the test // // Input: codec_name - name to use when register the codec // sampling_freq_hz - sampling frequency in Herz // rate - bitrate in bytes // packet_size - packet size in samples // extra_byte - if extra bytes needed compared to the bitrate // used when registering, can be an internal header // set to kVariableSize if the codec is a variable // rate codec void TestAllCodecs::RegisterSendCodec(char* codec_name, int32_t sampling_freq_hz, int rate, int packet_size, size_t extra_byte) { // Store packet-size in samples, used to validate the received packet. // If G.722, store half the size to compensate for the timestamp bug in the // RFC for G.722. int clockrate_hz = sampling_freq_hz; size_t num_channels = 1; if (absl::EqualsIgnoreCase(codec_name, "G722")) { packet_size_samples_ = packet_size / 2; clockrate_hz = sampling_freq_hz / 2; } else if (absl::EqualsIgnoreCase(codec_name, "OPUS")) { packet_size_samples_ = packet_size; num_channels = 2; } else { packet_size_samples_ = packet_size; } // Store the expected packet size in bytes, used to validate the received // packet. If variable rate codec (extra_byte == -1), set to -1. if (extra_byte != kVariableSize) { // Add 0.875 to always round up to a whole byte packet_size_bytes_ = static_cast(static_cast(packet_size * rate) / static_cast(sampling_freq_hz * 8) + 0.875) + extra_byte; } else { // Packets will have a variable size. packet_size_bytes_ = kVariableSize; } auto factory = CreateBuiltinAudioEncoderFactory(); constexpr int payload_type = 17; SdpAudioFormat format = {codec_name, clockrate_hz, num_channels}; format.parameters["ptime"] = rtc::ToString(rtc::CheckedDivExact( packet_size, rtc::CheckedDivExact(sampling_freq_hz, 1000))); acm_a_->SetEncoder( factory->MakeAudioEncoder(payload_type, format, absl::nullopt)); } void TestAllCodecs::Run(TestPack* channel) { AudioFrame audio_frame; int32_t out_freq_hz = outfile_b_.SamplingFrequency(); size_t receive_size; uint32_t timestamp_diff; channel->reset_payload_size(); int error_count = 0; int counter = 0; // Set test length to 500 ms (50 blocks of 10 ms each). infile_a_.SetNum10MsBlocksToRead(50); // Fast-forward 1 second (100 blocks) since the file starts with silence. infile_a_.FastForward(100); while (!infile_a_.EndOfFile()) { // Add 10 msec to ACM. infile_a_.Read10MsData(audio_frame); CHECK_ERROR(acm_a_->Add10MsData(audio_frame)); // Verify that the received packet size matches the settings. receive_size = channel->payload_size(); if (receive_size) { if ((receive_size != packet_size_bytes_) && (packet_size_bytes_ != kVariableSize)) { error_count++; } // Verify that the timestamp is updated with expected length. The counter // is used to avoid problems when switching codec or frame size in the // test. timestamp_diff = channel->timestamp_diff(); if ((counter > 10) && (static_cast(timestamp_diff) != packet_size_samples_) && (packet_size_samples_ > -1)) error_count++; } // Run received side of ACM. bool muted; CHECK_ERROR(acm_b_->GetAudio(out_freq_hz, &audio_frame, &muted)); ASSERT_FALSE(muted); // Write output speech to file. outfile_b_.Write10MsData(audio_frame.data(), audio_frame.samples_per_channel_); // Update loop counter counter++; } EXPECT_EQ(0, error_count); if (infile_a_.EndOfFile()) { infile_a_.Rewind(); } } void TestAllCodecs::OpenOutFile(int test_number) { std::string filename = webrtc::test::OutputPath(); rtc::StringBuilder test_number_str; test_number_str << test_number; filename += "testallcodecs_out_"; filename += test_number_str.str(); filename += ".pcm"; outfile_b_.Open(filename, 32000, "wb"); } } // namespace webrtc