/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/alignment_mixer.h" #include #include "api/array_view.h" #include "modules/audio_processing/aec3/aec3_common.h" #include "rtc_base/strings/string_builder.h" #include "test/gmock.h" #include "test/gtest.h" using ::testing::AllOf; using ::testing::Each; namespace webrtc { namespace { std::string ProduceDebugText(bool initial_silence, bool huge_activity_threshold, bool prefer_first_two_channels, int num_channels, int strongest_ch) { rtc::StringBuilder ss; ss << ", Initial silence: " << initial_silence; ss << ", Huge activity threshold: " << huge_activity_threshold; ss << ", Prefer first two channels: " << prefer_first_two_channels; ss << ", Number of channels: " << num_channels; ss << ", Strongest channel: " << strongest_ch; return ss.Release(); } } // namespace TEST(AlignmentMixer, GeneralAdaptiveMode) { constexpr int kChannelOffset = 100; constexpr int kMaxChannelsToTest = 8; constexpr float kStrongestSignalScaling = kMaxChannelsToTest * kChannelOffset * 100; for (bool initial_silence : {false, true}) { for (bool huge_activity_threshold : {false, true}) { for (bool prefer_first_two_channels : {false, true}) { for (int num_channels = 2; num_channels < 8; ++num_channels) { for (int strongest_ch = 0; strongest_ch < num_channels; ++strongest_ch) { SCOPED_TRACE(ProduceDebugText( initial_silence, huge_activity_threshold, prefer_first_two_channels, num_channels, strongest_ch)); const float excitation_limit = huge_activity_threshold ? 1000000000.f : 0.001f; AlignmentMixer am(num_channels, /*downmix*/ false, /*adaptive_selection*/ true, excitation_limit, prefer_first_two_channels); Block x( /*num_bands=*/1, num_channels); if (initial_silence) { std::array y; for (int frame = 0; frame < 10 * kNumBlocksPerSecond; ++frame) { am.ProduceOutput(x, y); } } for (int frame = 0; frame < 2 * kNumBlocksPerSecond; ++frame) { const auto channel_value = [&](int frame_index, int channel_index) { return static_cast(frame_index + channel_index * kChannelOffset); }; for (int ch = 0; ch < num_channels; ++ch) { float scaling = ch == strongest_ch ? kStrongestSignalScaling : 1.f; auto x_ch = x.View(/*band=*/0, ch); std::fill(x_ch.begin(), x_ch.end(), channel_value(frame, ch) * scaling); } std::array y; y.fill(-1.f); am.ProduceOutput(x, y); if (frame > 1 * kNumBlocksPerSecond) { if (!prefer_first_two_channels || huge_activity_threshold) { EXPECT_THAT(y, AllOf(Each(x.View(/*band=*/0, strongest_ch)[0]))); } else { bool left_or_right_chosen; for (int ch = 0; ch < 2; ++ch) { left_or_right_chosen = true; const auto x_ch = x.View(/*band=*/0, ch); for (size_t k = 0; k < kBlockSize; ++k) { if (y[k] != x_ch[k]) { left_or_right_chosen = false; break; } } if (left_or_right_chosen) { break; } } EXPECT_TRUE(left_or_right_chosen); } } } } } } } } } TEST(AlignmentMixer, DownmixMode) { for (int num_channels = 1; num_channels < 8; ++num_channels) { AlignmentMixer am(num_channels, /*downmix*/ true, /*adaptive_selection*/ false, /*excitation_limit*/ 1.f, /*prefer_first_two_channels*/ false); Block x(/*num_bands=*/1, num_channels); const auto channel_value = [](int frame_index, int channel_index) { return static_cast(frame_index + channel_index); }; for (int frame = 0; frame < 10; ++frame) { for (int ch = 0; ch < num_channels; ++ch) { auto x_ch = x.View(/*band=*/0, ch); std::fill(x_ch.begin(), x_ch.end(), channel_value(frame, ch)); } std::array y; y.fill(-1.f); am.ProduceOutput(x, y); float expected_mixed_value = 0.f; for (int ch = 0; ch < num_channels; ++ch) { expected_mixed_value += channel_value(frame, ch); } expected_mixed_value *= 1.f / num_channels; EXPECT_THAT(y, AllOf(Each(expected_mixed_value))); } } } TEST(AlignmentMixer, FixedMode) { for (int num_channels = 1; num_channels < 8; ++num_channels) { AlignmentMixer am(num_channels, /*downmix*/ false, /*adaptive_selection*/ false, /*excitation_limit*/ 1.f, /*prefer_first_two_channels*/ false); Block x(/*num_band=*/1, num_channels); const auto channel_value = [](int frame_index, int channel_index) { return static_cast(frame_index + channel_index); }; for (int frame = 0; frame < 10; ++frame) { for (int ch = 0; ch < num_channels; ++ch) { auto x_ch = x.View(/*band=*/0, ch); std::fill(x_ch.begin(), x_ch.end(), channel_value(frame, ch)); } std::array y; y.fill(-1.f); am.ProduceOutput(x, y); EXPECT_THAT(y, AllOf(Each(x.View(/*band=*/0, /*channel=*/0)[0]))); } } } #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) TEST(AlignmentMixerDeathTest, ZeroNumChannels) { EXPECT_DEATH( AlignmentMixer(/*num_channels*/ 0, /*downmix*/ false, /*adaptive_selection*/ false, /*excitation_limit*/ 1.f, /*prefer_first_two_channels*/ false); , ""); } TEST(AlignmentMixerDeathTest, IncorrectVariant) { EXPECT_DEATH( AlignmentMixer(/*num_channels*/ 1, /*downmix*/ true, /*adaptive_selection*/ true, /*excitation_limit*/ 1.f, /*prefer_first_two_channels*/ false); , ""); } #endif } // namespace webrtc