/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/echo_canceller3.h" #include #include #include #include #include #include "modules/audio_processing/aec3/aec3_common.h" #include "modules/audio_processing/aec3/block_processor.h" #include "modules/audio_processing/aec3/frame_blocker.h" #include "modules/audio_processing/aec3/mock/mock_block_processor.h" #include "modules/audio_processing/audio_buffer.h" #include "modules/audio_processing/high_pass_filter.h" #include "modules/audio_processing/utility/cascaded_biquad_filter.h" #include "rtc_base/strings/string_builder.h" #include "test/field_trial.h" #include "test/gmock.h" #include "test/gtest.h" namespace webrtc { namespace { using ::testing::_; using ::testing::StrictMock; // Populates the frame with linearly increasing sample values for each band, // with a band-specific offset, in order to allow simple bitexactness // verification for each band. void PopulateInputFrame(size_t frame_length, size_t num_bands, size_t frame_index, float* const* frame, int offset) { for (size_t k = 0; k < num_bands; ++k) { for (size_t i = 0; i < frame_length; ++i) { float value = static_cast(frame_index * frame_length + i) + offset; frame[k][i] = (value > 0 ? 5000 * k + value : 0); } } } // Populates the frame with linearly increasing sample values. void PopulateInputFrame(size_t frame_length, size_t frame_index, float* frame, int offset) { for (size_t i = 0; i < frame_length; ++i) { float value = static_cast(frame_index * frame_length + i) + offset; frame[i] = std::max(value, 0.f); } } // Verifies the that samples in the output frame are identical to the samples // that were produced for the input frame, with an offset in order to compensate // for buffering delays. bool VerifyOutputFrameBitexactness(size_t frame_length, size_t num_bands, size_t frame_index, const float* const* frame, int offset) { float reference_frame_data[kMaxNumBands][2 * kSubFrameLength]; float* reference_frame[kMaxNumBands]; for (size_t k = 0; k < num_bands; ++k) { reference_frame[k] = &reference_frame_data[k][0]; } PopulateInputFrame(frame_length, num_bands, frame_index, reference_frame, offset); for (size_t k = 0; k < num_bands; ++k) { for (size_t i = 0; i < frame_length; ++i) { if (reference_frame[k][i] != frame[k][i]) { return false; } } } return true; } bool VerifyOutputFrameBitexactness(rtc::ArrayView reference, rtc::ArrayView frame, int offset) { for (size_t k = 0; k < frame.size(); ++k) { int reference_index = static_cast(k) + offset; if (reference_index >= 0) { if (reference[reference_index] != frame[k]) { return false; } } } return true; } // Class for testing that the capture data is properly received by the block // processor and that the processor data is properly passed to the // EchoCanceller3 output. class CaptureTransportVerificationProcessor : public BlockProcessor { public: explicit CaptureTransportVerificationProcessor(size_t num_bands) {} CaptureTransportVerificationProcessor() = delete; CaptureTransportVerificationProcessor( const CaptureTransportVerificationProcessor&) = delete; CaptureTransportVerificationProcessor& operator=( const CaptureTransportVerificationProcessor&) = delete; ~CaptureTransportVerificationProcessor() override = default; void ProcessCapture(bool level_change, bool saturated_microphone_signal, Block* linear_output, Block* capture_block) override {} void BufferRender(const Block& block) override {} void UpdateEchoLeakageStatus(bool leakage_detected) override {} void GetMetrics(EchoControl::Metrics* metrics) const override {} void SetAudioBufferDelay(int delay_ms) override {} void SetCaptureOutputUsage(bool capture_output_used) {} }; // Class for testing that the render data is properly received by the block // processor. class RenderTransportVerificationProcessor : public BlockProcessor { public: explicit RenderTransportVerificationProcessor(size_t num_bands) {} RenderTransportVerificationProcessor() = delete; RenderTransportVerificationProcessor( const RenderTransportVerificationProcessor&) = delete; RenderTransportVerificationProcessor& operator=( const RenderTransportVerificationProcessor&) = delete; ~RenderTransportVerificationProcessor() override = default; void ProcessCapture(bool level_change, bool saturated_microphone_signal, Block* linear_output, Block* capture_block) override { Block render_block = received_render_blocks_.front(); received_render_blocks_.pop_front(); capture_block->Swap(render_block); } void BufferRender(const Block& block) override { received_render_blocks_.push_back(block); } void UpdateEchoLeakageStatus(bool leakage_detected) override {} void GetMetrics(EchoControl::Metrics* metrics) const override {} void SetAudioBufferDelay(int delay_ms) override {} void SetCaptureOutputUsage(bool capture_output_used) {} private: std::deque received_render_blocks_; }; std::string ProduceDebugText(int sample_rate_hz) { rtc::StringBuilder ss; ss << "Sample rate: " << sample_rate_hz; return ss.Release(); } std::string ProduceDebugText(int sample_rate_hz, int variant) { rtc::StringBuilder ss; ss << "Sample rate: " << sample_rate_hz << ", variant: " << variant; return ss.Release(); } void RunAecInStereo(AudioBuffer& buffer, EchoCanceller3& aec3, float channel_0_value, float channel_1_value) { rtc::ArrayView data_channel_0(&buffer.channels()[0][0], buffer.num_frames()); std::fill(data_channel_0.begin(), data_channel_0.end(), channel_0_value); rtc::ArrayView data_channel_1(&buffer.channels()[1][0], buffer.num_frames()); std::fill(data_channel_1.begin(), data_channel_1.end(), channel_1_value); aec3.AnalyzeRender(&buffer); aec3.AnalyzeCapture(&buffer); aec3.ProcessCapture(&buffer, /*level_change=*/false); } void RunAecInSMono(AudioBuffer& buffer, EchoCanceller3& aec3, float channel_0_value) { rtc::ArrayView data_channel_0(&buffer.channels()[0][0], buffer.num_frames()); std::fill(data_channel_0.begin(), data_channel_0.end(), channel_0_value); aec3.AnalyzeRender(&buffer); aec3.AnalyzeCapture(&buffer); aec3.ProcessCapture(&buffer, /*level_change=*/false); } } // namespace class EchoCanceller3Tester { public: explicit EchoCanceller3Tester(int sample_rate_hz) : sample_rate_hz_(sample_rate_hz), num_bands_(NumBandsForRate(sample_rate_hz_)), frame_length_(160), fullband_frame_length_(rtc::CheckedDivExact(sample_rate_hz_, 100)), capture_buffer_(fullband_frame_length_ * 100, 1, fullband_frame_length_ * 100, 1, fullband_frame_length_ * 100, 1), render_buffer_(fullband_frame_length_ * 100, 1, fullband_frame_length_ * 100, 1, fullband_frame_length_ * 100, 1) {} EchoCanceller3Tester() = delete; EchoCanceller3Tester(const EchoCanceller3Tester&) = delete; EchoCanceller3Tester& operator=(const EchoCanceller3Tester&) = delete; // Verifies that the capture data is properly received by the block processor // and that the processor data is properly passed to the EchoCanceller3 // output. void RunCaptureTransportVerificationTest() { EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting( std::make_unique(num_bands_)); for (size_t frame_index = 0; frame_index < kNumFramesToProcess; ++frame_index) { aec3.AnalyzeCapture(&capture_buffer_); OptionalBandSplit(); PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 0); PopulateInputFrame(frame_length_, frame_index, &render_buffer_.channels()[0][0], 0); aec3.AnalyzeRender(&render_buffer_); aec3.ProcessCapture(&capture_buffer_, false); EXPECT_TRUE(VerifyOutputFrameBitexactness( frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], -64)); } } // Test method for testing that the render data is properly received by the // block processor. void RunRenderTransportVerificationTest() { EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting( std::make_unique(num_bands_)); std::vector> render_input(1); std::vector capture_output; for (size_t frame_index = 0; frame_index < kNumFramesToProcess; ++frame_index) { aec3.AnalyzeCapture(&capture_buffer_); OptionalBandSplit(); PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 100); PopulateInputFrame(frame_length_, num_bands_, frame_index, &render_buffer_.split_bands(0)[0], 0); for (size_t k = 0; k < frame_length_; ++k) { render_input[0].push_back(render_buffer_.split_bands(0)[0][k]); } aec3.AnalyzeRender(&render_buffer_); aec3.ProcessCapture(&capture_buffer_, false); for (size_t k = 0; k < frame_length_; ++k) { capture_output.push_back(capture_buffer_.split_bands(0)[0][k]); } } EXPECT_TRUE( VerifyOutputFrameBitexactness(render_input[0], capture_output, -64)); } // Verifies that information about echo path changes are properly propagated // to the block processor. // The cases tested are: // -That no set echo path change flags are received when there is no echo path // change. // -That set echo path change flags are received and continues to be received // as long as echo path changes are flagged. // -That set echo path change flags are no longer received when echo path // change events stop being flagged. enum class EchoPathChangeTestVariant { kNone, kOneSticky, kOneNonSticky }; void RunEchoPathChangeVerificationTest( EchoPathChangeTestVariant echo_path_change_test_variant) { constexpr size_t kNumFullBlocksPerFrame = 160 / kBlockSize; constexpr size_t kExpectedNumBlocksToProcess = (kNumFramesToProcess * 160) / kBlockSize; std::unique_ptr> block_processor_mock( new StrictMock()); EXPECT_CALL(*block_processor_mock, BufferRender(_)) .Times(kExpectedNumBlocksToProcess); EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(_)).Times(0); switch (echo_path_change_test_variant) { case EchoPathChangeTestVariant::kNone: EXPECT_CALL(*block_processor_mock, ProcessCapture(false, _, _, _)) .Times(kExpectedNumBlocksToProcess); break; case EchoPathChangeTestVariant::kOneSticky: EXPECT_CALL(*block_processor_mock, ProcessCapture(true, _, _, _)) .Times(kExpectedNumBlocksToProcess); break; case EchoPathChangeTestVariant::kOneNonSticky: EXPECT_CALL(*block_processor_mock, ProcessCapture(true, _, _, _)) .Times(kNumFullBlocksPerFrame); EXPECT_CALL(*block_processor_mock, ProcessCapture(false, _, _, _)) .Times(kExpectedNumBlocksToProcess - kNumFullBlocksPerFrame); break; } EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting(std::move(block_processor_mock)); for (size_t frame_index = 0; frame_index < kNumFramesToProcess; ++frame_index) { bool echo_path_change = false; switch (echo_path_change_test_variant) { case EchoPathChangeTestVariant::kNone: break; case EchoPathChangeTestVariant::kOneSticky: echo_path_change = true; break; case EchoPathChangeTestVariant::kOneNonSticky: if (frame_index == 0) { echo_path_change = true; } break; } aec3.AnalyzeCapture(&capture_buffer_); OptionalBandSplit(); PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 0); PopulateInputFrame(frame_length_, frame_index, &render_buffer_.channels()[0][0], 0); aec3.AnalyzeRender(&render_buffer_); aec3.ProcessCapture(&capture_buffer_, echo_path_change); } } // Test for verifying that echo leakage information is being properly passed // to the processor. // The cases tested are: // -That no method calls are received when they should not. // -That false values are received each time they are flagged. // -That true values are received each time they are flagged. // -That a false value is received when flagged after a true value has been // flagged. enum class EchoLeakageTestVariant { kNone, kFalseSticky, kTrueSticky, kTrueNonSticky }; void RunEchoLeakageVerificationTest( EchoLeakageTestVariant leakage_report_variant) { constexpr size_t kExpectedNumBlocksToProcess = (kNumFramesToProcess * 160) / kBlockSize; std::unique_ptr> block_processor_mock( new StrictMock()); EXPECT_CALL(*block_processor_mock, BufferRender(_)) .Times(kExpectedNumBlocksToProcess); EXPECT_CALL(*block_processor_mock, ProcessCapture(_, _, _, _)) .Times(kExpectedNumBlocksToProcess); switch (leakage_report_variant) { case EchoLeakageTestVariant::kNone: EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(_)).Times(0); break; case EchoLeakageTestVariant::kFalseSticky: EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(false)) .Times(1); break; case EchoLeakageTestVariant::kTrueSticky: EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(true)) .Times(1); break; case EchoLeakageTestVariant::kTrueNonSticky: { ::testing::InSequence s; EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(true)) .Times(1); EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(false)) .Times(kNumFramesToProcess - 1); } break; } EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting(std::move(block_processor_mock)); for (size_t frame_index = 0; frame_index < kNumFramesToProcess; ++frame_index) { switch (leakage_report_variant) { case EchoLeakageTestVariant::kNone: break; case EchoLeakageTestVariant::kFalseSticky: if (frame_index == 0) { aec3.UpdateEchoLeakageStatus(false); } break; case EchoLeakageTestVariant::kTrueSticky: if (frame_index == 0) { aec3.UpdateEchoLeakageStatus(true); } break; case EchoLeakageTestVariant::kTrueNonSticky: if (frame_index == 0) { aec3.UpdateEchoLeakageStatus(true); } else { aec3.UpdateEchoLeakageStatus(false); } break; } aec3.AnalyzeCapture(&capture_buffer_); OptionalBandSplit(); PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 0); PopulateInputFrame(frame_length_, frame_index, &render_buffer_.channels()[0][0], 0); aec3.AnalyzeRender(&render_buffer_); aec3.ProcessCapture(&capture_buffer_, false); } } // This verifies that saturation information is properly passed to the // BlockProcessor. // The cases tested are: // -That no saturation event is passed to the processor if there is no // saturation. // -That one frame with one negative saturated sample value is reported to be // saturated and that following non-saturated frames are properly reported as // not being saturated. // -That one frame with one positive saturated sample value is reported to be // saturated and that following non-saturated frames are properly reported as // not being saturated. enum class SaturationTestVariant { kNone, kOneNegative, kOnePositive }; void RunCaptureSaturationVerificationTest( SaturationTestVariant saturation_variant) { const size_t kNumFullBlocksPerFrame = 160 / kBlockSize; const size_t kExpectedNumBlocksToProcess = (kNumFramesToProcess * 160) / kBlockSize; std::unique_ptr> block_processor_mock( new StrictMock()); EXPECT_CALL(*block_processor_mock, BufferRender(_)) .Times(kExpectedNumBlocksToProcess); EXPECT_CALL(*block_processor_mock, UpdateEchoLeakageStatus(_)).Times(0); switch (saturation_variant) { case SaturationTestVariant::kNone: EXPECT_CALL(*block_processor_mock, ProcessCapture(_, false, _, _)) .Times(kExpectedNumBlocksToProcess); break; case SaturationTestVariant::kOneNegative: { ::testing::InSequence s; EXPECT_CALL(*block_processor_mock, ProcessCapture(_, true, _, _)) .Times(kNumFullBlocksPerFrame); EXPECT_CALL(*block_processor_mock, ProcessCapture(_, false, _, _)) .Times(kExpectedNumBlocksToProcess - kNumFullBlocksPerFrame); } break; case SaturationTestVariant::kOnePositive: { ::testing::InSequence s; EXPECT_CALL(*block_processor_mock, ProcessCapture(_, true, _, _)) .Times(kNumFullBlocksPerFrame); EXPECT_CALL(*block_processor_mock, ProcessCapture(_, false, _, _)) .Times(kExpectedNumBlocksToProcess - kNumFullBlocksPerFrame); } break; } EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting(std::move(block_processor_mock)); for (size_t frame_index = 0; frame_index < kNumFramesToProcess; ++frame_index) { for (int k = 0; k < fullband_frame_length_; ++k) { capture_buffer_.channels()[0][k] = 0.f; } switch (saturation_variant) { case SaturationTestVariant::kNone: break; case SaturationTestVariant::kOneNegative: if (frame_index == 0) { capture_buffer_.channels()[0][10] = -32768.f; } break; case SaturationTestVariant::kOnePositive: if (frame_index == 0) { capture_buffer_.channels()[0][10] = 32767.f; } break; } aec3.AnalyzeCapture(&capture_buffer_); OptionalBandSplit(); PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 0); PopulateInputFrame(frame_length_, num_bands_, frame_index, &render_buffer_.split_bands(0)[0], 0); aec3.AnalyzeRender(&render_buffer_); aec3.ProcessCapture(&capture_buffer_, false); } } // This test verifies that the swapqueue is able to handle jitter in the // capture and render API calls. void RunRenderSwapQueueVerificationTest() { const EchoCanceller3Config config; EchoCanceller3 aec3(config, /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); aec3.SetBlockProcessorForTesting( std::make_unique(num_bands_)); std::vector> render_input(1); std::vector capture_output; for (size_t frame_index = 0; frame_index < kRenderTransferQueueSizeFrames; ++frame_index) { if (sample_rate_hz_ > 16000) { render_buffer_.SplitIntoFrequencyBands(); } PopulateInputFrame(frame_length_, num_bands_, frame_index, &render_buffer_.split_bands(0)[0], 0); if (sample_rate_hz_ > 16000) { render_buffer_.SplitIntoFrequencyBands(); } for (size_t k = 0; k < frame_length_; ++k) { render_input[0].push_back(render_buffer_.split_bands(0)[0][k]); } aec3.AnalyzeRender(&render_buffer_); } for (size_t frame_index = 0; frame_index < kRenderTransferQueueSizeFrames; ++frame_index) { aec3.AnalyzeCapture(&capture_buffer_); if (sample_rate_hz_ > 16000) { capture_buffer_.SplitIntoFrequencyBands(); } PopulateInputFrame(frame_length_, num_bands_, frame_index, &capture_buffer_.split_bands(0)[0], 0); aec3.ProcessCapture(&capture_buffer_, false); for (size_t k = 0; k < frame_length_; ++k) { capture_output.push_back(capture_buffer_.split_bands(0)[0][k]); } } EXPECT_TRUE( VerifyOutputFrameBitexactness(render_input[0], capture_output, -64)); } // This test verifies that a buffer overrun in the render swapqueue is // properly reported. void RunRenderPipelineSwapQueueOverrunReturnValueTest() { EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, sample_rate_hz_, 1, 1); constexpr size_t kRenderTransferQueueSize = 30; for (size_t k = 0; k < 2; ++k) { for (size_t frame_index = 0; frame_index < kRenderTransferQueueSize; ++frame_index) { if (sample_rate_hz_ > 16000) { render_buffer_.SplitIntoFrequencyBands(); } PopulateInputFrame(frame_length_, frame_index, &render_buffer_.channels()[0][0], 0); aec3.AnalyzeRender(&render_buffer_); } } } #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) // Verifies the that the check for the number of bands in the AnalyzeRender // input is correct by adjusting the sample rates of EchoCanceller3 and the // input AudioBuffer to have a different number of bands. void RunAnalyzeRenderNumBandsCheckVerification() { // Set aec3_sample_rate_hz to be different from sample_rate_hz_ in such a // way that the number of bands for the rates are different. const int aec3_sample_rate_hz = sample_rate_hz_ == 48000 ? 32000 : 48000; EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, aec3_sample_rate_hz, 1, 1); PopulateInputFrame(frame_length_, 0, &render_buffer_.channels_f()[0][0], 0); EXPECT_DEATH(aec3.AnalyzeRender(&render_buffer_), ""); } // Verifies the that the check for the number of bands in the ProcessCapture // input is correct by adjusting the sample rates of EchoCanceller3 and the // input AudioBuffer to have a different number of bands. void RunProcessCaptureNumBandsCheckVerification() { // Set aec3_sample_rate_hz to be different from sample_rate_hz_ in such a // way that the number of bands for the rates are different. const int aec3_sample_rate_hz = sample_rate_hz_ == 48000 ? 32000 : 48000; EchoCanceller3 aec3(EchoCanceller3Config(), /*multichannel_config=*/absl::nullopt, aec3_sample_rate_hz, 1, 1); PopulateInputFrame(frame_length_, num_bands_, 0, &capture_buffer_.split_bands_f(0)[0], 100); EXPECT_DEATH(aec3.ProcessCapture(&capture_buffer_, false), ""); } #endif private: void OptionalBandSplit() { if (sample_rate_hz_ > 16000) { capture_buffer_.SplitIntoFrequencyBands(); render_buffer_.SplitIntoFrequencyBands(); } } static constexpr size_t kNumFramesToProcess = 20; const int sample_rate_hz_; const size_t num_bands_; const size_t frame_length_; const int fullband_frame_length_; AudioBuffer capture_buffer_; AudioBuffer render_buffer_; }; TEST(EchoCanceller3Buffering, CaptureBitexactness) { for (auto rate : {16000, 32000, 48000}) { SCOPED_TRACE(ProduceDebugText(rate)); EchoCanceller3Tester(rate).RunCaptureTransportVerificationTest(); } } TEST(EchoCanceller3Buffering, RenderBitexactness) { for (auto rate : {16000, 32000, 48000}) { SCOPED_TRACE(ProduceDebugText(rate)); EchoCanceller3Tester(rate).RunRenderTransportVerificationTest(); } } TEST(EchoCanceller3Buffering, RenderSwapQueue) { EchoCanceller3Tester(16000).RunRenderSwapQueueVerificationTest(); } TEST(EchoCanceller3Buffering, RenderSwapQueueOverrunReturnValue) { for (auto rate : {16000, 32000, 48000}) { SCOPED_TRACE(ProduceDebugText(rate)); EchoCanceller3Tester(rate) .RunRenderPipelineSwapQueueOverrunReturnValueTest(); } } TEST(EchoCanceller3Messaging, CaptureSaturation) { auto variants = {EchoCanceller3Tester::SaturationTestVariant::kNone, EchoCanceller3Tester::SaturationTestVariant::kOneNegative, EchoCanceller3Tester::SaturationTestVariant::kOnePositive}; for (auto rate : {16000, 32000, 48000}) { for (auto variant : variants) { SCOPED_TRACE(ProduceDebugText(rate, static_cast(variant))); EchoCanceller3Tester(rate).RunCaptureSaturationVerificationTest(variant); } } } TEST(EchoCanceller3Messaging, EchoPathChange) { auto variants = { EchoCanceller3Tester::EchoPathChangeTestVariant::kNone, EchoCanceller3Tester::EchoPathChangeTestVariant::kOneSticky, EchoCanceller3Tester::EchoPathChangeTestVariant::kOneNonSticky}; for (auto rate : {16000, 32000, 48000}) { for (auto variant : variants) { SCOPED_TRACE(ProduceDebugText(rate, static_cast(variant))); EchoCanceller3Tester(rate).RunEchoPathChangeVerificationTest(variant); } } } TEST(EchoCanceller3Messaging, EchoLeakage) { auto variants = { EchoCanceller3Tester::EchoLeakageTestVariant::kNone, EchoCanceller3Tester::EchoLeakageTestVariant::kFalseSticky, EchoCanceller3Tester::EchoLeakageTestVariant::kTrueSticky, EchoCanceller3Tester::EchoLeakageTestVariant::kTrueNonSticky}; for (auto rate : {16000, 32000, 48000}) { for (auto variant : variants) { SCOPED_TRACE(ProduceDebugText(rate, static_cast(variant))); EchoCanceller3Tester(rate).RunEchoLeakageVerificationTest(variant); } } } // Tests the parameter functionality for the field trial override for the // anti-howling gain. TEST(EchoCanceller3FieldTrials, Aec3SuppressorAntiHowlingGainOverride) { EchoCanceller3Config default_config; EchoCanceller3Config adjusted_config = AdjustConfig(default_config); ASSERT_EQ( default_config.suppressor.high_bands_suppression.anti_howling_gain, adjusted_config.suppressor.high_bands_suppression.anti_howling_gain); webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Aec3SuppressorAntiHowlingGainOverride/0.02/"); adjusted_config = AdjustConfig(default_config); ASSERT_NE( default_config.suppressor.high_bands_suppression.anti_howling_gain, adjusted_config.suppressor.high_bands_suppression.anti_howling_gain); EXPECT_FLOAT_EQ( 0.02f, adjusted_config.suppressor.high_bands_suppression.anti_howling_gain); } // Tests the field trial override for the enforcement of a low active render // limit. TEST(EchoCanceller3FieldTrials, Aec3EnforceLowActiveRenderLimit) { EchoCanceller3Config default_config; EchoCanceller3Config adjusted_config = AdjustConfig(default_config); ASSERT_EQ(default_config.render_levels.active_render_limit, adjusted_config.render_levels.active_render_limit); webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Aec3EnforceLowActiveRenderLimit/Enabled/"); adjusted_config = AdjustConfig(default_config); ASSERT_NE(default_config.render_levels.active_render_limit, adjusted_config.render_levels.active_render_limit); EXPECT_FLOAT_EQ(50.f, adjusted_config.render_levels.active_render_limit); } // Testing the field trial-based override of the suppressor parameters for a // joint passing of all parameters. TEST(EchoCanceller3FieldTrials, Aec3SuppressorTuningOverrideAllParams) { webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Aec3SuppressorTuningOverride/" "nearend_tuning_mask_lf_enr_transparent:0.1,nearend_tuning_mask_lf_enr_" "suppress:0.2,nearend_tuning_mask_hf_enr_transparent:0.3,nearend_tuning_" "mask_hf_enr_suppress:0.4,nearend_tuning_max_inc_factor:0.5,nearend_" "tuning_max_dec_factor_lf:0.6,normal_tuning_mask_lf_enr_transparent:0.7," "normal_tuning_mask_lf_enr_suppress:0.8,normal_tuning_mask_hf_enr_" "transparent:0.9,normal_tuning_mask_hf_enr_suppress:1.0,normal_tuning_" "max_inc_factor:1.1,normal_tuning_max_dec_factor_lf:1.2,dominant_nearend_" "detection_enr_threshold:1.3,dominant_nearend_detection_enr_exit_" "threshold:1.4,dominant_nearend_detection_snr_threshold:1.5,dominant_" "nearend_detection_hold_duration:10,dominant_nearend_detection_trigger_" "threshold:11/"); EchoCanceller3Config default_config; EchoCanceller3Config adjusted_config = AdjustConfig(default_config); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.mask_lf.enr_transparent, default_config.suppressor.nearend_tuning.mask_lf.enr_transparent); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.mask_lf.enr_suppress, default_config.suppressor.nearend_tuning.mask_lf.enr_suppress); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.mask_hf.enr_transparent, default_config.suppressor.nearend_tuning.mask_hf.enr_transparent); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.mask_hf.enr_suppress, default_config.suppressor.nearend_tuning.mask_hf.enr_suppress); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.max_inc_factor, default_config.suppressor.nearend_tuning.max_inc_factor); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.max_dec_factor_lf, default_config.suppressor.nearend_tuning.max_dec_factor_lf); ASSERT_NE(adjusted_config.suppressor.normal_tuning.mask_lf.enr_transparent, default_config.suppressor.normal_tuning.mask_lf.enr_transparent); ASSERT_NE(adjusted_config.suppressor.normal_tuning.mask_lf.enr_suppress, default_config.suppressor.normal_tuning.mask_lf.enr_suppress); ASSERT_NE(adjusted_config.suppressor.normal_tuning.mask_hf.enr_transparent, default_config.suppressor.normal_tuning.mask_hf.enr_transparent); ASSERT_NE(adjusted_config.suppressor.normal_tuning.mask_hf.enr_suppress, default_config.suppressor.normal_tuning.mask_hf.enr_suppress); ASSERT_NE(adjusted_config.suppressor.normal_tuning.max_inc_factor, default_config.suppressor.normal_tuning.max_inc_factor); ASSERT_NE(adjusted_config.suppressor.normal_tuning.max_dec_factor_lf, default_config.suppressor.normal_tuning.max_dec_factor_lf); ASSERT_NE(adjusted_config.suppressor.dominant_nearend_detection.enr_threshold, default_config.suppressor.dominant_nearend_detection.enr_threshold); ASSERT_NE( adjusted_config.suppressor.dominant_nearend_detection.enr_exit_threshold, default_config.suppressor.dominant_nearend_detection.enr_exit_threshold); ASSERT_NE(adjusted_config.suppressor.dominant_nearend_detection.snr_threshold, default_config.suppressor.dominant_nearend_detection.snr_threshold); ASSERT_NE(adjusted_config.suppressor.dominant_nearend_detection.hold_duration, default_config.suppressor.dominant_nearend_detection.hold_duration); ASSERT_NE( adjusted_config.suppressor.dominant_nearend_detection.trigger_threshold, default_config.suppressor.dominant_nearend_detection.trigger_threshold); EXPECT_FLOAT_EQ( adjusted_config.suppressor.nearend_tuning.mask_lf.enr_transparent, 0.1); EXPECT_FLOAT_EQ( adjusted_config.suppressor.nearend_tuning.mask_lf.enr_suppress, 0.2); EXPECT_FLOAT_EQ( adjusted_config.suppressor.nearend_tuning.mask_hf.enr_transparent, 0.3); EXPECT_FLOAT_EQ( adjusted_config.suppressor.nearend_tuning.mask_hf.enr_suppress, 0.4); EXPECT_FLOAT_EQ(adjusted_config.suppressor.nearend_tuning.max_inc_factor, 0.5); EXPECT_FLOAT_EQ(adjusted_config.suppressor.nearend_tuning.max_dec_factor_lf, 0.6); EXPECT_FLOAT_EQ( adjusted_config.suppressor.normal_tuning.mask_lf.enr_transparent, 0.7); EXPECT_FLOAT_EQ(adjusted_config.suppressor.normal_tuning.mask_lf.enr_suppress, 0.8); EXPECT_FLOAT_EQ( adjusted_config.suppressor.normal_tuning.mask_hf.enr_transparent, 0.9); EXPECT_FLOAT_EQ(adjusted_config.suppressor.normal_tuning.mask_hf.enr_suppress, 1.0); EXPECT_FLOAT_EQ(adjusted_config.suppressor.normal_tuning.max_inc_factor, 1.1); EXPECT_FLOAT_EQ(adjusted_config.suppressor.normal_tuning.max_dec_factor_lf, 1.2); EXPECT_FLOAT_EQ( adjusted_config.suppressor.dominant_nearend_detection.enr_threshold, 1.3); EXPECT_FLOAT_EQ( adjusted_config.suppressor.dominant_nearend_detection.enr_exit_threshold, 1.4); EXPECT_FLOAT_EQ( adjusted_config.suppressor.dominant_nearend_detection.snr_threshold, 1.5); EXPECT_EQ(adjusted_config.suppressor.dominant_nearend_detection.hold_duration, 10); EXPECT_EQ( adjusted_config.suppressor.dominant_nearend_detection.trigger_threshold, 11); } // Testing the field trial-based override of the suppressor parameters for // passing one parameter. TEST(EchoCanceller3FieldTrials, Aec3SuppressorTuningOverrideOneParam) { webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Aec3SuppressorTuningOverride/nearend_tuning_max_inc_factor:0.5/"); EchoCanceller3Config default_config; EchoCanceller3Config adjusted_config = AdjustConfig(default_config); ASSERT_EQ(adjusted_config.suppressor.nearend_tuning.mask_lf.enr_transparent, default_config.suppressor.nearend_tuning.mask_lf.enr_transparent); ASSERT_EQ(adjusted_config.suppressor.nearend_tuning.mask_lf.enr_suppress, default_config.suppressor.nearend_tuning.mask_lf.enr_suppress); ASSERT_EQ(adjusted_config.suppressor.nearend_tuning.mask_hf.enr_transparent, default_config.suppressor.nearend_tuning.mask_hf.enr_transparent); ASSERT_EQ(adjusted_config.suppressor.nearend_tuning.mask_hf.enr_suppress, default_config.suppressor.nearend_tuning.mask_hf.enr_suppress); ASSERT_EQ(adjusted_config.suppressor.nearend_tuning.max_dec_factor_lf, default_config.suppressor.nearend_tuning.max_dec_factor_lf); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.mask_lf.enr_transparent, default_config.suppressor.normal_tuning.mask_lf.enr_transparent); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.mask_lf.enr_suppress, default_config.suppressor.normal_tuning.mask_lf.enr_suppress); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.mask_hf.enr_transparent, default_config.suppressor.normal_tuning.mask_hf.enr_transparent); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.mask_hf.enr_suppress, default_config.suppressor.normal_tuning.mask_hf.enr_suppress); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.max_inc_factor, default_config.suppressor.normal_tuning.max_inc_factor); ASSERT_EQ(adjusted_config.suppressor.normal_tuning.max_dec_factor_lf, default_config.suppressor.normal_tuning.max_dec_factor_lf); ASSERT_EQ(adjusted_config.suppressor.dominant_nearend_detection.enr_threshold, default_config.suppressor.dominant_nearend_detection.enr_threshold); ASSERT_EQ( adjusted_config.suppressor.dominant_nearend_detection.enr_exit_threshold, default_config.suppressor.dominant_nearend_detection.enr_exit_threshold); ASSERT_EQ(adjusted_config.suppressor.dominant_nearend_detection.snr_threshold, default_config.suppressor.dominant_nearend_detection.snr_threshold); ASSERT_EQ(adjusted_config.suppressor.dominant_nearend_detection.hold_duration, default_config.suppressor.dominant_nearend_detection.hold_duration); ASSERT_EQ( adjusted_config.suppressor.dominant_nearend_detection.trigger_threshold, default_config.suppressor.dominant_nearend_detection.trigger_threshold); ASSERT_NE(adjusted_config.suppressor.nearend_tuning.max_inc_factor, default_config.suppressor.nearend_tuning.max_inc_factor); EXPECT_FLOAT_EQ(adjusted_config.suppressor.nearend_tuning.max_inc_factor, 0.5); } // Testing the field trial-based that override the exponential decay parameters. TEST(EchoCanceller3FieldTrials, Aec3UseNearendReverb) { webrtc::test::ScopedFieldTrials field_trials( "WebRTC-Aec3UseNearendReverbLen/default_len:0.9,nearend_len:0.8/"); EchoCanceller3Config default_config; EchoCanceller3Config adjusted_config = AdjustConfig(default_config); EXPECT_FLOAT_EQ(adjusted_config.ep_strength.default_len, 0.9); EXPECT_FLOAT_EQ(adjusted_config.ep_strength.nearend_len, 0.8); } TEST(EchoCanceller3, DetectionOfProperStereo) { constexpr int kSampleRateHz = 16000; constexpr int kNumChannels = 2; AudioBuffer buffer(/*input_rate=*/kSampleRateHz, /*input_num_channels=*/kNumChannels, /*input_rate=*/kSampleRateHz, /*buffer_num_channels=*/kNumChannels, /*output_rate=*/kSampleRateHz, /*output_num_channels=*/kNumChannels); constexpr size_t kNumBlocksForMonoConfig = 1; constexpr size_t kNumBlocksForSurroundConfig = 2; EchoCanceller3Config mono_config; absl::optional multichannel_config; mono_config.multi_channel.detect_stereo_content = true; mono_config.multi_channel.stereo_detection_threshold = 0.0f; mono_config.multi_channel.stereo_detection_hysteresis_seconds = 0.0f; multichannel_config = mono_config; mono_config.filter.coarse_initial.length_blocks = kNumBlocksForMonoConfig; multichannel_config->filter.coarse_initial.length_blocks = kNumBlocksForSurroundConfig; EchoCanceller3 aec3(mono_config, multichannel_config, /*sample_rate_hz=*/kSampleRateHz, /*num_render_channels=*/kNumChannels, /*num_capture_input_channels=*/kNumChannels); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInStereo(buffer, aec3, 100.0f, 100.0f); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInStereo(buffer, aec3, 100.0f, 101.0f); EXPECT_TRUE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForSurroundConfig); } TEST(EchoCanceller3, DetectionOfProperStereoUsingThreshold) { constexpr int kSampleRateHz = 16000; constexpr int kNumChannels = 2; AudioBuffer buffer(/*input_rate=*/kSampleRateHz, /*input_num_channels=*/kNumChannels, /*input_rate=*/kSampleRateHz, /*buffer_num_channels=*/kNumChannels, /*output_rate=*/kSampleRateHz, /*output_num_channels=*/kNumChannels); constexpr size_t kNumBlocksForMonoConfig = 1; constexpr size_t kNumBlocksForSurroundConfig = 2; EchoCanceller3Config mono_config; absl::optional multichannel_config; constexpr float kStereoDetectionThreshold = 2.0f; mono_config.multi_channel.detect_stereo_content = true; mono_config.multi_channel.stereo_detection_threshold = kStereoDetectionThreshold; mono_config.multi_channel.stereo_detection_hysteresis_seconds = 0.0f; multichannel_config = mono_config; mono_config.filter.coarse_initial.length_blocks = kNumBlocksForMonoConfig; multichannel_config->filter.coarse_initial.length_blocks = kNumBlocksForSurroundConfig; EchoCanceller3 aec3(mono_config, multichannel_config, /*sample_rate_hz=*/kSampleRateHz, /*num_render_channels=*/kNumChannels, /*num_capture_input_channels=*/kNumChannels); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInStereo(buffer, aec3, 100.0f, 100.0f + kStereoDetectionThreshold - 1.0f); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInStereo(buffer, aec3, 100.0f, 100.0f + kStereoDetectionThreshold + 10.0f); EXPECT_TRUE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForSurroundConfig); } TEST(EchoCanceller3, DetectionOfProperStereoUsingHysteresis) { constexpr int kSampleRateHz = 16000; constexpr int kNumChannels = 2; AudioBuffer buffer(/*input_rate=*/kSampleRateHz, /*input_num_channels=*/kNumChannels, /*input_rate=*/kSampleRateHz, /*buffer_num_channels=*/kNumChannels, /*output_rate=*/kSampleRateHz, /*output_num_channels=*/kNumChannels); constexpr size_t kNumBlocksForMonoConfig = 1; constexpr size_t kNumBlocksForSurroundConfig = 2; EchoCanceller3Config mono_config; absl::optional surround_config; mono_config.multi_channel.detect_stereo_content = true; mono_config.multi_channel.stereo_detection_hysteresis_seconds = 0.5f; surround_config = mono_config; mono_config.filter.coarse_initial.length_blocks = kNumBlocksForMonoConfig; surround_config->filter.coarse_initial.length_blocks = kNumBlocksForSurroundConfig; EchoCanceller3 aec3(mono_config, surround_config, /*sample_rate_hz=*/kSampleRateHz, /*num_render_channels=*/kNumChannels, /*num_capture_input_channels=*/kNumChannels); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInStereo(buffer, aec3, 100.0f, 100.0f); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); constexpr int kNumFramesPerSecond = 100; for (int k = 0; k < static_cast( kNumFramesPerSecond * mono_config.multi_channel.stereo_detection_hysteresis_seconds); ++k) { RunAecInStereo(buffer, aec3, 100.0f, 101.0f); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); } RunAecInStereo(buffer, aec3, 100.0f, 101.0f); EXPECT_TRUE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForSurroundConfig); } TEST(EchoCanceller3, StereoContentDetectionForMonoSignals) { constexpr int kSampleRateHz = 16000; constexpr int kNumChannels = 2; AudioBuffer buffer(/*input_rate=*/kSampleRateHz, /*input_num_channels=*/kNumChannels, /*input_rate=*/kSampleRateHz, /*buffer_num_channels=*/kNumChannels, /*output_rate=*/kSampleRateHz, /*output_num_channels=*/kNumChannels); constexpr size_t kNumBlocksForMonoConfig = 1; constexpr size_t kNumBlocksForSurroundConfig = 2; EchoCanceller3Config mono_config; absl::optional multichannel_config; for (bool detect_stereo_content : {false, true}) { mono_config.multi_channel.detect_stereo_content = detect_stereo_content; multichannel_config = mono_config; mono_config.filter.coarse_initial.length_blocks = kNumBlocksForMonoConfig; multichannel_config->filter.coarse_initial.length_blocks = kNumBlocksForSurroundConfig; AudioBuffer mono_buffer(/*input_rate=*/kSampleRateHz, /*input_num_channels=*/1, /*input_rate=*/kSampleRateHz, /*buffer_num_channels=*/1, /*output_rate=*/kSampleRateHz, /*output_num_channels=*/1); EchoCanceller3 aec3(mono_config, multichannel_config, /*sample_rate_hz=*/kSampleRateHz, /*num_render_channels=*/1, /*num_capture_input_channels=*/1); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); RunAecInSMono(mono_buffer, aec3, 100.0f); EXPECT_FALSE(aec3.StereoRenderProcessingActiveForTesting()); EXPECT_EQ( aec3.GetActiveConfigForTesting().filter.coarse_initial.length_blocks, kNumBlocksForMonoConfig); } } #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) TEST(EchoCanceller3InputCheckDeathTest, WrongCaptureNumBandsCheckVerification) { for (auto rate : {16000, 32000, 48000}) { SCOPED_TRACE(ProduceDebugText(rate)); EchoCanceller3Tester(rate).RunProcessCaptureNumBandsCheckVerification(); } } // Verifiers that the verification for null input to the capture processing api // call works. TEST(EchoCanceller3InputCheckDeathTest, NullCaptureProcessingParameter) { EXPECT_DEATH( EchoCanceller3(EchoCanceller3Config(), /*multichannel_config_=*/absl::nullopt, 16000, 1, 1) .ProcessCapture(nullptr, false), ""); } // Verifies the check for correct sample rate. // TODO(peah): Re-enable the test once the issue with memory leaks during DEATH // tests on test bots has been fixed. TEST(EchoCanceller3InputCheckDeathTest, DISABLED_WrongSampleRate) { ApmDataDumper data_dumper(0); EXPECT_DEATH( EchoCanceller3(EchoCanceller3Config(), /*multichannel_config_=*/absl::nullopt, 8001, 1, 1), ""); } #endif } // namespace webrtc