/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/erle_estimator.h" #include #include "api/array_view.h" #include "modules/audio_processing/aec3/render_delay_buffer.h" #include "modules/audio_processing/aec3/spectrum_buffer.h" #include "rtc_base/random.h" #include "rtc_base/strings/string_builder.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2; constexpr float kTrueErle = 10.f; constexpr float kTrueErleOnsets = 1.0f; constexpr float kEchoPathGain = 3.f; void VerifyErleBands( rtc::ArrayView> erle, float reference_lf, float reference_hf) { for (size_t ch = 0; ch < erle.size(); ++ch) { std::for_each( erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit, [reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); }); std::for_each( erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(), [reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); }); } } void VerifyErle( rtc::ArrayView> erle, float erle_time_domain, float reference_lf, float reference_hf) { VerifyErleBands(erle, reference_lf, reference_hf); EXPECT_NEAR(kTrueErle, erle_time_domain, 0.5); } void VerifyErleGreaterOrEqual( rtc::ArrayView> erle1, rtc::ArrayView> erle2) { for (size_t ch = 0; ch < erle1.size(); ++ch) { for (size_t i = 0; i < kFftLengthBy2Plus1; ++i) { EXPECT_GE(erle1[ch][i], erle2[ch][i]); } } } void FormFarendTimeFrame(Block* x) { const std::array frame = { 7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85, 6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2, 7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89, 7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03, 9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6, 11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8, 1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4, 12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19}; for (int band = 0; band < x->NumBands(); ++band) { for (int channel = 0; channel < x->NumChannels(); ++channel) { RTC_DCHECK_GE(kBlockSize, frame.size()); std::copy(frame.begin(), frame.end(), x->begin(band, channel)); } } } void FormFarendFrame(const RenderBuffer& render_buffer, float erle, std::array* X2, rtc::ArrayView> E2, rtc::ArrayView> Y2) { const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer(); const int num_render_channels = spectrum_buffer.buffer[0].size(); const int num_capture_channels = Y2.size(); X2->fill(0.f); for (int ch = 0; ch < num_render_channels; ++ch) { for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { (*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] / num_render_channels; } } for (int ch = 0; ch < num_capture_channels; ++ch) { std::transform(X2->begin(), X2->end(), Y2[ch].begin(), [](float a) { return a * kEchoPathGain * kEchoPathGain; }); std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(), [erle](float a) { return a / erle; }); } } void FormNearendFrame( Block* x, std::array* X2, rtc::ArrayView> E2, rtc::ArrayView> Y2) { for (int band = 0; band < x->NumBands(); ++band) { for (int ch = 0; ch < x->NumChannels(); ++ch) { std::fill(x->begin(band, ch), x->end(band, ch), 0.f); } } X2->fill(0.f); for (size_t ch = 0; ch < Y2.size(); ++ch) { Y2[ch].fill(500.f * 1000.f * 1000.f); E2[ch].fill(Y2[ch][0]); } } void GetFilterFreq( size_t delay_headroom_samples, rtc::ArrayView>> filter_frequency_response) { const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize; for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) { for (auto& block_freq_resp : filter_frequency_response) { block_freq_resp[ch].fill(0.f); } for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) { filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain; } } } } // namespace class ErleEstimatorMultiChannel : public ::testing::Test, public ::testing::WithParamInterface> {}; INSTANTIATE_TEST_SUITE_P(MultiChannel, ErleEstimatorMultiChannel, ::testing::Combine(::testing::Values(1, 2, 4, 8), ::testing::Values(1, 2, 8))); TEST_P(ErleEstimatorMultiChannel, VerifyErleIncreaseAndHold) { const size_t num_render_channels = std::get<0>(GetParam()); const size_t num_capture_channels = std::get<1>(GetParam()); constexpr int kSampleRateHz = 48000; constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); std::array X2; std::vector> E2(num_capture_channels); std::vector> Y2(num_capture_channels); std::vector converged_filters(num_capture_channels, true); EchoCanceller3Config config; config.erle.onset_detection = true; Block x(kNumBands, num_render_channels); std::vector>> filter_frequency_response( config.filter.refined.length_blocks, std::vector>( num_capture_channels)); std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response); ErleEstimator estimator(0, config, num_capture_channels); FormFarendTimeFrame(&x); render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); // Verifies that the ERLE estimate is properly increased to higher values. FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2, Y2); for (size_t k = 0; k < 1000; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } VerifyErle(estimator.Erle(/*onset_compensated=*/true), std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, config.erle.max_h); VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false), estimator.Erle(/*onset_compensated=*/true)); VerifyErleGreaterOrEqual(estimator.ErleUnbounded(), estimator.Erle(/*onset_compensated=*/false)); FormNearendFrame(&x, &X2, E2, Y2); // Verifies that the ERLE is not immediately decreased during nearend // activity. for (size_t k = 0; k < 50; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } VerifyErle(estimator.Erle(/*onset_compensated=*/true), std::pow(2.f, estimator.FullbandErleLog2()), config.erle.max_l, config.erle.max_h); VerifyErleGreaterOrEqual(estimator.Erle(/*onset_compensated=*/false), estimator.Erle(/*onset_compensated=*/true)); VerifyErleGreaterOrEqual(estimator.ErleUnbounded(), estimator.Erle(/*onset_compensated=*/false)); } TEST_P(ErleEstimatorMultiChannel, VerifyErleTrackingOnOnsets) { const size_t num_render_channels = std::get<0>(GetParam()); const size_t num_capture_channels = std::get<1>(GetParam()); constexpr int kSampleRateHz = 48000; constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); std::array X2; std::vector> E2(num_capture_channels); std::vector> Y2(num_capture_channels); std::vector converged_filters(num_capture_channels, true); EchoCanceller3Config config; config.erle.onset_detection = true; Block x(kNumBands, num_render_channels); std::vector>> filter_frequency_response( config.filter.refined.length_blocks, std::vector>( num_capture_channels)); std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, kSampleRateHz, num_render_channels)); GetFilterFreq(config.delay.delay_headroom_samples, filter_frequency_response); ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config, num_capture_channels); FormFarendTimeFrame(&x); render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); for (size_t burst = 0; burst < 20; ++burst) { FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErleOnsets, &X2, E2, Y2); for (size_t k = 0; k < 10; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2, E2, Y2); for (size_t k = 0; k < 1000; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } FormNearendFrame(&x, &X2, E2, Y2); for (size_t k = 0; k < 300; ++k) { render_delay_buffer->Insert(x); render_delay_buffer->PrepareCaptureProcessing(); estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } } VerifyErleBands(estimator.ErleDuringOnsets(), config.erle.min, config.erle.min); FormNearendFrame(&x, &X2, E2, Y2); for (size_t k = 0; k < 1000; k++) { estimator.Update(*render_delay_buffer->GetRenderBuffer(), filter_frequency_response, X2, Y2, E2, converged_filters); } // Verifies that during ne activity, Erle converges to the Erle for // onsets. VerifyErle(estimator.Erle(/*onset_compensated=*/true), std::pow(2.f, estimator.FullbandErleLog2()), config.erle.min, config.erle.min); } } // namespace webrtc