/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/refined_filter_update_gain.h" #include #include #include #include #include "modules/audio_processing/aec3/adaptive_fir_filter.h" #include "modules/audio_processing/aec3/adaptive_fir_filter_erl.h" #include "modules/audio_processing/aec3/aec_state.h" #include "modules/audio_processing/aec3/coarse_filter_update_gain.h" #include "modules/audio_processing/aec3/render_delay_buffer.h" #include "modules/audio_processing/aec3/render_signal_analyzer.h" #include "modules/audio_processing/aec3/subtractor_output.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "modules/audio_processing/test/echo_canceller_test_tools.h" #include "rtc_base/numerics/safe_minmax.h" #include "rtc_base/random.h" #include "rtc_base/strings/string_builder.h" #include "test/gtest.h" namespace webrtc { namespace { // Method for performing the simulations needed to test the refined filter // update gain functionality. void RunFilterUpdateTest(int num_blocks_to_process, size_t delay_samples, int filter_length_blocks, const std::vector& blocks_with_echo_path_changes, const std::vector& blocks_with_saturation, bool use_silent_render_in_second_half, std::array* e_last_block, std::array* y_last_block, FftData* G_last_block) { ApmDataDumper data_dumper(42); Aec3Optimization optimization = DetectOptimization(); constexpr size_t kNumRenderChannels = 1; constexpr size_t kNumCaptureChannels = 1; constexpr int kSampleRateHz = 48000; constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz); EchoCanceller3Config config; config.filter.refined.length_blocks = filter_length_blocks; config.filter.coarse.length_blocks = filter_length_blocks; AdaptiveFirFilter refined_filter( config.filter.refined.length_blocks, config.filter.refined.length_blocks, config.filter.config_change_duration_blocks, kNumRenderChannels, optimization, &data_dumper); AdaptiveFirFilter coarse_filter( config.filter.coarse.length_blocks, config.filter.coarse.length_blocks, config.filter.config_change_duration_blocks, kNumRenderChannels, optimization, &data_dumper); std::vector>> H2( kNumCaptureChannels, std::vector>( refined_filter.max_filter_size_partitions(), std::array())); for (auto& H2_ch : H2) { for (auto& H2_k : H2_ch) { H2_k.fill(0.f); } } std::vector> h( kNumCaptureChannels, std::vector( GetTimeDomainLength(refined_filter.max_filter_size_partitions()), 0.f)); Aec3Fft fft; std::array x_old; x_old.fill(0.f); CoarseFilterUpdateGain coarse_gain( config.filter.coarse, config.filter.config_change_duration_blocks); RefinedFilterUpdateGain refined_gain( config.filter.refined, config.filter.config_change_duration_blocks); Random random_generator(42U); Block x(kNumBands, kNumRenderChannels); std::vector y(kBlockSize, 0.f); config.delay.default_delay = 1; std::unique_ptr render_delay_buffer( RenderDelayBuffer::Create(config, kSampleRateHz, kNumRenderChannels)); AecState aec_state(config, kNumCaptureChannels); RenderSignalAnalyzer render_signal_analyzer(config); absl::optional delay_estimate; std::array s_scratch; std::array s; FftData S; FftData G; std::vector output(kNumCaptureChannels); for (auto& subtractor_output : output) { subtractor_output.Reset(); } FftData& E_refined = output[0].E_refined; FftData E_coarse; std::vector> Y2(kNumCaptureChannels); std::vector> E2_refined( kNumCaptureChannels); std::array& e_refined = output[0].e_refined; std::array& e_coarse = output[0].e_coarse; for (auto& Y2_ch : Y2) { Y2_ch.fill(0.f); } constexpr float kScale = 1.0f / kFftLengthBy2; DelayBuffer delay_buffer(delay_samples); for (int k = 0; k < num_blocks_to_process; ++k) { // Handle echo path changes. if (std::find(blocks_with_echo_path_changes.begin(), blocks_with_echo_path_changes.end(), k) != blocks_with_echo_path_changes.end()) { refined_filter.HandleEchoPathChange(); } // Handle saturation. const bool saturation = std::find(blocks_with_saturation.begin(), blocks_with_saturation.end(), k) != blocks_with_saturation.end(); // Create the render signal. if (use_silent_render_in_second_half && k > num_blocks_to_process / 2) { for (int band = 0; band < x.NumBands(); ++band) { for (int channel = 0; channel < x.NumChannels(); ++channel) { std::fill(x.begin(band, channel), x.end(band, channel), 0.f); } } } else { for (int band = 0; band < x.NumChannels(); ++band) { for (int channel = 0; channel < x.NumChannels(); ++channel) { RandomizeSampleVector(&random_generator, x.View(band, channel)); } } } delay_buffer.Delay(x.View(/*band=*/0, /*channel=*/0), y); render_delay_buffer->Insert(x); if (k == 0) { render_delay_buffer->Reset(); } render_delay_buffer->PrepareCaptureProcessing(); render_signal_analyzer.Update(*render_delay_buffer->GetRenderBuffer(), aec_state.MinDirectPathFilterDelay()); // Apply the refined filter. refined_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S); fft.Ifft(S, &s_scratch); std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, e_refined.begin(), [&](float a, float b) { return a - b * kScale; }); std::for_each(e_refined.begin(), e_refined.end(), [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); fft.ZeroPaddedFft(e_refined, Aec3Fft::Window::kRectangular, &E_refined); for (size_t k = 0; k < kBlockSize; ++k) { s[k] = kScale * s_scratch[k + kFftLengthBy2]; } // Apply the coarse filter. coarse_filter.Filter(*render_delay_buffer->GetRenderBuffer(), &S); fft.Ifft(S, &s_scratch); std::transform(y.begin(), y.end(), s_scratch.begin() + kFftLengthBy2, e_coarse.begin(), [&](float a, float b) { return a - b * kScale; }); std::for_each(e_coarse.begin(), e_coarse.end(), [](float& a) { a = rtc::SafeClamp(a, -32768.f, 32767.f); }); fft.ZeroPaddedFft(e_coarse, Aec3Fft::Window::kRectangular, &E_coarse); // Compute spectra for future use. E_refined.Spectrum(Aec3Optimization::kNone, output[0].E2_refined); E_coarse.Spectrum(Aec3Optimization::kNone, output[0].E2_coarse); // Adapt the coarse filter. std::array render_power; render_delay_buffer->GetRenderBuffer()->SpectralSum( coarse_filter.SizePartitions(), &render_power); coarse_gain.Compute(render_power, render_signal_analyzer, E_coarse, coarse_filter.SizePartitions(), saturation, &G); coarse_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G); // Adapt the refined filter render_delay_buffer->GetRenderBuffer()->SpectralSum( refined_filter.SizePartitions(), &render_power); std::array erl; ComputeErl(optimization, H2[0], erl); refined_gain.Compute(render_power, render_signal_analyzer, output[0], erl, refined_filter.SizePartitions(), saturation, false, &G); refined_filter.Adapt(*render_delay_buffer->GetRenderBuffer(), G, &h[0]); // Update the delay. aec_state.HandleEchoPathChange(EchoPathVariability( false, EchoPathVariability::DelayAdjustment::kNone, false)); refined_filter.ComputeFrequencyResponse(&H2[0]); std::copy(output[0].E2_refined.begin(), output[0].E2_refined.end(), E2_refined[0].begin()); aec_state.Update(delay_estimate, H2, h, *render_delay_buffer->GetRenderBuffer(), E2_refined, Y2, output); } std::copy(e_refined.begin(), e_refined.end(), e_last_block->begin()); std::copy(y.begin(), y.end(), y_last_block->begin()); std::copy(G.re.begin(), G.re.end(), G_last_block->re.begin()); std::copy(G.im.begin(), G.im.end(), G_last_block->im.begin()); } std::string ProduceDebugText(int filter_length_blocks) { rtc::StringBuilder ss; ss << "Length: " << filter_length_blocks; return ss.Release(); } std::string ProduceDebugText(size_t delay, int filter_length_blocks) { rtc::StringBuilder ss; ss << "Delay: " << delay << ", "; ss << ProduceDebugText(filter_length_blocks); return ss.Release(); } } // namespace #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) // Verifies that the check for non-null output gain parameter works. TEST(RefinedFilterUpdateGainDeathTest, NullDataOutputGain) { ApmDataDumper data_dumper(42); EchoCanceller3Config config; RenderSignalAnalyzer analyzer(config); SubtractorOutput output; RefinedFilterUpdateGain gain(config.filter.refined, config.filter.config_change_duration_blocks); std::array render_power; render_power.fill(0.f); std::array erl; erl.fill(0.f); EXPECT_DEATH( gain.Compute(render_power, analyzer, output, erl, config.filter.refined.length_blocks, false, false, nullptr), ""); } #endif // Verifies that the gain formed causes the filter using it to converge. TEST(RefinedFilterUpdateGain, GainCausesFilterToConverge) { std::vector blocks_with_echo_path_changes; std::vector blocks_with_saturation; for (size_t filter_length_blocks : {12, 20, 30}) { for (size_t delay_samples : {0, 64, 150, 200, 301}) { SCOPED_TRACE(ProduceDebugText(delay_samples, filter_length_blocks)); std::array e; std::array y; FftData G; RunFilterUpdateTest(600, delay_samples, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G); // Verify that the refined filter is able to perform well. // Use different criteria to take overmodelling into account. if (filter_length_blocks == 12) { EXPECT_LT(1000 * std::inner_product(e.begin(), e.end(), e.begin(), 0.f), std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); } else { EXPECT_LT(std::inner_product(e.begin(), e.end(), e.begin(), 0.f), std::inner_product(y.begin(), y.end(), y.begin(), 0.f)); } } } } // Verifies that the magnitude of the gain on average decreases for a // persistently exciting signal. TEST(RefinedFilterUpdateGain, DecreasingGain) { std::vector blocks_with_echo_path_changes; std::vector blocks_with_saturation; std::array e; std::array y; FftData G_a; FftData G_b; FftData G_c; std::array G_a_power; std::array G_b_power; std::array G_c_power; RunFilterUpdateTest(250, 65, 12, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_a); RunFilterUpdateTest(500, 65, 12, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_b); RunFilterUpdateTest(750, 65, 12, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_c); G_a.Spectrum(Aec3Optimization::kNone, G_a_power); G_b.Spectrum(Aec3Optimization::kNone, G_b_power); G_c.Spectrum(Aec3Optimization::kNone, G_c_power); EXPECT_GT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); EXPECT_GT(std::accumulate(G_b_power.begin(), G_b_power.end(), 0.), std::accumulate(G_c_power.begin(), G_c_power.end(), 0.)); } // Verifies that the gain is zero when there is saturation and that the internal // error estimates cause the gain to increase after a period of saturation. TEST(RefinedFilterUpdateGain, SaturationBehavior) { std::vector blocks_with_echo_path_changes; std::vector blocks_with_saturation; for (int k = 99; k < 200; ++k) { blocks_with_saturation.push_back(k); } for (size_t filter_length_blocks : {12, 20, 30}) { SCOPED_TRACE(ProduceDebugText(filter_length_blocks)); std::array e; std::array y; FftData G_a; FftData G_b; FftData G_a_ref; G_a_ref.re.fill(0.f); G_a_ref.im.fill(0.f); std::array G_a_power; std::array G_b_power; RunFilterUpdateTest(100, 65, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_a); EXPECT_EQ(G_a_ref.re, G_a.re); EXPECT_EQ(G_a_ref.im, G_a.im); RunFilterUpdateTest(99, 65, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_a); RunFilterUpdateTest(201, 65, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_b); G_a.Spectrum(Aec3Optimization::kNone, G_a_power); G_b.Spectrum(Aec3Optimization::kNone, G_b_power); EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); } } // Verifies that the gain increases after an echo path change. // TODO(peah): Correct and reactivate this test. TEST(RefinedFilterUpdateGain, DISABLED_EchoPathChangeBehavior) { for (size_t filter_length_blocks : {12, 20, 30}) { SCOPED_TRACE(ProduceDebugText(filter_length_blocks)); std::vector blocks_with_echo_path_changes; std::vector blocks_with_saturation; blocks_with_echo_path_changes.push_back(99); std::array e; std::array y; FftData G_a; FftData G_b; std::array G_a_power; std::array G_b_power; RunFilterUpdateTest(100, 65, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_a); RunFilterUpdateTest(101, 65, filter_length_blocks, blocks_with_echo_path_changes, blocks_with_saturation, false, &e, &y, &G_b); G_a.Spectrum(Aec3Optimization::kNone, G_a_power); G_b.Spectrum(Aec3Optimization::kNone, G_b_power); EXPECT_LT(std::accumulate(G_a_power.begin(), G_a_power.end(), 0.), std::accumulate(G_b_power.begin(), G_b_power.end(), 0.)); } } } // namespace webrtc