/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/suppression_filter.h" #include #include #include #include #include #include "modules/audio_processing/aec3/vector_math.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_minmax.h" namespace webrtc { namespace { // Hanning window from Matlab command win = sqrt(hanning(128)). const float kSqrtHanning[kFftLength] = { 0.00000000000000f, 0.02454122852291f, 0.04906767432742f, 0.07356456359967f, 0.09801714032956f, 0.12241067519922f, 0.14673047445536f, 0.17096188876030f, 0.19509032201613f, 0.21910124015687f, 0.24298017990326f, 0.26671275747490f, 0.29028467725446f, 0.31368174039889f, 0.33688985339222f, 0.35989503653499f, 0.38268343236509f, 0.40524131400499f, 0.42755509343028f, 0.44961132965461f, 0.47139673682600f, 0.49289819222978f, 0.51410274419322f, 0.53499761988710f, 0.55557023301960f, 0.57580819141785f, 0.59569930449243f, 0.61523159058063f, 0.63439328416365f, 0.65317284295378f, 0.67155895484702f, 0.68954054473707f, 0.70710678118655f, 0.72424708295147f, 0.74095112535496f, 0.75720884650648f, 0.77301045336274f, 0.78834642762661f, 0.80320753148064f, 0.81758481315158f, 0.83146961230255f, 0.84485356524971f, 0.85772861000027f, 0.87008699110871f, 0.88192126434835f, 0.89322430119552f, 0.90398929312344f, 0.91420975570353f, 0.92387953251129f, 0.93299279883474f, 0.94154406518302f, 0.94952818059304f, 0.95694033573221f, 0.96377606579544f, 0.97003125319454f, 0.97570213003853f, 0.98078528040323f, 0.98527764238894f, 0.98917650996478f, 0.99247953459871f, 0.99518472667220f, 0.99729045667869f, 0.99879545620517f, 0.99969881869620f, 1.00000000000000f, 0.99969881869620f, 0.99879545620517f, 0.99729045667869f, 0.99518472667220f, 0.99247953459871f, 0.98917650996478f, 0.98527764238894f, 0.98078528040323f, 0.97570213003853f, 0.97003125319454f, 0.96377606579544f, 0.95694033573221f, 0.94952818059304f, 0.94154406518302f, 0.93299279883474f, 0.92387953251129f, 0.91420975570353f, 0.90398929312344f, 0.89322430119552f, 0.88192126434835f, 0.87008699110871f, 0.85772861000027f, 0.84485356524971f, 0.83146961230255f, 0.81758481315158f, 0.80320753148064f, 0.78834642762661f, 0.77301045336274f, 0.75720884650648f, 0.74095112535496f, 0.72424708295147f, 0.70710678118655f, 0.68954054473707f, 0.67155895484702f, 0.65317284295378f, 0.63439328416365f, 0.61523159058063f, 0.59569930449243f, 0.57580819141785f, 0.55557023301960f, 0.53499761988710f, 0.51410274419322f, 0.49289819222978f, 0.47139673682600f, 0.44961132965461f, 0.42755509343028f, 0.40524131400499f, 0.38268343236509f, 0.35989503653499f, 0.33688985339222f, 0.31368174039889f, 0.29028467725446f, 0.26671275747490f, 0.24298017990326f, 0.21910124015687f, 0.19509032201613f, 0.17096188876030f, 0.14673047445536f, 0.12241067519922f, 0.09801714032956f, 0.07356456359967f, 0.04906767432742f, 0.02454122852291f}; } // namespace SuppressionFilter::SuppressionFilter(Aec3Optimization optimization, int sample_rate_hz, size_t num_capture_channels) : optimization_(optimization), sample_rate_hz_(sample_rate_hz), num_capture_channels_(num_capture_channels), fft_(), e_output_old_(NumBandsForRate(sample_rate_hz_), std::vector>( num_capture_channels_)) { RTC_DCHECK(ValidFullBandRate(sample_rate_hz_)); for (size_t b = 0; b < e_output_old_.size(); ++b) { for (size_t ch = 0; ch < e_output_old_[b].size(); ++ch) { e_output_old_[b][ch].fill(0.f); } } } SuppressionFilter::~SuppressionFilter() = default; void SuppressionFilter::ApplyGain( rtc::ArrayView comfort_noise, rtc::ArrayView comfort_noise_high_band, const std::array& suppression_gain, float high_bands_gain, rtc::ArrayView E_lowest_band, Block* e) { RTC_DCHECK(e); RTC_DCHECK_EQ(e->NumBands(), NumBandsForRate(sample_rate_hz_)); // Comfort noise gain is sqrt(1-g^2), where g is the suppression gain. std::array noise_gain; for (size_t i = 0; i < kFftLengthBy2Plus1; ++i) { noise_gain[i] = 1.f - suppression_gain[i] * suppression_gain[i]; } aec3::VectorMath(optimization_).Sqrt(noise_gain); const float high_bands_noise_scaling = 0.4f * std::sqrt(1.f - high_bands_gain * high_bands_gain); for (size_t ch = 0; ch < num_capture_channels_; ++ch) { FftData E; // Analysis filterbank. E.Assign(E_lowest_band[ch]); for (size_t i = 0; i < kFftLengthBy2Plus1; ++i) { // Apply suppression gains. float E_real = E.re[i] * suppression_gain[i]; float E_imag = E.im[i] * suppression_gain[i]; // Scale and add the comfort noise. E.re[i] = E_real + noise_gain[i] * comfort_noise[ch].re[i]; E.im[i] = E_imag + noise_gain[i] * comfort_noise[ch].im[i]; } // Synthesis filterbank. std::array e_extended; constexpr float kIfftNormalization = 2.f / kFftLength; fft_.Ifft(E, &e_extended); auto e0 = e->View(/*band=*/0, ch); float* e0_old = e_output_old_[0][ch].data(); // Window and add the first half of e_extended with the second half of // e_extended from the previous block. for (size_t i = 0; i < kFftLengthBy2; ++i) { float e0_i = e0_old[i] * kSqrtHanning[kFftLengthBy2 + i]; e0_i += e_extended[i] * kSqrtHanning[i]; e0[i] = e0_i * kIfftNormalization; } // The second half of e_extended is stored for the succeeding frame. std::copy(e_extended.begin() + kFftLengthBy2, e_extended.begin() + kFftLength, std::begin(e_output_old_[0][ch])); // Apply suppression gain to upper bands. for (int b = 1; b < e->NumBands(); ++b) { auto e_band = e->View(b, ch); for (size_t i = 0; i < kFftLengthBy2; ++i) { e_band[i] *= high_bands_gain; } } // Add comfort noise to band 1. if (e->NumBands() > 1) { E.Assign(comfort_noise_high_band[ch]); std::array time_domain_high_band_noise; fft_.Ifft(E, &time_domain_high_band_noise); auto e1 = e->View(/*band=*/1, ch); const float gain = high_bands_noise_scaling * kIfftNormalization; for (size_t i = 0; i < kFftLengthBy2; ++i) { e1[i] += time_domain_high_band_noise[i] * gain; } } // Delay upper bands to match the delay of the filter bank. for (int b = 1; b < e->NumBands(); ++b) { auto e_band = e->View(b, ch); float* e_band_old = e_output_old_[b][ch].data(); for (size_t i = 0; i < kFftLengthBy2; ++i) { std::swap(e_band[i], e_band_old[i]); } } // Clamp output of all bands. for (int b = 0; b < e->NumBands(); ++b) { auto e_band = e->View(b, ch); for (size_t i = 0; i < kFftLengthBy2; ++i) { e_band[i] = rtc::SafeClamp(e_band[i], -32768.f, 32767.f); } } } } } // namespace webrtc