/* * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/aec3/suppression_gain.h" #include #include #include #include #include "modules/audio_processing/aec3/dominant_nearend_detector.h" #include "modules/audio_processing/aec3/moving_average.h" #include "modules/audio_processing/aec3/subband_nearend_detector.h" #include "modules/audio_processing/aec3/vector_math.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "rtc_base/checks.h" #include "system_wrappers/include/field_trial.h" namespace webrtc { namespace { void LimitLowFrequencyGains(std::array* gain) { // Limit the low frequency gains to avoid the impact of the high-pass filter // on the lower-frequency gain influencing the overall achieved gain. (*gain)[0] = (*gain)[1] = std::min((*gain)[1], (*gain)[2]); } void LimitHighFrequencyGains(bool conservative_hf_suppression, std::array* gain) { // Limit the high frequency gains to avoid echo leakage due to an imperfect // filter. constexpr size_t kFirstBandToLimit = (64 * 2000) / 8000; const float min_upper_gain = (*gain)[kFirstBandToLimit]; std::for_each( gain->begin() + kFirstBandToLimit + 1, gain->end(), [min_upper_gain](float& a) { a = std::min(a, min_upper_gain); }); (*gain)[kFftLengthBy2] = (*gain)[kFftLengthBy2Minus1]; if (conservative_hf_suppression) { // Limits the gain in the frequencies for which the adaptive filter has not // converged. // TODO(peah): Make adaptive to take the actual filter error into account. constexpr size_t kUpperAccurateBandPlus1 = 29; constexpr float oneByBandsInSum = 1 / static_cast(kUpperAccurateBandPlus1 - 20); const float hf_gain_bound = std::accumulate(gain->begin() + 20, gain->begin() + kUpperAccurateBandPlus1, 0.f) * oneByBandsInSum; std::for_each( gain->begin() + kUpperAccurateBandPlus1, gain->end(), [hf_gain_bound](float& a) { a = std::min(a, hf_gain_bound); }); } } // Scales the echo according to assessed audibility at the other end. void WeightEchoForAudibility(const EchoCanceller3Config& config, rtc::ArrayView echo, rtc::ArrayView weighted_echo) { RTC_DCHECK_EQ(kFftLengthBy2Plus1, echo.size()); RTC_DCHECK_EQ(kFftLengthBy2Plus1, weighted_echo.size()); auto weigh = [](float threshold, float normalizer, size_t begin, size_t end, rtc::ArrayView echo, rtc::ArrayView weighted_echo) { for (size_t k = begin; k < end; ++k) { if (echo[k] < threshold) { float tmp = (threshold - echo[k]) * normalizer; weighted_echo[k] = echo[k] * std::max(0.f, 1.f - tmp * tmp); } else { weighted_echo[k] = echo[k]; } } }; float threshold = config.echo_audibility.floor_power * config.echo_audibility.audibility_threshold_lf; float normalizer = 1.f / (threshold - config.echo_audibility.floor_power); weigh(threshold, normalizer, 0, 3, echo, weighted_echo); threshold = config.echo_audibility.floor_power * config.echo_audibility.audibility_threshold_mf; normalizer = 1.f / (threshold - config.echo_audibility.floor_power); weigh(threshold, normalizer, 3, 7, echo, weighted_echo); threshold = config.echo_audibility.floor_power * config.echo_audibility.audibility_threshold_hf; normalizer = 1.f / (threshold - config.echo_audibility.floor_power); weigh(threshold, normalizer, 7, kFftLengthBy2Plus1, echo, weighted_echo); } } // namespace std::atomic SuppressionGain::instance_count_(0); float SuppressionGain::UpperBandsGain( rtc::ArrayView> echo_spectrum, rtc::ArrayView> comfort_noise_spectrum, const absl::optional& narrow_peak_band, bool saturated_echo, const Block& render, const std::array& low_band_gain) const { RTC_DCHECK_LT(0, render.NumBands()); if (render.NumBands() == 1) { return 1.f; } const int num_render_channels = render.NumChannels(); if (narrow_peak_band && (*narrow_peak_band > static_cast(kFftLengthBy2Plus1 - 10))) { return 0.001f; } constexpr size_t kLowBandGainLimit = kFftLengthBy2 / 2; const float gain_below_8_khz = *std::min_element( low_band_gain.begin() + kLowBandGainLimit, low_band_gain.end()); // Always attenuate the upper bands when there is saturated echo. if (saturated_echo) { return std::min(0.001f, gain_below_8_khz); } // Compute the upper and lower band energies. const auto sum_of_squares = [](float a, float b) { return a + b * b; }; float low_band_energy = 0.f; for (int ch = 0; ch < num_render_channels; ++ch) { const float channel_energy = std::accumulate(render.begin(/*band=*/0, ch), render.end(/*band=*/0, ch), 0.0f, sum_of_squares); low_band_energy = std::max(low_band_energy, channel_energy); } float high_band_energy = 0.f; for (int k = 1; k < render.NumBands(); ++k) { for (int ch = 0; ch < num_render_channels; ++ch) { const float energy = std::accumulate( render.begin(k, ch), render.end(k, ch), 0.f, sum_of_squares); high_band_energy = std::max(high_band_energy, energy); } } // If there is more power in the lower frequencies than the upper frequencies, // or if the power in upper frequencies is low, do not bound the gain in the // upper bands. float anti_howling_gain; const float activation_threshold = kBlockSize * config_.suppressor.high_bands_suppression .anti_howling_activation_threshold; if (high_band_energy < std::max(low_band_energy, activation_threshold)) { anti_howling_gain = 1.f; } else { // In all other cases, bound the gain for upper frequencies. RTC_DCHECK_LE(low_band_energy, high_band_energy); RTC_DCHECK_NE(0.f, high_band_energy); anti_howling_gain = config_.suppressor.high_bands_suppression.anti_howling_gain * sqrtf(low_band_energy / high_band_energy); } float gain_bound = 1.f; if (!dominant_nearend_detector_->IsNearendState()) { // Bound the upper gain during significant echo activity. const auto& cfg = config_.suppressor.high_bands_suppression; auto low_frequency_energy = [](rtc::ArrayView spectrum) { RTC_DCHECK_LE(16, spectrum.size()); return std::accumulate(spectrum.begin() + 1, spectrum.begin() + 16, 0.f); }; for (size_t ch = 0; ch < num_capture_channels_; ++ch) { const float echo_sum = low_frequency_energy(echo_spectrum[ch]); const float noise_sum = low_frequency_energy(comfort_noise_spectrum[ch]); if (echo_sum > cfg.enr_threshold * noise_sum) { gain_bound = cfg.max_gain_during_echo; break; } } } // Choose the gain as the minimum of the lower and upper gains. return std::min(std::min(gain_below_8_khz, anti_howling_gain), gain_bound); } // Computes the gain to reduce the echo to a non audible level. void SuppressionGain::GainToNoAudibleEcho( const std::array& nearend, const std::array& echo, const std::array& masker, std::array* gain) const { const auto& p = dominant_nearend_detector_->IsNearendState() ? nearend_params_ : normal_params_; for (size_t k = 0; k < gain->size(); ++k) { float enr = echo[k] / (nearend[k] + 1.f); // Echo-to-nearend ratio. float emr = echo[k] / (masker[k] + 1.f); // Echo-to-masker (noise) ratio. float g = 1.0f; if (enr > p.enr_transparent_[k] && emr > p.emr_transparent_[k]) { g = (p.enr_suppress_[k] - enr) / (p.enr_suppress_[k] - p.enr_transparent_[k]); g = std::max(g, p.emr_transparent_[k] / emr); } (*gain)[k] = g; } } // Compute the minimum gain as the attenuating gain to put the signal just // above the zero sample values. void SuppressionGain::GetMinGain( rtc::ArrayView weighted_residual_echo, rtc::ArrayView last_nearend, rtc::ArrayView last_echo, bool low_noise_render, bool saturated_echo, rtc::ArrayView min_gain) const { if (!saturated_echo) { const float min_echo_power = low_noise_render ? config_.echo_audibility.low_render_limit : config_.echo_audibility.normal_render_limit; for (size_t k = 0; k < min_gain.size(); ++k) { min_gain[k] = weighted_residual_echo[k] > 0.f ? min_echo_power / weighted_residual_echo[k] : 1.f; min_gain[k] = std::min(min_gain[k], 1.f); } if (!initial_state_ || config_.suppressor.lf_smoothing_during_initial_phase) { const float& dec = dominant_nearend_detector_->IsNearendState() ? nearend_params_.max_dec_factor_lf : normal_params_.max_dec_factor_lf; for (int k = 0; k <= config_.suppressor.last_lf_smoothing_band; ++k) { // Make sure the gains of the low frequencies do not decrease too // quickly after strong nearend. if (last_nearend[k] > last_echo[k] || k <= config_.suppressor.last_permanent_lf_smoothing_band) { min_gain[k] = std::max(min_gain[k], last_gain_[k] * dec); min_gain[k] = std::min(min_gain[k], 1.f); } } } } else { std::fill(min_gain.begin(), min_gain.end(), 0.f); } } // Compute the maximum gain by limiting the gain increase from the previous // gain. void SuppressionGain::GetMaxGain(rtc::ArrayView max_gain) const { const auto& inc = dominant_nearend_detector_->IsNearendState() ? nearend_params_.max_inc_factor : normal_params_.max_inc_factor; const auto& floor = config_.suppressor.floor_first_increase; for (size_t k = 0; k < max_gain.size(); ++k) { max_gain[k] = std::min(std::max(last_gain_[k] * inc, floor), 1.f); } } void SuppressionGain::LowerBandGain( bool low_noise_render, const AecState& aec_state, rtc::ArrayView> suppressor_input, rtc::ArrayView> residual_echo, rtc::ArrayView> comfort_noise, bool clock_drift, std::array* gain) { gain->fill(1.f); const bool saturated_echo = aec_state.SaturatedEcho(); std::array max_gain; GetMaxGain(max_gain); for (size_t ch = 0; ch < num_capture_channels_; ++ch) { std::array G; std::array nearend; nearend_smoothers_[ch].Average(suppressor_input[ch], nearend); // Weight echo power in terms of audibility. std::array weighted_residual_echo; WeightEchoForAudibility(config_, residual_echo[ch], weighted_residual_echo); std::array min_gain; GetMinGain(weighted_residual_echo, last_nearend_[ch], last_echo_[ch], low_noise_render, saturated_echo, min_gain); GainToNoAudibleEcho(nearend, weighted_residual_echo, comfort_noise[0], &G); // Clamp gains. for (size_t k = 0; k < gain->size(); ++k) { G[k] = std::max(std::min(G[k], max_gain[k]), min_gain[k]); (*gain)[k] = std::min((*gain)[k], G[k]); } // Store data required for the gain computation of the next block. std::copy(nearend.begin(), nearend.end(), last_nearend_[ch].begin()); std::copy(weighted_residual_echo.begin(), weighted_residual_echo.end(), last_echo_[ch].begin()); } LimitLowFrequencyGains(gain); // Use conservative high-frequency gains during clock-drift or when not in // dominant nearend. if (!dominant_nearend_detector_->IsNearendState() || clock_drift || config_.suppressor.conservative_hf_suppression) { LimitHighFrequencyGains(config_.suppressor.conservative_hf_suppression, gain); } // Store computed gains. std::copy(gain->begin(), gain->end(), last_gain_.begin()); // Transform gains to amplitude domain. aec3::VectorMath(optimization_).Sqrt(*gain); } SuppressionGain::SuppressionGain(const EchoCanceller3Config& config, Aec3Optimization optimization, int sample_rate_hz, size_t num_capture_channels) : data_dumper_(new ApmDataDumper(instance_count_.fetch_add(1) + 1)), optimization_(optimization), config_(config), num_capture_channels_(num_capture_channels), state_change_duration_blocks_( static_cast(config_.filter.config_change_duration_blocks)), last_nearend_(num_capture_channels_, {0}), last_echo_(num_capture_channels_, {0}), nearend_smoothers_( num_capture_channels_, aec3::MovingAverage(kFftLengthBy2Plus1, config.suppressor.nearend_average_blocks)), nearend_params_(config_.suppressor.last_lf_band, config_.suppressor.first_hf_band, config_.suppressor.nearend_tuning), normal_params_(config_.suppressor.last_lf_band, config_.suppressor.first_hf_band, config_.suppressor.normal_tuning), use_unbounded_echo_spectrum_(config.suppressor.dominant_nearend_detection .use_unbounded_echo_spectrum) { RTC_DCHECK_LT(0, state_change_duration_blocks_); last_gain_.fill(1.f); if (config_.suppressor.use_subband_nearend_detection) { dominant_nearend_detector_ = std::make_unique( config_.suppressor.subband_nearend_detection, num_capture_channels_); } else { dominant_nearend_detector_ = std::make_unique( config_.suppressor.dominant_nearend_detection, num_capture_channels_); } RTC_DCHECK(dominant_nearend_detector_); } SuppressionGain::~SuppressionGain() = default; void SuppressionGain::GetGain( rtc::ArrayView> nearend_spectrum, rtc::ArrayView> echo_spectrum, rtc::ArrayView> residual_echo_spectrum, rtc::ArrayView> residual_echo_spectrum_unbounded, rtc::ArrayView> comfort_noise_spectrum, const RenderSignalAnalyzer& render_signal_analyzer, const AecState& aec_state, const Block& render, bool clock_drift, float* high_bands_gain, std::array* low_band_gain) { RTC_DCHECK(high_bands_gain); RTC_DCHECK(low_band_gain); // Choose residual echo spectrum for dominant nearend detection. const auto echo = use_unbounded_echo_spectrum_ ? residual_echo_spectrum_unbounded : residual_echo_spectrum; // Update the nearend state selection. dominant_nearend_detector_->Update(nearend_spectrum, echo, comfort_noise_spectrum, initial_state_); // Compute gain for the lower band. bool low_noise_render = low_render_detector_.Detect(render); LowerBandGain(low_noise_render, aec_state, nearend_spectrum, residual_echo_spectrum, comfort_noise_spectrum, clock_drift, low_band_gain); // Compute the gain for the upper bands. const absl::optional narrow_peak_band = render_signal_analyzer.NarrowPeakBand(); *high_bands_gain = UpperBandsGain(echo_spectrum, comfort_noise_spectrum, narrow_peak_band, aec_state.SaturatedEcho(), render, *low_band_gain); data_dumper_->DumpRaw("aec3_dominant_nearend", dominant_nearend_detector_->IsNearendState()); } void SuppressionGain::SetInitialState(bool state) { initial_state_ = state; if (state) { initial_state_change_counter_ = state_change_duration_blocks_; } else { initial_state_change_counter_ = 0; } } // Detects when the render signal can be considered to have low power and // consist of stationary noise. bool SuppressionGain::LowNoiseRenderDetector::Detect(const Block& render) { float x2_sum = 0.f; float x2_max = 0.f; for (int ch = 0; ch < render.NumChannels(); ++ch) { for (float x_k : render.View(/*band=*/0, ch)) { const float x2 = x_k * x_k; x2_sum += x2; x2_max = std::max(x2_max, x2); } } x2_sum = x2_sum / render.NumChannels(); constexpr float kThreshold = 50.f * 50.f * 64.f; const bool low_noise_render = average_power_ < kThreshold && x2_max < 3 * average_power_; average_power_ = average_power_ * 0.9f + x2_sum * 0.1f; return low_noise_render; } SuppressionGain::GainParameters::GainParameters( int last_lf_band, int first_hf_band, const EchoCanceller3Config::Suppressor::Tuning& tuning) : max_inc_factor(tuning.max_inc_factor), max_dec_factor_lf(tuning.max_dec_factor_lf) { // Compute per-band masking thresholds. RTC_DCHECK_LT(last_lf_band, first_hf_band); auto& lf = tuning.mask_lf; auto& hf = tuning.mask_hf; RTC_DCHECK_LT(lf.enr_transparent, lf.enr_suppress); RTC_DCHECK_LT(hf.enr_transparent, hf.enr_suppress); for (int k = 0; k < static_cast(kFftLengthBy2Plus1); k++) { float a; if (k <= last_lf_band) { a = 0.f; } else if (k < first_hf_band) { a = (k - last_lf_band) / static_cast(first_hf_band - last_lf_band); } else { a = 1.f; } enr_transparent_[k] = (1 - a) * lf.enr_transparent + a * hf.enr_transparent; enr_suppress_[k] = (1 - a) * lf.enr_suppress + a * hf.enr_suppress; emr_transparent_[k] = (1 - a) * lf.emr_transparent + a * hf.emr_transparent; } } } // namespace webrtc