/* * Copyright (c) 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "absl/flags/flag.h" #include "absl/flags/parse.h" #include "common_audio/resampler/push_sinc_resampler.h" #include "common_audio/wav_file.h" #include "modules/audio_processing/agc2/cpu_features.h" #include "modules/audio_processing/agc2/rnn_vad/common.h" #include "modules/audio_processing/agc2/rnn_vad/features_extraction.h" #include "modules/audio_processing/agc2/rnn_vad/rnn.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_compare.h" ABSL_FLAG(std::string, i, "", "Path to the input wav file"); ABSL_FLAG(std::string, f, "", "Path to the output features file"); ABSL_FLAG(std::string, o, "", "Path to the output VAD probabilities file"); namespace webrtc { namespace rnn_vad { namespace test { int main(int argc, char* argv[]) { absl::ParseCommandLine(argc, argv); rtc::LogMessage::LogToDebug(rtc::LS_INFO); // Open wav input file and check properties. const std::string input_wav_file = absl::GetFlag(FLAGS_i); WavReader wav_reader(input_wav_file); if (wav_reader.num_channels() != 1) { RTC_LOG(LS_ERROR) << "Only mono wav files are supported"; return 1; } if (wav_reader.sample_rate() % 100 != 0) { RTC_LOG(LS_ERROR) << "The sample rate rate must allow 10 ms frames."; return 1; } RTC_LOG(LS_INFO) << "Input sample rate: " << wav_reader.sample_rate(); // Init output files. const std::string output_vad_probs_file = absl::GetFlag(FLAGS_o); FILE* vad_probs_file = fopen(output_vad_probs_file.c_str(), "wb"); FILE* features_file = nullptr; const std::string output_feature_file = absl::GetFlag(FLAGS_f); if (!output_feature_file.empty()) { features_file = fopen(output_feature_file.c_str(), "wb"); } // Initialize. const int frame_size_10ms = rtc::CheckedDivExact(wav_reader.sample_rate(), 100); std::vector samples_10ms; samples_10ms.resize(frame_size_10ms); std::array samples_10ms_24kHz; PushSincResampler resampler(frame_size_10ms, kFrameSize10ms24kHz); const AvailableCpuFeatures cpu_features = GetAvailableCpuFeatures(); FeaturesExtractor features_extractor(cpu_features); std::array feature_vector; RnnVad rnn_vad(cpu_features); // Compute VAD probabilities. while (true) { // Read frame at the input sample rate. const size_t read_samples = wav_reader.ReadSamples(frame_size_10ms, samples_10ms.data()); if (rtc::SafeLt(read_samples, frame_size_10ms)) { break; // EOF. } // Resample input. resampler.Resample(samples_10ms.data(), samples_10ms.size(), samples_10ms_24kHz.data(), samples_10ms_24kHz.size()); // Extract features and feed the RNN. bool is_silence = features_extractor.CheckSilenceComputeFeatures( samples_10ms_24kHz, feature_vector); float vad_probability = rnn_vad.ComputeVadProbability(feature_vector, is_silence); // Write voice probability. RTC_DCHECK_GE(vad_probability, 0.f); RTC_DCHECK_GE(1.f, vad_probability); fwrite(&vad_probability, sizeof(float), 1, vad_probs_file); // Write features. if (features_file) { const float float_is_silence = is_silence ? 1.f : 0.f; fwrite(&float_is_silence, sizeof(float), 1, features_file); if (is_silence) { // Do not write uninitialized values. feature_vector.fill(0.f); } fwrite(feature_vector.data(), sizeof(float), kFeatureVectorSize, features_file); } } // Close output file(s). fclose(vad_probs_file); RTC_LOG(LS_INFO) << "VAD probabilities written to " << output_vad_probs_file; if (features_file) { fclose(features_file); RTC_LOG(LS_INFO) << "features written to " << output_feature_file; } return 0; } } // namespace test } // namespace rnn_vad } // namespace webrtc int main(int argc, char* argv[]) { return webrtc::rnn_vad::test::main(argc, argv); }