/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ #define MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ // MSVC++ requires this to be set before any other includes to get M_PI. #ifndef _USE_MATH_DEFINES #define _USE_MATH_DEFINES #endif #include #include // size_t #include // FILE #include #include #include "absl/strings/string_view.h" #include "absl/types/optional.h" #include "api/array_view.h" #include "api/audio/echo_canceller3_config.h" #include "api/audio/echo_control.h" #include "api/scoped_refptr.h" #include "modules/audio_processing/include/audio_processing_statistics.h" #include "rtc_base/arraysize.h" #include "rtc_base/ref_count.h" #include "rtc_base/system/file_wrapper.h" #include "rtc_base/system/rtc_export.h" namespace rtc { class TaskQueue; } // namespace rtc namespace webrtc { class AecDump; class AudioBuffer; class StreamConfig; class ProcessingConfig; class EchoDetector; class CustomAudioAnalyzer; class CustomProcessing; // The Audio Processing Module (APM) provides a collection of voice processing // components designed for real-time communications software. // // APM operates on two audio streams on a frame-by-frame basis. Frames of the // primary stream, on which all processing is applied, are passed to // `ProcessStream()`. Frames of the reverse direction stream are passed to // `ProcessReverseStream()`. On the client-side, this will typically be the // near-end (capture) and far-end (render) streams, respectively. APM should be // placed in the signal chain as close to the audio hardware abstraction layer // (HAL) as possible. // // On the server-side, the reverse stream will normally not be used, with // processing occurring on each incoming stream. // // Component interfaces follow a similar pattern and are accessed through // corresponding getters in APM. All components are disabled at create-time, // with default settings that are recommended for most situations. New settings // can be applied without enabling a component. Enabling a component triggers // memory allocation and initialization to allow it to start processing the // streams. // // Thread safety is provided with the following assumptions to reduce locking // overhead: // 1. The stream getters and setters are called from the same thread as // ProcessStream(). More precisely, stream functions are never called // concurrently with ProcessStream(). // 2. Parameter getters are never called concurrently with the corresponding // setter. // // APM accepts only linear PCM audio data in chunks of ~10 ms (see // AudioProcessing::GetFrameSize() for details) and sample rates ranging from // 8000 Hz to 384000 Hz. The int16 interfaces use interleaved data, while the // float interfaces use deinterleaved data. // // Usage example, omitting error checking: // rtc::scoped_refptr apm = AudioProcessingBuilder().Create(); // // AudioProcessing::Config config; // config.echo_canceller.enabled = true; // config.echo_canceller.mobile_mode = false; // // config.gain_controller1.enabled = true; // config.gain_controller1.mode = // AudioProcessing::Config::GainController1::kAdaptiveAnalog; // config.gain_controller1.analog_level_minimum = 0; // config.gain_controller1.analog_level_maximum = 255; // // config.gain_controller2.enabled = true; // // config.high_pass_filter.enabled = true; // // apm->ApplyConfig(config) // // // Start a voice call... // // // ... Render frame arrives bound for the audio HAL ... // apm->ProcessReverseStream(render_frame); // // // ... Capture frame arrives from the audio HAL ... // // Call required set_stream_ functions. // apm->set_stream_delay_ms(delay_ms); // apm->set_stream_analog_level(analog_level); // // apm->ProcessStream(capture_frame); // // // Call required stream_ functions. // analog_level = apm->recommended_stream_analog_level(); // has_voice = apm->stream_has_voice(); // // // Repeat render and capture processing for the duration of the call... // // Start a new call... // apm->Initialize(); // // // Close the application... // apm.reset(); // class RTC_EXPORT AudioProcessing : public rtc::RefCountInterface { public: // The struct below constitutes the new parameter scheme for the audio // processing. It is being introduced gradually and until it is fully // introduced, it is prone to change. // TODO(peah): Remove this comment once the new config scheme is fully rolled // out. // // The parameters and behavior of the audio processing module are controlled // by changing the default values in the AudioProcessing::Config struct. // The config is applied by passing the struct to the ApplyConfig method. // // This config is intended to be used during setup, and to enable/disable // top-level processing effects. Use during processing may cause undesired // submodule resets, affecting the audio quality. Use the RuntimeSetting // construct for runtime configuration. struct RTC_EXPORT Config { // Sets the properties of the audio processing pipeline. struct RTC_EXPORT Pipeline { // Ways to downmix a multi-channel track to mono. enum class DownmixMethod { kAverageChannels, // Average across channels. kUseFirstChannel // Use the first channel. }; // Maximum allowed processing rate used internally. May only be set to // 32000 or 48000 and any differing values will be treated as 48000. int maximum_internal_processing_rate = 48000; // Allow multi-channel processing of render audio. bool multi_channel_render = false; // Allow multi-channel processing of capture audio when AEC3 is active // or a custom AEC is injected.. bool multi_channel_capture = false; // Indicates how to downmix multi-channel capture audio to mono (when // needed). DownmixMethod capture_downmix_method = DownmixMethod::kAverageChannels; } pipeline; // Enabled the pre-amplifier. It amplifies the capture signal // before any other processing is done. // TODO(webrtc:5298): Deprecate and use the pre-gain functionality in // capture_level_adjustment instead. struct PreAmplifier { bool enabled = false; float fixed_gain_factor = 1.0f; } pre_amplifier; // Functionality for general level adjustment in the capture pipeline. This // should not be used together with the legacy PreAmplifier functionality. struct CaptureLevelAdjustment { bool operator==(const CaptureLevelAdjustment& rhs) const; bool operator!=(const CaptureLevelAdjustment& rhs) const { return !(*this == rhs); } bool enabled = false; // The `pre_gain_factor` scales the signal before any processing is done. float pre_gain_factor = 1.0f; // The `post_gain_factor` scales the signal after all processing is done. float post_gain_factor = 1.0f; struct AnalogMicGainEmulation { bool operator==(const AnalogMicGainEmulation& rhs) const; bool operator!=(const AnalogMicGainEmulation& rhs) const { return !(*this == rhs); } bool enabled = false; // Initial analog gain level to use for the emulated analog gain. Must // be in the range [0...255]. int initial_level = 255; } analog_mic_gain_emulation; } capture_level_adjustment; struct HighPassFilter { bool enabled = false; bool apply_in_full_band = true; } high_pass_filter; struct EchoCanceller { bool enabled = false; bool mobile_mode = false; bool export_linear_aec_output = false; // Enforce the highpass filter to be on (has no effect for the mobile // mode). bool enforce_high_pass_filtering = true; } echo_canceller; // Enables background noise suppression. struct NoiseSuppression { bool enabled = false; enum Level { kLow, kModerate, kHigh, kVeryHigh }; Level level = kModerate; bool analyze_linear_aec_output_when_available = false; } noise_suppression; // Enables transient suppression. struct TransientSuppression { bool enabled = false; } transient_suppression; // Enables automatic gain control (AGC) functionality. // The automatic gain control (AGC) component brings the signal to an // appropriate range. This is done by applying a digital gain directly and, // in the analog mode, prescribing an analog gain to be applied at the audio // HAL. // Recommended to be enabled on the client-side. struct RTC_EXPORT GainController1 { bool operator==(const GainController1& rhs) const; bool operator!=(const GainController1& rhs) const { return !(*this == rhs); } bool enabled = false; enum Mode { // Adaptive mode intended for use if an analog volume control is // available on the capture device. It will require the user to provide // coupling between the OS mixer controls and AGC through the // stream_analog_level() functions. // It consists of an analog gain prescription for the audio device and a // digital compression stage. kAdaptiveAnalog, // Adaptive mode intended for situations in which an analog volume // control is unavailable. It operates in a similar fashion to the // adaptive analog mode, but with scaling instead applied in the digital // domain. As with the analog mode, it additionally uses a digital // compression stage. kAdaptiveDigital, // Fixed mode which enables only the digital compression stage also used // by the two adaptive modes. // It is distinguished from the adaptive modes by considering only a // short time-window of the input signal. It applies a fixed gain // through most of the input level range, and compresses (gradually // reduces gain with increasing level) the input signal at higher // levels. This mode is preferred on embedded devices where the capture // signal level is predictable, so that a known gain can be applied. kFixedDigital }; Mode mode = kAdaptiveAnalog; // Sets the target peak level (or envelope) of the AGC in dBFs (decibels // from digital full-scale). The convention is to use positive values. For // instance, passing in a value of 3 corresponds to -3 dBFs, or a target // level 3 dB below full-scale. Limited to [0, 31]. int target_level_dbfs = 3; // Sets the maximum gain the digital compression stage may apply, in dB. A // higher number corresponds to greater compression, while a value of 0 // will leave the signal uncompressed. Limited to [0, 90]. // For updates after APM setup, use a RuntimeSetting instead. int compression_gain_db = 9; // When enabled, the compression stage will hard limit the signal to the // target level. Otherwise, the signal will be compressed but not limited // above the target level. bool enable_limiter = true; // Enables the analog gain controller functionality. struct AnalogGainController { bool enabled = true; // TODO(bugs.webrtc.org/7494): Deprecated. Stop using and remove. int startup_min_volume = 0; // Lowest analog microphone level that will be applied in response to // clipping. int clipped_level_min = 70; // If true, an adaptive digital gain is applied. bool enable_digital_adaptive = true; // Amount the microphone level is lowered with every clipping event. // Limited to (0, 255]. int clipped_level_step = 15; // Proportion of clipped samples required to declare a clipping event. // Limited to (0.f, 1.f). float clipped_ratio_threshold = 0.1f; // Time in frames to wait after a clipping event before checking again. // Limited to values higher than 0. int clipped_wait_frames = 300; // Enables clipping prediction functionality. struct ClippingPredictor { bool enabled = false; enum Mode { // Clipping event prediction mode with fixed step estimation. kClippingEventPrediction, // Clipped peak estimation mode with adaptive step estimation. kAdaptiveStepClippingPeakPrediction, // Clipped peak estimation mode with fixed step estimation. kFixedStepClippingPeakPrediction, }; Mode mode = kClippingEventPrediction; // Number of frames in the sliding analysis window. int window_length = 5; // Number of frames in the sliding reference window. int reference_window_length = 5; // Reference window delay (unit: number of frames). int reference_window_delay = 5; // Clipping prediction threshold (dBFS). float clipping_threshold = -1.0f; // Crest factor drop threshold (dB). float crest_factor_margin = 3.0f; // If true, the recommended clipped level step is used to modify the // analog gain. Otherwise, the predictor runs without affecting the // analog gain. bool use_predicted_step = true; } clipping_predictor; } analog_gain_controller; } gain_controller1; // Parameters for AGC2, an Automatic Gain Control (AGC) sub-module which // replaces the AGC sub-module parametrized by `gain_controller1`. // AGC2 brings the captured audio signal to the desired level by combining // three different controllers (namely, input volume controller, adapative // digital controller and fixed digital controller) and a limiter. // TODO(bugs.webrtc.org:7494): Name `GainController` when AGC1 removed. struct RTC_EXPORT GainController2 { bool operator==(const GainController2& rhs) const; bool operator!=(const GainController2& rhs) const { return !(*this == rhs); } // AGC2 must be created if and only if `enabled` is true. bool enabled = false; // Parameters for the input volume controller, which adjusts the input // volume applied when the audio is captured (e.g., microphone volume on // a soundcard, input volume on HAL). struct InputVolumeController { bool operator==(const InputVolumeController& rhs) const; bool operator!=(const InputVolumeController& rhs) const { return !(*this == rhs); } bool enabled = false; } input_volume_controller; // Parameters for the adaptive digital controller, which adjusts and // applies a digital gain after echo cancellation and after noise // suppression. struct RTC_EXPORT AdaptiveDigital { bool operator==(const AdaptiveDigital& rhs) const; bool operator!=(const AdaptiveDigital& rhs) const { return !(*this == rhs); } bool enabled = false; float headroom_db = 6.0f; float max_gain_db = 30.0f; float initial_gain_db = 8.0f; float max_gain_change_db_per_second = 3.0f; float max_output_noise_level_dbfs = -50.0f; } adaptive_digital; // Parameters for the fixed digital controller, which applies a fixed // digital gain after the adaptive digital controller and before the // limiter. struct FixedDigital { // By setting `gain_db` to a value greater than zero, the limiter can be // turned into a compressor that first applies a fixed gain. float gain_db = 0.0f; } fixed_digital; } gain_controller2; std::string ToString() const; }; // Specifies the properties of a setting to be passed to AudioProcessing at // runtime. class RuntimeSetting { public: enum class Type { kNotSpecified, kCapturePreGain, kCaptureCompressionGain, kCaptureFixedPostGain, kPlayoutVolumeChange, kCustomRenderProcessingRuntimeSetting, kPlayoutAudioDeviceChange, kCapturePostGain, kCaptureOutputUsed }; // Play-out audio device properties. struct PlayoutAudioDeviceInfo { int id; // Identifies the audio device. int max_volume; // Maximum play-out volume. }; RuntimeSetting() : type_(Type::kNotSpecified), value_(0.0f) {} ~RuntimeSetting() = default; static RuntimeSetting CreateCapturePreGain(float gain) { return {Type::kCapturePreGain, gain}; } static RuntimeSetting CreateCapturePostGain(float gain) { return {Type::kCapturePostGain, gain}; } // Corresponds to Config::GainController1::compression_gain_db, but for // runtime configuration. static RuntimeSetting CreateCompressionGainDb(int gain_db) { RTC_DCHECK_GE(gain_db, 0); RTC_DCHECK_LE(gain_db, 90); return {Type::kCaptureCompressionGain, static_cast(gain_db)}; } // Corresponds to Config::GainController2::fixed_digital::gain_db, but for // runtime configuration. static RuntimeSetting CreateCaptureFixedPostGain(float gain_db) { RTC_DCHECK_GE(gain_db, 0.0f); RTC_DCHECK_LE(gain_db, 90.0f); return {Type::kCaptureFixedPostGain, gain_db}; } // Creates a runtime setting to notify play-out (aka render) audio device // changes. static RuntimeSetting CreatePlayoutAudioDeviceChange( PlayoutAudioDeviceInfo audio_device) { return {Type::kPlayoutAudioDeviceChange, audio_device}; } // Creates a runtime setting to notify play-out (aka render) volume changes. // `volume` is the unnormalized volume, the maximum of which static RuntimeSetting CreatePlayoutVolumeChange(int volume) { return {Type::kPlayoutVolumeChange, volume}; } static RuntimeSetting CreateCustomRenderSetting(float payload) { return {Type::kCustomRenderProcessingRuntimeSetting, payload}; } static RuntimeSetting CreateCaptureOutputUsedSetting( bool capture_output_used) { return {Type::kCaptureOutputUsed, capture_output_used}; } Type type() const { return type_; } // Getters do not return a value but instead modify the argument to protect // from implicit casting. void GetFloat(float* value) const { RTC_DCHECK(value); *value = value_.float_value; } void GetInt(int* value) const { RTC_DCHECK(value); *value = value_.int_value; } void GetBool(bool* value) const { RTC_DCHECK(value); *value = value_.bool_value; } void GetPlayoutAudioDeviceInfo(PlayoutAudioDeviceInfo* value) const { RTC_DCHECK(value); *value = value_.playout_audio_device_info; } private: RuntimeSetting(Type id, float value) : type_(id), value_(value) {} RuntimeSetting(Type id, int value) : type_(id), value_(value) {} RuntimeSetting(Type id, PlayoutAudioDeviceInfo value) : type_(id), value_(value) {} Type type_; union U { U() {} U(int value) : int_value(value) {} U(float value) : float_value(value) {} U(PlayoutAudioDeviceInfo value) : playout_audio_device_info(value) {} float float_value; int int_value; bool bool_value; PlayoutAudioDeviceInfo playout_audio_device_info; } value_; }; ~AudioProcessing() override {} // Initializes internal states, while retaining all user settings. This // should be called before beginning to process a new audio stream. However, // it is not necessary to call before processing the first stream after // creation. // // It is also not necessary to call if the audio parameters (sample // rate and number of channels) have changed. Passing updated parameters // directly to `ProcessStream()` and `ProcessReverseStream()` is permissible. // If the parameters are known at init-time though, they may be provided. // TODO(webrtc:5298): Change to return void. virtual int Initialize() = 0; // The int16 interfaces require: // - only `NativeRate`s be used // - that the input, output and reverse rates must match // - that `processing_config.output_stream()` matches // `processing_config.input_stream()`. // // The float interfaces accept arbitrary rates and support differing input and // output layouts, but the output must have either one channel or the same // number of channels as the input. virtual int Initialize(const ProcessingConfig& processing_config) = 0; // TODO(peah): This method is a temporary solution used to take control // over the parameters in the audio processing module and is likely to change. virtual void ApplyConfig(const Config& config) = 0; // TODO(ajm): Only intended for internal use. Make private and friend the // necessary classes? virtual int proc_sample_rate_hz() const = 0; virtual int proc_split_sample_rate_hz() const = 0; virtual size_t num_input_channels() const = 0; virtual size_t num_proc_channels() const = 0; virtual size_t num_output_channels() const = 0; virtual size_t num_reverse_channels() const = 0; // Set to true when the output of AudioProcessing will be muted or in some // other way not used. Ideally, the captured audio would still be processed, // but some components may change behavior based on this information. // Default false. This method takes a lock. To achieve this in a lock-less // manner the PostRuntimeSetting can instead be used. virtual void set_output_will_be_muted(bool muted) = 0; // Enqueues a runtime setting. virtual void SetRuntimeSetting(RuntimeSetting setting) = 0; // Enqueues a runtime setting. Returns a bool indicating whether the // enqueueing was successfull. virtual bool PostRuntimeSetting(RuntimeSetting setting) = 0; // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio as // specified in `input_config` and `output_config`. `src` and `dest` may use // the same memory, if desired. virtual int ProcessStream(const int16_t* const src, const StreamConfig& input_config, const StreamConfig& output_config, int16_t* const dest) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // `src` points to a channel buffer, arranged according to `input_stream`. At // output, the channels will be arranged according to `output_stream` in // `dest`. // // The output must have one channel or as many channels as the input. `src` // and `dest` may use the same memory, if desired. virtual int ProcessStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // Accepts and produces a ~10 ms frame of interleaved 16 bit integer audio for // the reverse direction audio stream as specified in `input_config` and // `output_config`. `src` and `dest` may use the same memory, if desired. virtual int ProcessReverseStream(const int16_t* const src, const StreamConfig& input_config, const StreamConfig& output_config, int16_t* const dest) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element of // `data` points to a channel buffer, arranged according to `reverse_config`. virtual int ProcessReverseStream(const float* const* src, const StreamConfig& input_config, const StreamConfig& output_config, float* const* dest) = 0; // Accepts deinterleaved float audio with the range [-1, 1]. Each element // of `data` points to a channel buffer, arranged according to // `reverse_config`. virtual int AnalyzeReverseStream(const float* const* data, const StreamConfig& reverse_config) = 0; // Returns the most recently produced ~10 ms of the linear AEC output at a // rate of 16 kHz. If there is more than one capture channel, a mono // representation of the input is returned. Returns true/false to indicate // whether an output returned. virtual bool GetLinearAecOutput( rtc::ArrayView> linear_output) const = 0; // This must be called prior to ProcessStream() if and only if adaptive analog // gain control is enabled, to pass the current analog level from the audio // HAL. Must be within the range [0, 255]. virtual void set_stream_analog_level(int level) = 0; // When an analog mode is set, this should be called after // `set_stream_analog_level()` and `ProcessStream()` to obtain the recommended // new analog level for the audio HAL. It is the user's responsibility to // apply this level. virtual int recommended_stream_analog_level() const = 0; // This must be called if and only if echo processing is enabled. // // Sets the `delay` in ms between ProcessReverseStream() receiving a far-end // frame and ProcessStream() receiving a near-end frame containing the // corresponding echo. On the client-side this can be expressed as // delay = (t_render - t_analyze) + (t_process - t_capture) // where, // - t_analyze is the time a frame is passed to ProcessReverseStream() and // t_render is the time the first sample of the same frame is rendered by // the audio hardware. // - t_capture is the time the first sample of a frame is captured by the // audio hardware and t_process is the time the same frame is passed to // ProcessStream(). virtual int set_stream_delay_ms(int delay) = 0; virtual int stream_delay_ms() const = 0; // Call to signal that a key press occurred (true) or did not occur (false) // with this chunk of audio. virtual void set_stream_key_pressed(bool key_pressed) = 0; // Creates and attaches an webrtc::AecDump for recording debugging // information. // The `worker_queue` may not be null and must outlive the created // AecDump instance. |max_log_size_bytes == -1| means the log size // will be unlimited. `handle` may not be null. The AecDump takes // responsibility for `handle` and closes it in the destructor. A // return value of true indicates that the file has been // sucessfully opened, while a value of false indicates that // opening the file failed. virtual bool CreateAndAttachAecDump(absl::string_view file_name, int64_t max_log_size_bytes, rtc::TaskQueue* worker_queue) = 0; virtual bool CreateAndAttachAecDump(FILE* handle, int64_t max_log_size_bytes, rtc::TaskQueue* worker_queue) = 0; // TODO(webrtc:5298) Deprecated variant. // Attaches provided webrtc::AecDump for recording debugging // information. Log file and maximum file size logic is supposed to // be handled by implementing instance of AecDump. Calling this // method when another AecDump is attached resets the active AecDump // with a new one. This causes the d-tor of the earlier AecDump to // be called. The d-tor call may block until all pending logging // tasks are completed. virtual void AttachAecDump(std::unique_ptr aec_dump) = 0; // If no AecDump is attached, this has no effect. If an AecDump is // attached, it's destructor is called. The d-tor may block until // all pending logging tasks are completed. virtual void DetachAecDump() = 0; // Get audio processing statistics. virtual AudioProcessingStats GetStatistics() = 0; // TODO(webrtc:5298) Deprecated variant. The `has_remote_tracks` argument // should be set if there are active remote tracks (this would usually be true // during a call). If there are no remote tracks some of the stats will not be // set by AudioProcessing, because they only make sense if there is at least // one remote track. virtual AudioProcessingStats GetStatistics(bool has_remote_tracks) = 0; // Returns the last applied configuration. virtual AudioProcessing::Config GetConfig() const = 0; enum Error { // Fatal errors. kNoError = 0, kUnspecifiedError = -1, kCreationFailedError = -2, kUnsupportedComponentError = -3, kUnsupportedFunctionError = -4, kNullPointerError = -5, kBadParameterError = -6, kBadSampleRateError = -7, kBadDataLengthError = -8, kBadNumberChannelsError = -9, kFileError = -10, kStreamParameterNotSetError = -11, kNotEnabledError = -12, // Warnings are non-fatal. // This results when a set_stream_ parameter is out of range. Processing // will continue, but the parameter may have been truncated. kBadStreamParameterWarning = -13 }; // Native rates supported by the integer interfaces. enum NativeRate { kSampleRate8kHz = 8000, kSampleRate16kHz = 16000, kSampleRate32kHz = 32000, kSampleRate48kHz = 48000 }; // TODO(kwiberg): We currently need to support a compiler (Visual C++) that // complains if we don't explicitly state the size of the array here. Remove // the size when that's no longer the case. static constexpr int kNativeSampleRatesHz[4] = { kSampleRate8kHz, kSampleRate16kHz, kSampleRate32kHz, kSampleRate48kHz}; static constexpr size_t kNumNativeSampleRates = arraysize(kNativeSampleRatesHz); static constexpr int kMaxNativeSampleRateHz = kNativeSampleRatesHz[kNumNativeSampleRates - 1]; // APM processes audio in chunks of about 10 ms. See GetFrameSize() for // details. static constexpr int kChunkSizeMs = 10; // Returns floor(sample_rate_hz/100): the number of samples per channel used // as input and output to the audio processing module in calls to // ProcessStream, ProcessReverseStream, AnalyzeReverseStream, and // GetLinearAecOutput. // // This is exactly 10 ms for sample rates divisible by 100. For example: // - 48000 Hz (480 samples per channel), // - 44100 Hz (441 samples per channel), // - 16000 Hz (160 samples per channel). // // Sample rates not divisible by 100 are received/produced in frames of // approximately 10 ms. For example: // - 22050 Hz (220 samples per channel, or ~9.98 ms per frame), // - 11025 Hz (110 samples per channel, or ~9.98 ms per frame). // These nondivisible sample rates yield lower audio quality compared to // multiples of 100. Internal resampling to 10 ms frames causes a simulated // clock drift effect which impacts the performance of (for example) echo // cancellation. static int GetFrameSize(int sample_rate_hz) { return sample_rate_hz / 100; } }; class RTC_EXPORT AudioProcessingBuilder { public: AudioProcessingBuilder(); AudioProcessingBuilder(const AudioProcessingBuilder&) = delete; AudioProcessingBuilder& operator=(const AudioProcessingBuilder&) = delete; ~AudioProcessingBuilder(); // Sets the APM configuration. AudioProcessingBuilder& SetConfig(const AudioProcessing::Config& config) { config_ = config; return *this; } // Sets the echo controller factory to inject when APM is created. AudioProcessingBuilder& SetEchoControlFactory( std::unique_ptr echo_control_factory) { echo_control_factory_ = std::move(echo_control_factory); return *this; } // Sets the capture post-processing sub-module to inject when APM is created. AudioProcessingBuilder& SetCapturePostProcessing( std::unique_ptr capture_post_processing) { capture_post_processing_ = std::move(capture_post_processing); return *this; } // Sets the render pre-processing sub-module to inject when APM is created. AudioProcessingBuilder& SetRenderPreProcessing( std::unique_ptr render_pre_processing) { render_pre_processing_ = std::move(render_pre_processing); return *this; } // Sets the echo detector to inject when APM is created. AudioProcessingBuilder& SetEchoDetector( rtc::scoped_refptr echo_detector) { echo_detector_ = std::move(echo_detector); return *this; } // Sets the capture analyzer sub-module to inject when APM is created. AudioProcessingBuilder& SetCaptureAnalyzer( std::unique_ptr capture_analyzer) { capture_analyzer_ = std::move(capture_analyzer); return *this; } // Creates an APM instance with the specified config or the default one if // unspecified. Injects the specified components transferring the ownership // to the newly created APM instance - i.e., except for the config, the // builder is reset to its initial state. rtc::scoped_refptr Create(); private: AudioProcessing::Config config_; std::unique_ptr echo_control_factory_; std::unique_ptr capture_post_processing_; std::unique_ptr render_pre_processing_; rtc::scoped_refptr echo_detector_; std::unique_ptr capture_analyzer_; }; class StreamConfig { public: // sample_rate_hz: The sampling rate of the stream. // num_channels: The number of audio channels in the stream. StreamConfig(int sample_rate_hz = 0, size_t num_channels = 0) : sample_rate_hz_(sample_rate_hz), num_channels_(num_channels), num_frames_(calculate_frames(sample_rate_hz)) {} void set_sample_rate_hz(int value) { sample_rate_hz_ = value; num_frames_ = calculate_frames(value); } void set_num_channels(size_t value) { num_channels_ = value; } int sample_rate_hz() const { return sample_rate_hz_; } // The number of channels in the stream. size_t num_channels() const { return num_channels_; } size_t num_frames() const { return num_frames_; } size_t num_samples() const { return num_channels_ * num_frames_; } bool operator==(const StreamConfig& other) const { return sample_rate_hz_ == other.sample_rate_hz_ && num_channels_ == other.num_channels_; } bool operator!=(const StreamConfig& other) const { return !(*this == other); } private: static size_t calculate_frames(int sample_rate_hz) { return static_cast(AudioProcessing::GetFrameSize(sample_rate_hz)); } int sample_rate_hz_; size_t num_channels_; size_t num_frames_; }; class ProcessingConfig { public: enum StreamName { kInputStream, kOutputStream, kReverseInputStream, kReverseOutputStream, kNumStreamNames, }; const StreamConfig& input_stream() const { return streams[StreamName::kInputStream]; } const StreamConfig& output_stream() const { return streams[StreamName::kOutputStream]; } const StreamConfig& reverse_input_stream() const { return streams[StreamName::kReverseInputStream]; } const StreamConfig& reverse_output_stream() const { return streams[StreamName::kReverseOutputStream]; } StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } StreamConfig& reverse_input_stream() { return streams[StreamName::kReverseInputStream]; } StreamConfig& reverse_output_stream() { return streams[StreamName::kReverseOutputStream]; } bool operator==(const ProcessingConfig& other) const { for (int i = 0; i < StreamName::kNumStreamNames; ++i) { if (this->streams[i] != other.streams[i]) { return false; } } return true; } bool operator!=(const ProcessingConfig& other) const { return !(*this == other); } StreamConfig streams[StreamName::kNumStreamNames]; }; // Experimental interface for a custom analysis submodule. class CustomAudioAnalyzer { public: // (Re-) Initializes the submodule. virtual void Initialize(int sample_rate_hz, int num_channels) = 0; // Analyzes the given capture or render signal. virtual void Analyze(const AudioBuffer* audio) = 0; // Returns a string representation of the module state. virtual std::string ToString() const = 0; virtual ~CustomAudioAnalyzer() {} }; // Interface for a custom processing submodule. class CustomProcessing { public: // (Re-)Initializes the submodule. virtual void Initialize(int sample_rate_hz, int num_channels) = 0; // Processes the given capture or render signal. virtual void Process(AudioBuffer* audio) = 0; // Returns a string representation of the module state. virtual std::string ToString() const = 0; // Handles RuntimeSettings. TODO(webrtc:9262): make pure virtual // after updating dependencies. virtual void SetRuntimeSetting(AudioProcessing::RuntimeSetting setting); virtual ~CustomProcessing() {} }; // Interface for an echo detector submodule. class EchoDetector : public rtc::RefCountInterface { public: // (Re-)Initializes the submodule. virtual void Initialize(int capture_sample_rate_hz, int num_capture_channels, int render_sample_rate_hz, int num_render_channels) = 0; // Analysis (not changing) of the first channel of the render signal. virtual void AnalyzeRenderAudio(rtc::ArrayView render_audio) = 0; // Analysis (not changing) of the capture signal. virtual void AnalyzeCaptureAudio( rtc::ArrayView capture_audio) = 0; struct Metrics { absl::optional echo_likelihood; absl::optional echo_likelihood_recent_max; }; // Collect current metrics from the echo detector. virtual Metrics GetMetrics() const = 0; }; } // namespace webrtc #endif // MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_