/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/ns/prior_signal_model_estimator.h" #include #include #include "modules/audio_processing/ns/fast_math.h" #include "rtc_base/checks.h" namespace webrtc { namespace { // Identifies the first of the two largest peaks in the histogram. void FindFirstOfTwoLargestPeaks( float bin_size, rtc::ArrayView spectral_flatness, float* peak_position, int* peak_weight) { RTC_DCHECK(peak_position); RTC_DCHECK(peak_weight); int peak_value = 0; int secondary_peak_value = 0; *peak_position = 0.f; float secondary_peak_position = 0.f; *peak_weight = 0; int secondary_peak_weight = 0; // Identify the two largest peaks. for (int i = 0; i < kHistogramSize; ++i) { const float bin_mid = (i + 0.5f) * bin_size; if (spectral_flatness[i] > peak_value) { // Found new "first" peak candidate. secondary_peak_value = peak_value; secondary_peak_weight = *peak_weight; secondary_peak_position = *peak_position; peak_value = spectral_flatness[i]; *peak_weight = spectral_flatness[i]; *peak_position = bin_mid; } else if (spectral_flatness[i] > secondary_peak_value) { // Found new "second" peak candidate. secondary_peak_value = spectral_flatness[i]; secondary_peak_weight = spectral_flatness[i]; secondary_peak_position = bin_mid; } } // Merge the peaks if they are close. if ((fabs(secondary_peak_position - *peak_position) < 2 * bin_size) && (secondary_peak_weight > 0.5f * (*peak_weight))) { *peak_weight += secondary_peak_weight; *peak_position = 0.5f * (*peak_position + secondary_peak_position); } } void UpdateLrt(rtc::ArrayView lrt_histogram, float* prior_model_lrt, bool* low_lrt_fluctuations) { RTC_DCHECK(prior_model_lrt); RTC_DCHECK(low_lrt_fluctuations); float average = 0.f; float average_compl = 0.f; float average_squared = 0.f; int count = 0; for (int i = 0; i < 10; ++i) { float bin_mid = (i + 0.5f) * kBinSizeLrt; average += lrt_histogram[i] * bin_mid; count += lrt_histogram[i]; } if (count > 0) { average = average / count; } for (int i = 0; i < kHistogramSize; ++i) { float bin_mid = (i + 0.5f) * kBinSizeLrt; average_squared += lrt_histogram[i] * bin_mid * bin_mid; average_compl += lrt_histogram[i] * bin_mid; } constexpr float kOneFeatureUpdateWindowSize = 1.f / kFeatureUpdateWindowSize; average_squared = average_squared * kOneFeatureUpdateWindowSize; average_compl = average_compl * kOneFeatureUpdateWindowSize; // Fluctuation limit of LRT feature. *low_lrt_fluctuations = average_squared - average * average_compl < 0.05f; // Get threshold for LRT feature. constexpr float kMaxLrt = 1.f; constexpr float kMinLrt = .2f; if (*low_lrt_fluctuations) { // Very low fluctuation, so likely noise. *prior_model_lrt = kMaxLrt; } else { *prior_model_lrt = std::min(kMaxLrt, std::max(kMinLrt, 1.2f * average)); } } } // namespace PriorSignalModelEstimator::PriorSignalModelEstimator(float lrt_initial_value) : prior_model_(lrt_initial_value) {} // Extract thresholds for feature parameters and computes the threshold/weights. void PriorSignalModelEstimator::Update(const Histograms& histograms) { bool low_lrt_fluctuations; UpdateLrt(histograms.get_lrt(), &prior_model_.lrt, &low_lrt_fluctuations); // For spectral flatness and spectral difference: compute the main peaks of // the histograms. float spectral_flatness_peak_position; int spectral_flatness_peak_weight; FindFirstOfTwoLargestPeaks( kBinSizeSpecFlat, histograms.get_spectral_flatness(), &spectral_flatness_peak_position, &spectral_flatness_peak_weight); float spectral_diff_peak_position = 0.f; int spectral_diff_peak_weight = 0; FindFirstOfTwoLargestPeaks(kBinSizeSpecDiff, histograms.get_spectral_diff(), &spectral_diff_peak_position, &spectral_diff_peak_weight); // Reject if weight of peaks is not large enough, or peak value too small. // Peak limit for spectral flatness (varies between 0 and 1). const int use_spec_flat = spectral_flatness_peak_weight < 0.3f * 500 || spectral_flatness_peak_position < 0.6f ? 0 : 1; // Reject if weight of peaks is not large enough or if fluctuation of the LRT // feature are very low, indicating a noise state. const int use_spec_diff = spectral_diff_peak_weight < 0.3f * 500 || low_lrt_fluctuations ? 0 : 1; // Update the model. prior_model_.template_diff_threshold = 1.2f * spectral_diff_peak_position; prior_model_.template_diff_threshold = std::min(1.f, std::max(0.16f, prior_model_.template_diff_threshold)); float one_by_feature_sum = 1.f / (1.f + use_spec_flat + use_spec_diff); prior_model_.lrt_weighting = one_by_feature_sum; if (use_spec_flat == 1) { prior_model_.flatness_threshold = 0.9f * spectral_flatness_peak_position; prior_model_.flatness_threshold = std::min(.95f, std::max(0.1f, prior_model_.flatness_threshold)); prior_model_.flatness_weighting = one_by_feature_sum; } else { prior_model_.flatness_weighting = 0.f; } if (use_spec_diff == 1) { prior_model_.difference_weighting = one_by_feature_sum; } else { prior_model_.difference_weighting = 0.f; } } } // namespace webrtc