/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/ns/wiener_filter.h" #include #include #include #include #include "modules/audio_processing/ns/fast_math.h" #include "rtc_base/checks.h" namespace webrtc { WienerFilter::WienerFilter(const SuppressionParams& suppression_params) : suppression_params_(suppression_params) { filter_.fill(1.f); initial_spectral_estimate_.fill(0.f); spectrum_prev_process_.fill(0.f); } void WienerFilter::Update( int32_t num_analyzed_frames, rtc::ArrayView noise_spectrum, rtc::ArrayView prev_noise_spectrum, rtc::ArrayView parametric_noise_spectrum, rtc::ArrayView signal_spectrum) { for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { // Previous estimate based on previous frame with gain filter. float prev_tsa = spectrum_prev_process_[i] / (prev_noise_spectrum[i] + 0.0001f) * filter_[i]; // Current estimate. float current_tsa; if (signal_spectrum[i] > noise_spectrum[i]) { current_tsa = signal_spectrum[i] / (noise_spectrum[i] + 0.0001f) - 1.f; } else { current_tsa = 0.f; } // Directed decision estimate is sum of two terms: current estimate and // previous estimate. float snr_prior = 0.98f * prev_tsa + (1.f - 0.98f) * current_tsa; filter_[i] = snr_prior / (suppression_params_.over_subtraction_factor + snr_prior); filter_[i] = std::max(std::min(filter_[i], 1.f), suppression_params_.minimum_attenuating_gain); } if (num_analyzed_frames < kShortStartupPhaseBlocks) { for (size_t i = 0; i < kFftSizeBy2Plus1; ++i) { initial_spectral_estimate_[i] += signal_spectrum[i]; float filter_initial = initial_spectral_estimate_[i] - suppression_params_.over_subtraction_factor * parametric_noise_spectrum[i]; filter_initial /= initial_spectral_estimate_[i] + 0.0001f; filter_initial = std::max(std::min(filter_initial, 1.f), suppression_params_.minimum_attenuating_gain); // Weight the two suppression filters. constexpr float kOnyByShortStartupPhaseBlocks = 1.f / kShortStartupPhaseBlocks; filter_initial *= kShortStartupPhaseBlocks - num_analyzed_frames; filter_[i] *= num_analyzed_frames; filter_[i] += filter_initial; filter_[i] *= kOnyByShortStartupPhaseBlocks; } } std::copy(signal_spectrum.begin(), signal_spectrum.end(), spectrum_prev_process_.begin()); } float WienerFilter::ComputeOverallScalingFactor( int32_t num_analyzed_frames, float prior_speech_probability, float energy_before_filtering, float energy_after_filtering) const { if (!suppression_params_.use_attenuation_adjustment || num_analyzed_frames <= kLongStartupPhaseBlocks) { return 1.f; } float gain = SqrtFastApproximation(energy_after_filtering / (energy_before_filtering + 1.f)); // Scaling for new version. Threshold in final energy gain factor calculation. constexpr float kBLim = 0.5f; float scale_factor1 = 1.f; if (gain > kBLim) { scale_factor1 = 1.f + 1.3f * (gain - kBLim); if (gain * scale_factor1 > 1.f) { scale_factor1 = 1.f / gain; } } float scale_factor2 = 1.f; if (gain < kBLim) { // Do not reduce scale too much for pause regions: attenuation here should // be controlled by flooring. gain = std::max(gain, suppression_params_.minimum_attenuating_gain); scale_factor2 = 1.f - 0.3f * (kBLim - gain); } // Combine both scales with speech/noise prob: note prior // (prior_speech_probability) is not frequency dependent. return prior_speech_probability * scale_factor1 + (1.f - prior_speech_probability) * scale_factor2; } } // namespace webrtc