/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // MSVC++ requires this to be set before any other includes to get M_PI. #define _USE_MATH_DEFINES #include "modules/audio_processing/rms_level.h" #include #include #include #include "api/array_view.h" #include "rtc_base/checks.h" #include "rtc_base/numerics/safe_conversions.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kSampleRateHz = 48000; constexpr size_t kBlockSizeSamples = kSampleRateHz / 100; std::unique_ptr RunTest(rtc::ArrayView input) { std::unique_ptr level(new RmsLevel); for (size_t n = 0; n + kBlockSizeSamples <= input.size(); n += kBlockSizeSamples) { level->Analyze(input.subview(n, kBlockSizeSamples)); } return level; } std::unique_ptr RunTest(rtc::ArrayView input) { std::unique_ptr level(new RmsLevel); for (size_t n = 0; n + kBlockSizeSamples <= input.size(); n += kBlockSizeSamples) { level->Analyze(input.subview(n, kBlockSizeSamples)); } return level; } std::vector CreateInt16Sinusoid(int frequency_hz, int amplitude, size_t num_samples) { std::vector x(num_samples); for (size_t n = 0; n < num_samples; ++n) { x[n] = rtc::saturated_cast( amplitude * std::sin(2 * M_PI * n * frequency_hz / kSampleRateHz)); } return x; } std::vector CreateFloatSinusoid(int frequency_hz, int amplitude, size_t num_samples) { std::vector x16 = CreateInt16Sinusoid(frequency_hz, amplitude, num_samples); std::vector x(x16.size()); for (size_t n = 0; n < x.size(); ++n) { x[n] = x16[n]; } return x; } } // namespace TEST(RmsLevelTest, VerifyIndentityBetweenFloatAndFix) { auto x_f = CreateFloatSinusoid(1000, INT16_MAX, kSampleRateHz); auto x_i = CreateFloatSinusoid(1000, INT16_MAX, kSampleRateHz); auto level_f = RunTest(x_f); auto level_i = RunTest(x_i); int avg_i = level_i->Average(); int avg_f = level_f->Average(); EXPECT_EQ(3, avg_i); // -3 dBFS EXPECT_EQ(avg_f, avg_i); } TEST(RmsLevelTest, Run1000HzFullScale) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); EXPECT_EQ(3, level->Average()); // -3 dBFS } TEST(RmsLevelTest, Run1000HzFullScaleAverageAndPeak) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); auto stats = level->AverageAndPeak(); EXPECT_EQ(3, stats.average); // -3 dBFS EXPECT_EQ(3, stats.peak); } TEST(RmsLevelTest, Run1000HzHalfScale) { auto x = CreateInt16Sinusoid(1000, INT16_MAX / 2, kSampleRateHz); auto level = RunTest(x); EXPECT_EQ(9, level->Average()); // -9 dBFS } TEST(RmsLevelTest, RunZeros) { std::vector x(kSampleRateHz, 0); // 1 second of pure silence. auto level = RunTest(x); EXPECT_EQ(127, level->Average()); } TEST(RmsLevelTest, RunZerosAverageAndPeak) { std::vector x(kSampleRateHz, 0); // 1 second of pure silence. auto level = RunTest(x); auto stats = level->AverageAndPeak(); EXPECT_EQ(127, stats.average); EXPECT_EQ(127, stats.peak); } TEST(RmsLevelTest, NoSamples) { RmsLevel level; EXPECT_EQ(127, level.Average()); // Return minimum if no samples are given. } TEST(RmsLevelTest, NoSamplesAverageAndPeak) { RmsLevel level; auto stats = level.AverageAndPeak(); EXPECT_EQ(127, stats.average); EXPECT_EQ(127, stats.peak); } TEST(RmsLevelTest, PollTwice) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); level->Average(); EXPECT_EQ(127, level->Average()); // Stats should be reset at this point. } TEST(RmsLevelTest, Reset) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); level->Reset(); EXPECT_EQ(127, level->Average()); // Stats should be reset at this point. } // Inserts 1 second of full-scale sinusoid, followed by 1 second of muted. TEST(RmsLevelTest, ProcessMuted) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); const size_t kBlocksPerSecond = rtc::CheckedDivExact( static_cast(kSampleRateHz), kBlockSizeSamples); for (size_t i = 0; i < kBlocksPerSecond; ++i) { level->AnalyzeMuted(kBlockSizeSamples); } EXPECT_EQ(6, level->Average()); // Average RMS halved due to the silence. } // Digital silence must yield 127 and anything else should yield 126 or lower. TEST(RmsLevelTest, OnlyDigitalSilenceIs127) { std::vector test_buffer(kSampleRateHz, 0); auto level = RunTest(test_buffer); EXPECT_EQ(127, level->Average()); // Change one sample to something other than 0 to make the buffer not strictly // represent digital silence. test_buffer[0] = 1; level = RunTest(test_buffer); EXPECT_LT(level->Average(), 127); } // Inserts 1 second of half-scale sinusoid, follwed by 10 ms of full-scale, and // finally 1 second of half-scale again. Expect the average to be -9 dBFS due // to the vast majority of the signal being half-scale, and the peak to be // -3 dBFS. TEST(RmsLevelTest, RunHalfScaleAndInsertFullScale) { auto half_scale = CreateInt16Sinusoid(1000, INT16_MAX / 2, kSampleRateHz); auto full_scale = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz / 100); auto x = half_scale; x.insert(x.end(), full_scale.begin(), full_scale.end()); x.insert(x.end(), half_scale.begin(), half_scale.end()); ASSERT_EQ(static_cast(2 * kSampleRateHz + kSampleRateHz / 100), x.size()); auto level = RunTest(x); auto stats = level->AverageAndPeak(); EXPECT_EQ(9, stats.average); EXPECT_EQ(3, stats.peak); } TEST(RmsLevelTest, ResetOnBlockSizeChange) { auto x = CreateInt16Sinusoid(1000, INT16_MAX, kSampleRateHz); auto level = RunTest(x); // Create a new signal with half amplitude, but double block length. auto y = CreateInt16Sinusoid(1000, INT16_MAX / 2, kBlockSizeSamples * 2); level->Analyze(y); auto stats = level->AverageAndPeak(); // Expect all stats to only be influenced by the last signal (y), since the // changed block size should reset the stats. EXPECT_EQ(9, stats.average); EXPECT_EQ(9, stats.peak); } } // namespace webrtc