/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/test/audio_processing_simulator.h" #include #include #include #include #include #include #include #include "absl/strings/string_view.h" #include "api/audio/echo_canceller3_factory.h" #include "api/audio/echo_detector_creator.h" #include "modules/audio_processing/aec_dump/aec_dump_factory.h" #include "modules/audio_processing/echo_control_mobile_impl.h" #include "modules/audio_processing/include/audio_processing.h" #include "modules/audio_processing/logging/apm_data_dumper.h" #include "modules/audio_processing/test/echo_canceller3_config_json.h" #include "modules/audio_processing/test/fake_recording_device.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/strings/json.h" #include "rtc_base/strings/string_builder.h" namespace webrtc { namespace test { namespace { // Helper for reading JSON from a file and parsing it to an AEC3 configuration. EchoCanceller3Config ReadAec3ConfigFromJsonFile(absl::string_view filename) { std::string json_string; std::string s; std::ifstream f(std::string(filename).c_str()); if (f.fail()) { std::cout << "Failed to open the file " << filename << std::endl; RTC_CHECK_NOTREACHED(); } while (std::getline(f, s)) { json_string += s; } bool parsing_successful; EchoCanceller3Config cfg; Aec3ConfigFromJsonString(json_string, &cfg, &parsing_successful); if (!parsing_successful) { std::cout << "Parsing of json string failed: " << std::endl << json_string << std::endl; RTC_CHECK_NOTREACHED(); } RTC_CHECK(EchoCanceller3Config::Validate(&cfg)); return cfg; } std::string GetIndexedOutputWavFilename(absl::string_view wav_name, int counter) { rtc::StringBuilder ss; ss << wav_name.substr(0, wav_name.size() - 4) << "_" << counter << wav_name.substr(wav_name.size() - 4); return ss.Release(); } void WriteEchoLikelihoodGraphFileHeader(std::ofstream* output_file) { (*output_file) << "import numpy as np" << std::endl << "import matplotlib.pyplot as plt" << std::endl << "y = np.array(["; } void WriteEchoLikelihoodGraphFileFooter(std::ofstream* output_file) { (*output_file) << "])" << std::endl << "if __name__ == '__main__':" << std::endl << " x = np.arange(len(y))*.01" << std::endl << " plt.plot(x, y)" << std::endl << " plt.ylabel('Echo likelihood')" << std::endl << " plt.xlabel('Time (s)')" << std::endl << " plt.show()" << std::endl; } // RAII class for execution time measurement. Updates the provided // ApiCallStatistics based on the time between ScopedTimer creation and // leaving the enclosing scope. class ScopedTimer { public: ScopedTimer(ApiCallStatistics* api_call_statistics, ApiCallStatistics::CallType call_type) : start_time_(rtc::TimeNanos()), call_type_(call_type), api_call_statistics_(api_call_statistics) {} ~ScopedTimer() { api_call_statistics_->Add(rtc::TimeNanos() - start_time_, call_type_); } private: const int64_t start_time_; const ApiCallStatistics::CallType call_type_; ApiCallStatistics* const api_call_statistics_; }; } // namespace SimulationSettings::SimulationSettings() = default; SimulationSettings::SimulationSettings(const SimulationSettings&) = default; SimulationSettings::~SimulationSettings() = default; AudioProcessingSimulator::AudioProcessingSimulator( const SimulationSettings& settings, rtc::scoped_refptr audio_processing, std::unique_ptr ap_builder) : settings_(settings), ap_(std::move(audio_processing)), applied_input_volume_(settings.initial_mic_level), fake_recording_device_( settings.initial_mic_level, settings_.simulate_mic_gain ? *settings.simulated_mic_kind : 0), worker_queue_("file_writer_task_queue") { RTC_CHECK(!settings_.dump_internal_data || WEBRTC_APM_DEBUG_DUMP == 1); if (settings_.dump_start_frame || settings_.dump_end_frame) { ApmDataDumper::SetActivated(!settings_.dump_start_frame); } else { ApmDataDumper::SetActivated(settings_.dump_internal_data); } if (settings_.dump_set_to_use) { ApmDataDumper::SetDumpSetToUse(*settings_.dump_set_to_use); } if (settings_.dump_internal_data_output_dir.has_value()) { ApmDataDumper::SetOutputDirectory( settings_.dump_internal_data_output_dir.value()); } if (settings_.ed_graph_output_filename && !settings_.ed_graph_output_filename->empty()) { residual_echo_likelihood_graph_writer_.open( *settings_.ed_graph_output_filename); RTC_CHECK(residual_echo_likelihood_graph_writer_.is_open()); WriteEchoLikelihoodGraphFileHeader(&residual_echo_likelihood_graph_writer_); } if (settings_.simulate_mic_gain) RTC_LOG(LS_VERBOSE) << "Simulating analog mic gain"; // Create the audio processing object. RTC_CHECK(!(ap_ && ap_builder)) << "The AudioProcessing and the AudioProcessingBuilder cannot both be " "specified at the same time."; if (ap_) { RTC_CHECK(!settings_.aec_settings_filename); RTC_CHECK(!settings_.print_aec_parameter_values); } else { // Use specied builder if such is provided, otherwise create a new builder. std::unique_ptr builder = !!ap_builder ? std::move(ap_builder) : std::make_unique(); // Create and set an EchoCanceller3Factory if needed. const bool use_aec = settings_.use_aec && *settings_.use_aec; if (use_aec) { EchoCanceller3Config cfg; if (settings_.aec_settings_filename) { if (settings_.use_verbose_logging) { std::cout << "Reading AEC Parameters from JSON input." << std::endl; } cfg = ReadAec3ConfigFromJsonFile(*settings_.aec_settings_filename); } if (settings_.linear_aec_output_filename) { cfg.filter.export_linear_aec_output = true; } if (settings_.print_aec_parameter_values) { if (!settings_.use_quiet_output) { std::cout << "AEC settings:" << std::endl; } std::cout << Aec3ConfigToJsonString(cfg) << std::endl; } auto echo_control_factory = std::make_unique(cfg); builder->SetEchoControlFactory(std::move(echo_control_factory)); } if (settings_.use_ed && *settings.use_ed) { builder->SetEchoDetector(CreateEchoDetector()); } // Create an audio processing object. ap_ = builder->Create(); RTC_CHECK(ap_); } } AudioProcessingSimulator::~AudioProcessingSimulator() { if (residual_echo_likelihood_graph_writer_.is_open()) { WriteEchoLikelihoodGraphFileFooter(&residual_echo_likelihood_graph_writer_); residual_echo_likelihood_graph_writer_.close(); } } void AudioProcessingSimulator::ProcessStream(bool fixed_interface) { // Optionally simulate the input volume. if (settings_.simulate_mic_gain) { RTC_DCHECK(!settings_.use_analog_mic_gain_emulation); // Set the input volume to simulate. fake_recording_device_.SetMicLevel(applied_input_volume_); if (settings_.aec_dump_input_filename && aec_dump_applied_input_level_.has_value()) { // For AEC dumps, use the applied input level, if recorded, to "virtually // restore" the capture signal level before the input volume was applied. fake_recording_device_.SetUndoMicLevel(*aec_dump_applied_input_level_); } // Apply the input volume. if (fixed_interface) { fake_recording_device_.SimulateAnalogGain(fwd_frame_.data); } else { fake_recording_device_.SimulateAnalogGain(in_buf_.get()); } } // Let APM know which input volume was applied. // Keep track of whether `set_stream_analog_level()` is called. bool applied_input_volume_set = false; if (settings_.simulate_mic_gain) { // When the input volume is simulated, use the volume applied for // simulation. ap_->set_stream_analog_level(fake_recording_device_.MicLevel()); applied_input_volume_set = true; } else if (!settings_.use_analog_mic_gain_emulation) { // Ignore the recommended input volume stored in `applied_input_volume_` and // instead notify APM with the recorded input volume (if available). if (settings_.aec_dump_input_filename && aec_dump_applied_input_level_.has_value()) { // The actually applied input volume is available in the AEC dump. ap_->set_stream_analog_level(*aec_dump_applied_input_level_); applied_input_volume_set = true; } else if (!settings_.aec_dump_input_filename) { // Wav files do not include any information about the actually applied // input volume. Hence, use the recommended input volume stored in // `applied_input_volume_`. ap_->set_stream_analog_level(applied_input_volume_); applied_input_volume_set = true; } } // Post any scheduled runtime settings. if (settings_.frame_for_sending_capture_output_used_false && *settings_.frame_for_sending_capture_output_used_false == static_cast(num_process_stream_calls_)) { ap_->PostRuntimeSetting( AudioProcessing::RuntimeSetting::CreateCaptureOutputUsedSetting(false)); } if (settings_.frame_for_sending_capture_output_used_true && *settings_.frame_for_sending_capture_output_used_true == static_cast(num_process_stream_calls_)) { ap_->PostRuntimeSetting( AudioProcessing::RuntimeSetting::CreateCaptureOutputUsedSetting(true)); } // Process the current audio frame. if (fixed_interface) { { const auto st = ScopedTimer(&api_call_statistics_, ApiCallStatistics::CallType::kCapture); RTC_CHECK_EQ( AudioProcessing::kNoError, ap_->ProcessStream(fwd_frame_.data.data(), fwd_frame_.config, fwd_frame_.config, fwd_frame_.data.data())); } fwd_frame_.CopyTo(out_buf_.get()); } else { const auto st = ScopedTimer(&api_call_statistics_, ApiCallStatistics::CallType::kCapture); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessStream(in_buf_->channels(), in_config_, out_config_, out_buf_->channels())); } // Retrieve the recommended input volume only if `set_stream_analog_level()` // has been called to stick to the APM API contract. if (applied_input_volume_set) { applied_input_volume_ = ap_->recommended_stream_analog_level(); } if (buffer_memory_writer_) { RTC_CHECK(!buffer_file_writer_); buffer_memory_writer_->Write(*out_buf_); } else if (buffer_file_writer_) { RTC_CHECK(!buffer_memory_writer_); buffer_file_writer_->Write(*out_buf_); } if (linear_aec_output_file_writer_) { bool output_available = ap_->GetLinearAecOutput(linear_aec_output_buf_); RTC_CHECK(output_available); RTC_CHECK_GT(linear_aec_output_buf_.size(), 0); RTC_CHECK_EQ(linear_aec_output_buf_[0].size(), 160); for (size_t k = 0; k < linear_aec_output_buf_[0].size(); ++k) { for (size_t ch = 0; ch < linear_aec_output_buf_.size(); ++ch) { RTC_CHECK_EQ(linear_aec_output_buf_[ch].size(), 160); float sample = FloatToFloatS16(linear_aec_output_buf_[ch][k]); linear_aec_output_file_writer_->WriteSamples(&sample, 1); } } } if (residual_echo_likelihood_graph_writer_.is_open()) { auto stats = ap_->GetStatistics(); residual_echo_likelihood_graph_writer_ << stats.residual_echo_likelihood.value_or(-1.f) << ", "; } ++num_process_stream_calls_; } void AudioProcessingSimulator::ProcessReverseStream(bool fixed_interface) { if (fixed_interface) { { const auto st = ScopedTimer(&api_call_statistics_, ApiCallStatistics::CallType::kRender); RTC_CHECK_EQ( AudioProcessing::kNoError, ap_->ProcessReverseStream(rev_frame_.data.data(), rev_frame_.config, rev_frame_.config, rev_frame_.data.data())); } rev_frame_.CopyTo(reverse_out_buf_.get()); } else { const auto st = ScopedTimer(&api_call_statistics_, ApiCallStatistics::CallType::kRender); RTC_CHECK_EQ(AudioProcessing::kNoError, ap_->ProcessReverseStream( reverse_in_buf_->channels(), reverse_in_config_, reverse_out_config_, reverse_out_buf_->channels())); } if (reverse_buffer_file_writer_) { reverse_buffer_file_writer_->Write(*reverse_out_buf_); } ++num_reverse_process_stream_calls_; } void AudioProcessingSimulator::SetupBuffersConfigsOutputs( int input_sample_rate_hz, int output_sample_rate_hz, int reverse_input_sample_rate_hz, int reverse_output_sample_rate_hz, int input_num_channels, int output_num_channels, int reverse_input_num_channels, int reverse_output_num_channels) { in_config_ = StreamConfig(input_sample_rate_hz, input_num_channels); in_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(input_sample_rate_hz, kChunksPerSecond), input_num_channels)); reverse_in_config_ = StreamConfig(reverse_input_sample_rate_hz, reverse_input_num_channels); reverse_in_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(reverse_input_sample_rate_hz, kChunksPerSecond), reverse_input_num_channels)); out_config_ = StreamConfig(output_sample_rate_hz, output_num_channels); out_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(output_sample_rate_hz, kChunksPerSecond), output_num_channels)); reverse_out_config_ = StreamConfig(reverse_output_sample_rate_hz, reverse_output_num_channels); reverse_out_buf_.reset(new ChannelBuffer( rtc::CheckedDivExact(reverse_output_sample_rate_hz, kChunksPerSecond), reverse_output_num_channels)); fwd_frame_.SetFormat(input_sample_rate_hz, input_num_channels); rev_frame_.SetFormat(reverse_input_sample_rate_hz, reverse_input_num_channels); if (settings_.use_verbose_logging) { rtc::LogMessage::LogToDebug(rtc::LS_VERBOSE); std::cout << "Sample rates:" << std::endl; std::cout << " Forward input: " << input_sample_rate_hz << std::endl; std::cout << " Forward output: " << output_sample_rate_hz << std::endl; std::cout << " Reverse input: " << reverse_input_sample_rate_hz << std::endl; std::cout << " Reverse output: " << reverse_output_sample_rate_hz << std::endl; std::cout << "Number of channels: " << std::endl; std::cout << " Forward input: " << input_num_channels << std::endl; std::cout << " Forward output: " << output_num_channels << std::endl; std::cout << " Reverse input: " << reverse_input_num_channels << std::endl; std::cout << " Reverse output: " << reverse_output_num_channels << std::endl; } SetupOutput(); } void AudioProcessingSimulator::SelectivelyToggleDataDumping( int init_index, int capture_frames_since_init) const { if (!(settings_.dump_start_frame || settings_.dump_end_frame)) { return; } if (settings_.init_to_process && *settings_.init_to_process != init_index) { return; } if (settings_.dump_start_frame && *settings_.dump_start_frame == capture_frames_since_init) { ApmDataDumper::SetActivated(true); } if (settings_.dump_end_frame && *settings_.dump_end_frame == capture_frames_since_init) { ApmDataDumper::SetActivated(false); } } void AudioProcessingSimulator::SetupOutput() { if (settings_.output_filename) { std::string filename; if (settings_.store_intermediate_output) { filename = GetIndexedOutputWavFilename(*settings_.output_filename, output_reset_counter_); } else { filename = *settings_.output_filename; } std::unique_ptr out_file( new WavWriter(filename, out_config_.sample_rate_hz(), static_cast(out_config_.num_channels()), settings_.wav_output_format)); buffer_file_writer_.reset(new ChannelBufferWavWriter(std::move(out_file))); } else if (settings_.aec_dump_input_string.has_value()) { buffer_memory_writer_ = std::make_unique( settings_.processed_capture_samples); } if (settings_.linear_aec_output_filename) { std::string filename; if (settings_.store_intermediate_output) { filename = GetIndexedOutputWavFilename( *settings_.linear_aec_output_filename, output_reset_counter_); } else { filename = *settings_.linear_aec_output_filename; } linear_aec_output_file_writer_.reset( new WavWriter(filename, 16000, out_config_.num_channels(), settings_.wav_output_format)); linear_aec_output_buf_.resize(out_config_.num_channels()); } if (settings_.reverse_output_filename) { std::string filename; if (settings_.store_intermediate_output) { filename = GetIndexedOutputWavFilename(*settings_.reverse_output_filename, output_reset_counter_); } else { filename = *settings_.reverse_output_filename; } std::unique_ptr reverse_out_file( new WavWriter(filename, reverse_out_config_.sample_rate_hz(), static_cast(reverse_out_config_.num_channels()), settings_.wav_output_format)); reverse_buffer_file_writer_.reset( new ChannelBufferWavWriter(std::move(reverse_out_file))); } ++output_reset_counter_; } void AudioProcessingSimulator::DetachAecDump() { if (settings_.aec_dump_output_filename) { ap_->DetachAecDump(); } } void AudioProcessingSimulator::ConfigureAudioProcessor() { AudioProcessing::Config apm_config; if (settings_.use_ts) { apm_config.transient_suppression.enabled = *settings_.use_ts != 0; } if (settings_.multi_channel_render) { apm_config.pipeline.multi_channel_render = *settings_.multi_channel_render; } if (settings_.multi_channel_capture) { apm_config.pipeline.multi_channel_capture = *settings_.multi_channel_capture; } if (settings_.use_agc2) { apm_config.gain_controller2.enabled = *settings_.use_agc2; if (settings_.agc2_fixed_gain_db) { apm_config.gain_controller2.fixed_digital.gain_db = *settings_.agc2_fixed_gain_db; } if (settings_.agc2_use_adaptive_gain) { apm_config.gain_controller2.adaptive_digital.enabled = *settings_.agc2_use_adaptive_gain; } } if (settings_.use_pre_amplifier) { apm_config.pre_amplifier.enabled = *settings_.use_pre_amplifier; if (settings_.pre_amplifier_gain_factor) { apm_config.pre_amplifier.fixed_gain_factor = *settings_.pre_amplifier_gain_factor; } } if (settings_.use_analog_mic_gain_emulation) { if (*settings_.use_analog_mic_gain_emulation) { apm_config.capture_level_adjustment.enabled = true; apm_config.capture_level_adjustment.analog_mic_gain_emulation.enabled = true; } else { apm_config.capture_level_adjustment.analog_mic_gain_emulation.enabled = false; } } if (settings_.analog_mic_gain_emulation_initial_level) { apm_config.capture_level_adjustment.analog_mic_gain_emulation .initial_level = *settings_.analog_mic_gain_emulation_initial_level; } if (settings_.use_capture_level_adjustment) { apm_config.capture_level_adjustment.enabled = *settings_.use_capture_level_adjustment; } if (settings_.pre_gain_factor) { apm_config.capture_level_adjustment.pre_gain_factor = *settings_.pre_gain_factor; } if (settings_.post_gain_factor) { apm_config.capture_level_adjustment.post_gain_factor = *settings_.post_gain_factor; } const bool use_aec = settings_.use_aec && *settings_.use_aec; const bool use_aecm = settings_.use_aecm && *settings_.use_aecm; if (use_aec || use_aecm) { apm_config.echo_canceller.enabled = true; apm_config.echo_canceller.mobile_mode = use_aecm; } apm_config.echo_canceller.export_linear_aec_output = !!settings_.linear_aec_output_filename; if (settings_.use_hpf) { apm_config.high_pass_filter.enabled = *settings_.use_hpf; } if (settings_.use_agc) { apm_config.gain_controller1.enabled = *settings_.use_agc; } if (settings_.agc_mode) { apm_config.gain_controller1.mode = static_cast( *settings_.agc_mode); } if (settings_.use_agc_limiter) { apm_config.gain_controller1.enable_limiter = *settings_.use_agc_limiter; } if (settings_.agc_target_level) { apm_config.gain_controller1.target_level_dbfs = *settings_.agc_target_level; } if (settings_.agc_compression_gain) { apm_config.gain_controller1.compression_gain_db = *settings_.agc_compression_gain; } if (settings_.use_analog_agc) { apm_config.gain_controller1.analog_gain_controller.enabled = *settings_.use_analog_agc; } if (settings_.analog_agc_use_digital_adaptive_controller) { apm_config.gain_controller1.analog_gain_controller.enable_digital_adaptive = *settings_.analog_agc_use_digital_adaptive_controller; } if (settings_.maximum_internal_processing_rate) { apm_config.pipeline.maximum_internal_processing_rate = *settings_.maximum_internal_processing_rate; } if (settings_.use_ns) { apm_config.noise_suppression.enabled = *settings_.use_ns; } if (settings_.ns_level) { const int level = *settings_.ns_level; RTC_CHECK_GE(level, 0); RTC_CHECK_LE(level, 3); apm_config.noise_suppression.level = static_cast(level); } if (settings_.ns_analysis_on_linear_aec_output) { apm_config.noise_suppression.analyze_linear_aec_output_when_available = *settings_.ns_analysis_on_linear_aec_output; } ap_->ApplyConfig(apm_config); if (settings_.use_ts) { // Default to key pressed if activating the transient suppressor with // continuous key events. ap_->set_stream_key_pressed(*settings_.use_ts == 2); } if (settings_.aec_dump_output_filename) { ap_->AttachAecDump(AecDumpFactory::Create( *settings_.aec_dump_output_filename, -1, &worker_queue_)); } } } // namespace test } // namespace webrtc