/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // An implementation of a 3-band FIR filter-bank with DCT modulation, similar to // the proposed in "Multirate Signal Processing for Communication Systems" by // Fredric J Harris. // // The idea is to take a heterodyne system and change the order of the // components to get something which is efficient to implement digitally. // // It is possible to separate the filter using the noble identity as follows: // // H(z) = H0(z^3) + z^-1 * H1(z^3) + z^-2 * H2(z^3) // // This is used in the analysis stage to first downsample serial to parallel // and then filter each branch with one of these polyphase decompositions of the // lowpass prototype. Because each filter is only a modulation of the prototype, // it is enough to multiply each coefficient by the respective cosine value to // shift it to the desired band. But because the cosine period is 12 samples, // it requires separating the prototype even further using the noble identity. // After filtering and modulating for each band, the output of all filters is // accumulated to get the downsampled bands. // // A similar logic can be applied to the synthesis stage. #include "modules/audio_processing/three_band_filter_bank.h" #include #include "rtc_base/checks.h" namespace webrtc { namespace { // Factors to take into account when choosing `kFilterSize`: // 1. Higher `kFilterSize`, means faster transition, which ensures less // aliasing. This is especially important when there is non-linear // processing between the splitting and merging. // 2. The delay that this filter bank introduces is // `kNumBands` * `kSparsity` * `kFilterSize` / 2, so it increases linearly // with `kFilterSize`. // 3. The computation complexity also increases linearly with `kFilterSize`. // The Matlab code to generate these `kFilterCoeffs` is: // // N = kNumBands * kSparsity * kFilterSize - 1; // h = fir1(N, 1 / (2 * kNumBands), kaiser(N + 1, 3.5)); // reshape(h, kNumBands * kSparsity, kFilterSize); // // The code below uses the values of kFilterSize, kNumBands and kSparsity // specified in the header. // Because the total bandwidth of the lower and higher band is double the middle // one (because of the spectrum parity), the low-pass prototype is half the // bandwidth of 1 / (2 * `kNumBands`) and is then shifted with cosine modulation // to the right places. // A Kaiser window is used because of its flexibility and the alpha is set to // 3.5, since that sets a stop band attenuation of 40dB ensuring a fast // transition. constexpr int kSubSampling = ThreeBandFilterBank::kNumBands; constexpr int kDctSize = ThreeBandFilterBank::kNumBands; static_assert(ThreeBandFilterBank::kNumBands * ThreeBandFilterBank::kSplitBandSize == ThreeBandFilterBank::kFullBandSize, "The full band must be split in equally sized subbands"); const float kFilterCoeffs[ThreeBandFilterBank::kNumNonZeroFilters][kFilterSize] = { {-0.00047749f, -0.00496888f, +0.16547118f, +0.00425496f}, {-0.00173287f, -0.01585778f, +0.14989004f, +0.00994113f}, {-0.00304815f, -0.02536082f, +0.12154542f, +0.01157993f}, {-0.00346946f, -0.02587886f, +0.04760441f, +0.00607594f}, {-0.00154717f, -0.01136076f, +0.01387458f, +0.00186353f}, {+0.00186353f, +0.01387458f, -0.01136076f, -0.00154717f}, {+0.00607594f, +0.04760441f, -0.02587886f, -0.00346946f}, {+0.00983212f, +0.08543175f, -0.02982767f, -0.00383509f}, {+0.00994113f, +0.14989004f, -0.01585778f, -0.00173287f}, {+0.00425496f, +0.16547118f, -0.00496888f, -0.00047749f}}; constexpr int kZeroFilterIndex1 = 3; constexpr int kZeroFilterIndex2 = 9; const float kDctModulation[ThreeBandFilterBank::kNumNonZeroFilters][kDctSize] = {{2.f, 2.f, 2.f}, {1.73205077f, 0.f, -1.73205077f}, {1.f, -2.f, 1.f}, {-1.f, 2.f, -1.f}, {-1.73205077f, 0.f, 1.73205077f}, {-2.f, -2.f, -2.f}, {-1.73205077f, 0.f, 1.73205077f}, {-1.f, 2.f, -1.f}, {1.f, -2.f, 1.f}, {1.73205077f, 0.f, -1.73205077f}}; // Filters the input signal `in` with the filter `filter` using a shift by // `in_shift`, taking into account the previous state. void FilterCore( rtc::ArrayView filter, rtc::ArrayView in, const int in_shift, rtc::ArrayView out, rtc::ArrayView state) { constexpr int kMaxInShift = (kStride - 1); RTC_DCHECK_GE(in_shift, 0); RTC_DCHECK_LE(in_shift, kMaxInShift); std::fill(out.begin(), out.end(), 0.f); for (int k = 0; k < in_shift; ++k) { for (int i = 0, j = kMemorySize + k - in_shift; i < kFilterSize; ++i, j -= kStride) { out[k] += state[j] * filter[i]; } } for (int k = in_shift, shift = 0; k < kFilterSize * kStride; ++k, ++shift) { RTC_DCHECK_GE(shift, 0); const int loop_limit = std::min(kFilterSize, 1 + (shift >> kStrideLog2)); for (int i = 0, j = shift; i < loop_limit; ++i, j -= kStride) { out[k] += in[j] * filter[i]; } for (int i = loop_limit, j = kMemorySize + shift - loop_limit * kStride; i < kFilterSize; ++i, j -= kStride) { out[k] += state[j] * filter[i]; } } for (int k = kFilterSize * kStride, shift = kFilterSize * kStride - in_shift; k < ThreeBandFilterBank::kSplitBandSize; ++k, ++shift) { for (int i = 0, j = shift; i < kFilterSize; ++i, j -= kStride) { out[k] += in[j] * filter[i]; } } // Update current state. std::copy(in.begin() + ThreeBandFilterBank::kSplitBandSize - kMemorySize, in.end(), state.begin()); } } // namespace // Because the low-pass filter prototype has half bandwidth it is possible to // use a DCT to shift it in both directions at the same time, to the center // frequencies [1 / 12, 3 / 12, 5 / 12]. ThreeBandFilterBank::ThreeBandFilterBank() { RTC_DCHECK_EQ(state_analysis_.size(), kNumNonZeroFilters); RTC_DCHECK_EQ(state_synthesis_.size(), kNumNonZeroFilters); for (int k = 0; k < kNumNonZeroFilters; ++k) { RTC_DCHECK_EQ(state_analysis_[k].size(), kMemorySize); RTC_DCHECK_EQ(state_synthesis_[k].size(), kMemorySize); state_analysis_[k].fill(0.f); state_synthesis_[k].fill(0.f); } } ThreeBandFilterBank::~ThreeBandFilterBank() = default; // The analysis can be separated in these steps: // 1. Serial to parallel downsampling by a factor of `kNumBands`. // 2. Filtering of `kSparsity` different delayed signals with polyphase // decomposition of the low-pass prototype filter and upsampled by a factor // of `kSparsity`. // 3. Modulating with cosines and accumulating to get the desired band. void ThreeBandFilterBank::Analysis( rtc::ArrayView in, rtc::ArrayView, ThreeBandFilterBank::kNumBands> out) { // Initialize the output to zero. for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) { RTC_DCHECK_EQ(out[band].size(), kSplitBandSize); std::fill(out[band].begin(), out[band].end(), 0); } for (int downsampling_index = 0; downsampling_index < kSubSampling; ++downsampling_index) { // Downsample to form the filter input. std::array in_subsampled; for (int k = 0; k < kSplitBandSize; ++k) { in_subsampled[k] = in[(kSubSampling - 1) - downsampling_index + kSubSampling * k]; } for (int in_shift = 0; in_shift < kStride; ++in_shift) { // Choose filter, skip zero filters. const int index = downsampling_index + in_shift * kSubSampling; if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) { continue; } const int filter_index = index < kZeroFilterIndex1 ? index : (index < kZeroFilterIndex2 ? index - 1 : index - 2); rtc::ArrayView filter( kFilterCoeffs[filter_index]); rtc::ArrayView dct_modulation( kDctModulation[filter_index]); rtc::ArrayView state(state_analysis_[filter_index]); // Filter. std::array out_subsampled; FilterCore(filter, in_subsampled, in_shift, out_subsampled, state); // Band and modulate the output. for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) { float* out_band = out[band].data(); for (int n = 0; n < kSplitBandSize; ++n) { out_band[n] += dct_modulation[band] * out_subsampled[n]; } } } } } // The synthesis can be separated in these steps: // 1. Modulating with cosines. // 2. Filtering each one with a polyphase decomposition of the low-pass // prototype filter upsampled by a factor of `kSparsity` and accumulating // `kSparsity` signals with different delays. // 3. Parallel to serial upsampling by a factor of `kNumBands`. void ThreeBandFilterBank::Synthesis( rtc::ArrayView, ThreeBandFilterBank::kNumBands> in, rtc::ArrayView out) { std::fill(out.begin(), out.end(), 0); for (int upsampling_index = 0; upsampling_index < kSubSampling; ++upsampling_index) { for (int in_shift = 0; in_shift < kStride; ++in_shift) { // Choose filter, skip zero filters. const int index = upsampling_index + in_shift * kSubSampling; if (index == kZeroFilterIndex1 || index == kZeroFilterIndex2) { continue; } const int filter_index = index < kZeroFilterIndex1 ? index : (index < kZeroFilterIndex2 ? index - 1 : index - 2); rtc::ArrayView filter( kFilterCoeffs[filter_index]); rtc::ArrayView dct_modulation( kDctModulation[filter_index]); rtc::ArrayView state(state_synthesis_[filter_index]); // Prepare filter input by modulating the banded input. std::array in_subsampled; std::fill(in_subsampled.begin(), in_subsampled.end(), 0.f); for (int band = 0; band < ThreeBandFilterBank::kNumBands; ++band) { RTC_DCHECK_EQ(in[band].size(), kSplitBandSize); const float* in_band = in[band].data(); for (int n = 0; n < kSplitBandSize; ++n) { in_subsampled[n] += dct_modulation[band] * in_band[n]; } } // Filter. std::array out_subsampled; FilterCore(filter, in_subsampled, in_shift, out_subsampled, state); // Upsample. constexpr float kUpsamplingScaling = kSubSampling; for (int k = 0; k < kSplitBandSize; ++k) { out[upsampling_index + kSubSampling * k] += kUpsamplingScaling * out_subsampled[k]; } } } } } // namespace webrtc