/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/audio_processing/transient/moving_moments.h" #include #include "test/gtest.h" namespace webrtc { static const float kTolerance = 0.0001f; class MovingMomentsTest : public ::testing::Test { protected: static const size_t kMovingMomentsBufferLength = 5; static const size_t kMaxOutputLength = 20; // Valid for this tests only. virtual void SetUp(); // Calls CalculateMoments and verifies that it produces the expected // outputs. void CalculateMomentsAndVerify(const float* input, size_t input_length, const float* expected_mean, const float* expected_mean_squares); std::unique_ptr moving_moments_; float output_mean_[kMaxOutputLength]; float output_mean_squares_[kMaxOutputLength]; }; const size_t MovingMomentsTest::kMaxOutputLength; void MovingMomentsTest::SetUp() { moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength)); } void MovingMomentsTest::CalculateMomentsAndVerify( const float* input, size_t input_length, const float* expected_mean, const float* expected_mean_squares) { ASSERT_LE(input_length, kMaxOutputLength); moving_moments_->CalculateMoments(input, input_length, output_mean_, output_mean_squares_); for (size_t i = 1; i < input_length; ++i) { EXPECT_NEAR(expected_mean[i], output_mean_[i], kTolerance); EXPECT_NEAR(expected_mean_squares[i], output_mean_squares_[i], kTolerance); } } TEST_F(MovingMomentsTest, CorrectMomentsOfAnAllZerosBuffer) { const float kInput[] = {0.f, 0.f, 0.f, 0.f, 0.f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = {0.f, 0.f, 0.f, 0.f, 0.f}; const float expected_mean_squares[kInputLength] = {0.f, 0.f, 0.f, 0.f, 0.f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, CorrectMomentsOfAConstantBuffer) { const float kInput[] = {5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = {1.f, 2.f, 3.f, 4.f, 5.f, 5.f, 5.f, 5.f, 5.f, 5.f}; const float expected_mean_squares[kInputLength] = { 5.f, 10.f, 15.f, 20.f, 25.f, 25.f, 25.f, 25.f, 25.f, 25.f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, CorrectMomentsOfAnIncreasingBuffer) { const float kInput[] = {1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = {0.2f, 0.6f, 1.2f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f}; const float expected_mean_squares[kInputLength] = { 0.2f, 1.f, 2.8f, 6.f, 11.f, 18.f, 27.f, 38.f, 51.f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, CorrectMomentsOfADecreasingBuffer) { const float kInput[] = {-1.f, -2.f, -3.f, -4.f, -5.f, -6.f, -7.f, -8.f, -9.f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = {-0.2f, -0.6f, -1.2f, -2.f, -3.f, -4.f, -5.f, -6.f, -7.f}; const float expected_mean_squares[kInputLength] = { 0.2f, 1.f, 2.8f, 6.f, 11.f, 18.f, 27.f, 38.f, 51.f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, CorrectMomentsOfAZeroMeanSequence) { const size_t kMovingMomentsBufferLength = 4; moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength)); const float kInput[] = {1.f, -1.f, 1.f, -1.f, 1.f, -1.f, 1.f, -1.f, 1.f, -1.f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = {0.25f, 0.f, 0.25f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, 0.f}; const float expected_mean_squares[kInputLength] = { 0.25f, 0.5f, 0.75f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, CorrectMomentsOfAnArbitraryBuffer) { const float kInput[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f, 0.13f, 0.17f, 0.19f, 0.23f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); const float expected_mean[kInputLength] = { 0.04f, 0.1f, 0.2f, 0.34f, 0.362f, 0.348f, 0.322f, 0.26f, 0.166f}; const float expected_mean_squares[kInputLength] = {0.008f, 0.026f, 0.076f, 0.174f, 0.1764f, 0.1718f, 0.1596f, 0.1168f, 0.0294f}; CalculateMomentsAndVerify(kInput, kInputLength, expected_mean, expected_mean_squares); } TEST_F(MovingMomentsTest, MutipleCalculateMomentsCalls) { const float kInputFirstCall[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f, 0.13f, 0.17f, 0.19f, 0.23f}; const size_t kInputFirstCallLength = sizeof(kInputFirstCall) / sizeof(kInputFirstCall[0]); const float kInputSecondCall[] = {0.29f, 0.31f}; const size_t kInputSecondCallLength = sizeof(kInputSecondCall) / sizeof(kInputSecondCall[0]); const float kInputThirdCall[] = {0.37f, 0.41f, 0.43f, 0.47f}; const size_t kInputThirdCallLength = sizeof(kInputThirdCall) / sizeof(kInputThirdCall[0]); const float expected_mean_first_call[kInputFirstCallLength] = { 0.04f, 0.1f, 0.2f, 0.34f, 0.362f, 0.348f, 0.322f, 0.26f, 0.166f}; const float expected_mean_squares_first_call[kInputFirstCallLength] = { 0.008f, 0.026f, 0.076f, 0.174f, 0.1764f, 0.1718f, 0.1596f, 0.1168f, 0.0294f}; const float expected_mean_second_call[kInputSecondCallLength] = {0.202f, 0.238f}; const float expected_mean_squares_second_call[kInputSecondCallLength] = { 0.0438f, 0.0596f}; const float expected_mean_third_call[kInputThirdCallLength] = { 0.278f, 0.322f, 0.362f, 0.398f}; const float expected_mean_squares_third_call[kInputThirdCallLength] = { 0.0812f, 0.1076f, 0.134f, 0.1614f}; CalculateMomentsAndVerify(kInputFirstCall, kInputFirstCallLength, expected_mean_first_call, expected_mean_squares_first_call); CalculateMomentsAndVerify(kInputSecondCall, kInputSecondCallLength, expected_mean_second_call, expected_mean_squares_second_call); CalculateMomentsAndVerify(kInputThirdCall, kInputThirdCallLength, expected_mean_third_call, expected_mean_squares_third_call); } TEST_F(MovingMomentsTest, VerifySampleBasedVsBlockBasedCalculation) { const float kInput[] = {0.2f, 0.3f, 0.5f, 0.7f, 0.11f, 0.13f, 0.17f, 0.19f, 0.23f}; const size_t kInputLength = sizeof(kInput) / sizeof(kInput[0]); float output_mean_block_based[kInputLength]; float output_mean_squares_block_based[kInputLength]; float output_mean_sample_based; float output_mean_squares_sample_based; moving_moments_->CalculateMoments(kInput, kInputLength, output_mean_block_based, output_mean_squares_block_based); moving_moments_.reset(new MovingMoments(kMovingMomentsBufferLength)); for (size_t i = 0; i < kInputLength; ++i) { moving_moments_->CalculateMoments(&kInput[i], 1, &output_mean_sample_based, &output_mean_squares_sample_based); EXPECT_FLOAT_EQ(output_mean_block_based[i], output_mean_sample_based); EXPECT_FLOAT_EQ(output_mean_squares_block_based[i], output_mean_squares_sample_based); } } } // namespace webrtc