/* * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/congestion_controller/goog_cc/delay_based_bwe.h" #include #include "api/network_state_predictor.h" #include "api/transport/network_types.h" #include "api/units/data_rate.h" #include "api/units/time_delta.h" #include "modules/congestion_controller/goog_cc/delay_based_bwe_unittest_helper.h" #include "system_wrappers/include/clock.h" #include "test/gtest.h" namespace webrtc { namespace { constexpr int kNumProbesCluster0 = 5; constexpr int kNumProbesCluster1 = 8; const PacedPacketInfo kPacingInfo0(0, kNumProbesCluster0, 2000); const PacedPacketInfo kPacingInfo1(1, kNumProbesCluster1, 4000); constexpr float kTargetUtilizationFraction = 0.95f; } // namespace TEST_F(DelayBasedBweTest, ProbeDetection) { int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps. for (int i = 0; i < kNumProbesCluster0; ++i) { clock_.AdvanceTimeMilliseconds(10); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0); } EXPECT_TRUE(bitrate_observer_.updated()); // Second burst sent at 8 * 1000 / 5 = 1600 kbps. for (int i = 0; i < kNumProbesCluster1; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo1); } EXPECT_TRUE(bitrate_observer_.updated()); EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u); } TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) { int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet // not being paced which could mess things up. for (int i = 0; i < kNumProbesCluster0; ++i) { clock_.AdvanceTimeMilliseconds(5); now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, now_ms, 1000, kPacingInfo0); // Non-paced packet, arriving 5 ms after. clock_.AdvanceTimeMilliseconds(5); IncomingFeedback(now_ms, now_ms, 100, PacedPacketInfo()); } EXPECT_TRUE(bitrate_observer_.updated()); EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u); } TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) { int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 10 = 800 kbps. // Arriving at 8 * 1000 / 5 = 1600 kbps. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbesCluster0; ++i) { clock_.AdvanceTimeMilliseconds(1); send_time_ms += 10; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo0); } EXPECT_FALSE(bitrate_observer_.updated()); } TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) { int64_t now_ms = clock_.TimeInMilliseconds(); // First burst sent at 8 * 1000 / 5 = 1600 kbps. // Arriving at 8 * 1000 / 7 = 1142 kbps. // Since the receive rate is significantly below the send rate, we expect to // use 95% of the estimated capacity. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbesCluster1; ++i) { clock_.AdvanceTimeMilliseconds(7); send_time_ms += 5; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1); } EXPECT_TRUE(bitrate_observer_.updated()); EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kTargetUtilizationFraction * 1140000u, 10000u); } TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) { int64_t now_ms = clock_.TimeInMilliseconds(); // Burst sent at 8 * 1000 / 1 = 8000 kbps. // Arriving at 8 * 1000 / 2 = 4000 kbps. // Since the receive rate is significantly below the send rate, we expect to // use 95% of the estimated capacity. int64_t send_time_ms = 0; for (int i = 0; i < kNumProbesCluster1; ++i) { clock_.AdvanceTimeMilliseconds(2); send_time_ms += 1; now_ms = clock_.TimeInMilliseconds(); IncomingFeedback(now_ms, send_time_ms, 1000, kPacingInfo1); } EXPECT_TRUE(bitrate_observer_.updated()); EXPECT_NEAR(bitrate_observer_.latest_bitrate(), kTargetUtilizationFraction * 4000000u, 10000u); } TEST_F(DelayBasedBweTest, GetExpectedBwePeriodMs) { auto default_interval = bitrate_estimator_->GetExpectedBwePeriod(); EXPECT_GT(default_interval.ms(), 0); CapacityDropTestHelper(1, true, 533, 0); auto interval = bitrate_estimator_->GetExpectedBwePeriod(); EXPECT_GT(interval.ms(), 0); EXPECT_NE(interval.ms(), default_interval.ms()); } TEST_F(DelayBasedBweTest, InitialBehavior) { InitialBehaviorTestHelper(730000); } TEST_F(DelayBasedBweTest, InitializeResult) { DelayBasedBwe::Result result; EXPECT_EQ(result.delay_detector_state, BandwidthUsage::kBwNormal); } TEST_F(DelayBasedBweTest, RateIncreaseReordering) { RateIncreaseReorderingTestHelper(730000); } TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) { RateIncreaseRtpTimestampsTestHelper(617); } TEST_F(DelayBasedBweTest, CapacityDropOneStream) { CapacityDropTestHelper(1, false, 500, 0); } TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) { CapacityDropTestHelper(1, false, 867, 30000); } TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) { CapacityDropTestHelper(1, false, 933, -30000); } TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) { CapacityDropTestHelper(1, true, 533, 0); } TEST_F(DelayBasedBweTest, TestTimestampGrouping) { TestTimestampGroupingTestHelper(); } TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after 35 seconds. This // will make abs send time wrap, so if streams aren't timed out properly // the next 30 seconds of packets will be out of order. TestWrappingHelper(35); } TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) { // Simulate a client leaving and rejoining the call after some multiple of // 64 seconds later. This will cause a zero difference in abs send times due // to the wrap, but a big difference in arrival time, if streams aren't // properly timed out. TestWrappingHelper(10 * 64); } TEST_F(DelayBasedBweTest, TestInitialOveruse) { const DataRate kStartBitrate = DataRate::KilobitsPerSec(300); const DataRate kInitialCapacity = DataRate::KilobitsPerSec(200); const uint32_t kDummySsrc = 0; // High FPS to ensure that we send a lot of packets in a short time. const int kFps = 90; stream_generator_->AddStream(new test::RtpStream(kFps, kStartBitrate.bps())); stream_generator_->set_capacity_bps(kInitialCapacity.bps()); // Needed to initialize the AimdRateControl. bitrate_estimator_->SetStartBitrate(kStartBitrate); // Produce 40 frames (in 1/3 second) and give them to the estimator. int64_t bitrate_bps = kStartBitrate.bps(); bool seen_overuse = false; for (int i = 0; i < 40; ++i) { bool overuse = GenerateAndProcessFrame(kDummySsrc, bitrate_bps); if (overuse) { EXPECT_TRUE(bitrate_observer_.updated()); EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps()); EXPECT_GT(bitrate_observer_.latest_bitrate(), 0.8 * kInitialCapacity.bps()); bitrate_bps = bitrate_observer_.latest_bitrate(); seen_overuse = true; break; } else if (bitrate_observer_.updated()) { bitrate_bps = bitrate_observer_.latest_bitrate(); bitrate_observer_.Reset(); } } EXPECT_TRUE(seen_overuse); EXPECT_LE(bitrate_observer_.latest_bitrate(), kInitialCapacity.bps()); EXPECT_GT(bitrate_observer_.latest_bitrate(), 0.8 * kInitialCapacity.bps()); } TEST_F(DelayBasedBweTest, TestTimestampPrecisionHandling) { // This test does some basic checks to make sure that timestamps with higher // than millisecond precision are handled properly and do not cause any // problems in the estimator. Specifically, previously reported in // webrtc:14023 and described in more details there, the rounding to the // nearest milliseconds caused discrepancy in the accumulated delay. This lead // to false-positive overuse detection. // Technical details of the test: // Send times(ms): 0.000, 9.725, 20.000, 29.725, 40.000, 49.725, ... // Recv times(ms): 0.500, 10.000, 20.500, 30.000, 40.500, 50.000, ... // Send deltas(ms): 9.750, 10.250, 9.750, 10.250, 9.750, ... // Recv deltas(ms): 9.500, 10.500, 9.500, 10.500, 9.500, ... // There is no delay building up between the send times and the receive times, // therefore this case should never lead to an overuse detection. However, if // the time deltas were accidentally rounded to the nearest milliseconds, then // all the send deltas would be equal to 10ms while some recv deltas would // round up to 11ms which would lead in a false illusion of delay build up. uint32_t last_bitrate = bitrate_observer_.latest_bitrate(); for (int i = 0; i < 1000; ++i) { clock_.AdvanceTimeMicroseconds(500); IncomingFeedback(clock_.CurrentTime(), clock_.CurrentTime() - TimeDelta::Micros(500), 1000, PacedPacketInfo()); clock_.AdvanceTimeMicroseconds(9500); IncomingFeedback(clock_.CurrentTime(), clock_.CurrentTime() - TimeDelta::Micros(250), 1000, PacedPacketInfo()); clock_.AdvanceTimeMicroseconds(10000); // The bitrate should never decrease in this test. EXPECT_LE(last_bitrate, bitrate_observer_.latest_bitrate()); last_bitrate = bitrate_observer_.latest_bitrate(); } } } // namespace webrtc