/* * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/pacing/pacing_controller.h" #include #include #include #include #include "absl/cleanup/cleanup.h" #include "absl/strings/match.h" #include "api/units/data_size.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/pacing/bitrate_prober.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500); // TODO(sprang): Consider dropping this limit. // The maximum debt level, in terms of time, capped when sending packets. constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500); constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2); bool IsDisabled(const FieldTrialsView& field_trials, absl::string_view key) { return absl::StartsWith(field_trials.Lookup(key), "Disabled"); } bool IsEnabled(const FieldTrialsView& field_trials, absl::string_view key) { return absl::StartsWith(field_trials.Lookup(key), "Enabled"); } } // namespace const TimeDelta PacingController::kPausedProcessInterval = kCongestedPacketInterval; const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1); const TimeDelta PacingController::kTargetPaddingDuration = TimeDelta::Millis(5); const TimeDelta PacingController::kMaxPaddingReplayDuration = TimeDelta::Millis(50); const TimeDelta PacingController::kMaxEarlyProbeProcessing = TimeDelta::Millis(1); PacingController::PacingController(Clock* clock, PacketSender* packet_sender, const FieldTrialsView& field_trials, Configuration configuration) : clock_(clock), packet_sender_(packet_sender), field_trials_(field_trials), drain_large_queues_( configuration.drain_large_queues && !IsDisabled(field_trials_, "WebRTC-Pacer-DrainQueue")), send_padding_if_silent_( IsEnabled(field_trials_, "WebRTC-Pacer-PadInSilence")), pace_audio_(IsEnabled(field_trials_, "WebRTC-Pacer-BlockAudio")), ignore_transport_overhead_( IsEnabled(field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")), fast_retransmissions_( IsEnabled(field_trials_, "WebRTC-Pacer-FastRetransmissions")), keyframe_flushing_( configuration.keyframe_flushing || IsEnabled(field_trials_, "WebRTC-Pacer-KeyframeFlushing")), transport_overhead_per_packet_(DataSize::Zero()), send_burst_interval_(configuration.send_burst_interval), last_timestamp_(clock_->CurrentTime()), paused_(false), media_debt_(DataSize::Zero()), padding_debt_(DataSize::Zero()), pacing_rate_(DataRate::Zero()), adjusted_media_rate_(DataRate::Zero()), padding_rate_(DataRate::Zero()), prober_(field_trials_), probing_send_failure_(false), last_process_time_(clock->CurrentTime()), last_send_time_(last_process_time_), seen_first_packet_(false), packet_queue_(/*creation_time=*/last_process_time_, configuration.prioritize_audio_retransmission, configuration.packet_queue_ttl), congested_(false), queue_time_limit_(configuration.queue_time_limit), account_for_audio_(false), include_overhead_(false), circuit_breaker_threshold_(1 << 16) { if (!drain_large_queues_) { RTC_LOG(LS_WARNING) << "Pacer queues will not be drained," "pushback experiment must be enabled."; } } PacingController::~PacingController() = default; void PacingController::CreateProbeClusters( rtc::ArrayView probe_cluster_configs) { for (const ProbeClusterConfig probe_cluster_config : probe_cluster_configs) { prober_.CreateProbeCluster(probe_cluster_config); } } void PacingController::Pause() { if (!paused_) RTC_LOG(LS_INFO) << "PacedSender paused."; paused_ = true; packet_queue_.SetPauseState(true, CurrentTime()); } void PacingController::Resume() { if (paused_) RTC_LOG(LS_INFO) << "PacedSender resumed."; paused_ = false; packet_queue_.SetPauseState(false, CurrentTime()); } bool PacingController::IsPaused() const { return paused_; } void PacingController::SetCongested(bool congested) { if (congested_ && !congested) { UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(CurrentTime())); } congested_ = congested; } void PacingController::SetCircuitBreakerThreshold(int num_iterations) { circuit_breaker_threshold_ = num_iterations; } void PacingController::RemovePacketsForSsrc(uint32_t ssrc) { packet_queue_.RemovePacketsForSsrc(ssrc); } bool PacingController::IsProbing() const { return prober_.is_probing(); } Timestamp PacingController::CurrentTime() const { Timestamp time = clock_->CurrentTime(); if (time < last_timestamp_) { RTC_LOG(LS_WARNING) << "Non-monotonic clock behavior observed. Previous timestamp: " << last_timestamp_.ms() << ", new timestamp: " << time.ms(); RTC_DCHECK_GE(time, last_timestamp_); time = last_timestamp_; } last_timestamp_ = time; return time; } void PacingController::SetProbingEnabled(bool enabled) { RTC_CHECK(!seen_first_packet_); prober_.SetEnabled(enabled); } void PacingController::SetPacingRates(DataRate pacing_rate, DataRate padding_rate) { RTC_CHECK_GT(pacing_rate, DataRate::Zero()); RTC_CHECK_GE(padding_rate, DataRate::Zero()); if (padding_rate > pacing_rate) { RTC_LOG(LS_WARNING) << "Padding rate " << padding_rate.kbps() << "kbps is higher than the pacing rate " << pacing_rate.kbps() << "kbps, capping."; padding_rate = pacing_rate; } if (pacing_rate > max_rate || padding_rate > max_rate) { RTC_LOG(LS_WARNING) << "Very high pacing rates ( > " << max_rate.kbps() << " kbps) configured: pacing = " << pacing_rate.kbps() << " kbps, padding = " << padding_rate.kbps() << " kbps."; max_rate = std::max(pacing_rate, padding_rate) * 1.1; } pacing_rate_ = pacing_rate; padding_rate_ = padding_rate; MaybeUpdateMediaRateDueToLongQueue(CurrentTime()); RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps=" << pacing_rate_.kbps() << " padding_budget_kbps=" << padding_rate.kbps(); } void PacingController::EnqueuePacket(std::unique_ptr packet) { RTC_DCHECK(pacing_rate_ > DataRate::Zero()) << "SetPacingRate must be called before InsertPacket."; RTC_CHECK(packet->packet_type()); if (keyframe_flushing_ && packet->packet_type() == RtpPacketMediaType::kVideo && packet->is_key_frame() && packet->is_first_packet_of_frame() && !packet_queue_.HasKeyframePackets(packet->Ssrc())) { // First packet of a keyframe (and no keyframe packets currently in the // queue). Flush any pending packets currently in the queue for that stream // in order to get the new keyframe out as quickly as possible. packet_queue_.RemovePacketsForSsrc(packet->Ssrc()); absl::optional rtx_ssrc = packet_sender_->GetRtxSsrcForMedia(packet->Ssrc()); if (rtx_ssrc) { packet_queue_.RemovePacketsForSsrc(*rtx_ssrc); } } prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size())); const Timestamp now = CurrentTime(); if (packet_queue_.Empty()) { // If queue is empty, we need to "fast-forward" the last process time, // so that we don't use passed time as budget for sending the first new // packet. Timestamp target_process_time = now; Timestamp next_send_time = NextSendTime(); if (next_send_time.IsFinite()) { // There was already a valid planned send time, such as a keep-alive. // Use that as last process time only if it's prior to now. target_process_time = std::min(now, next_send_time); } UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_process_time)); } packet_queue_.Push(now, std::move(packet)); seen_first_packet_ = true; // Queue length has increased, check if we need to change the pacing rate. MaybeUpdateMediaRateDueToLongQueue(now); } void PacingController::SetAccountForAudioPackets(bool account_for_audio) { account_for_audio_ = account_for_audio; } void PacingController::SetIncludeOverhead() { include_overhead_ = true; } void PacingController::SetTransportOverhead(DataSize overhead_per_packet) { if (ignore_transport_overhead_) return; transport_overhead_per_packet_ = overhead_per_packet; } void PacingController::SetSendBurstInterval(TimeDelta burst_interval) { send_burst_interval_ = burst_interval; } void PacingController::SetAllowProbeWithoutMediaPacket(bool allow) { prober_.SetAllowProbeWithoutMediaPacket(allow); } TimeDelta PacingController::ExpectedQueueTime() const { RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero()); return QueueSizeData() / adjusted_media_rate_; } size_t PacingController::QueueSizePackets() const { return rtc::checked_cast(packet_queue_.SizeInPackets()); } const std::array& PacingController::SizeInPacketsPerRtpPacketMediaType() const { return packet_queue_.SizeInPacketsPerRtpPacketMediaType(); } DataSize PacingController::QueueSizeData() const { DataSize size = packet_queue_.SizeInPayloadBytes(); if (include_overhead_) { size += static_cast(packet_queue_.SizeInPackets()) * transport_overhead_per_packet_; } return size; } DataSize PacingController::CurrentBufferLevel() const { return std::max(media_debt_, padding_debt_); } absl::optional PacingController::FirstSentPacketTime() const { return first_sent_packet_time_; } Timestamp PacingController::OldestPacketEnqueueTime() const { return packet_queue_.OldestEnqueueTime(); } TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) { // If no previous processing, or last process was "in the future" because of // early probe processing, then there is no elapsed time to add budget for. if (last_process_time_.IsMinusInfinity() || now < last_process_time_) { return TimeDelta::Zero(); } TimeDelta elapsed_time = now - last_process_time_; last_process_time_ = now; if (elapsed_time > kMaxElapsedTime) { RTC_LOG(LS_WARNING) << "Elapsed time (" << ToLogString(elapsed_time) << ") longer than expected, limiting to " << ToLogString(kMaxElapsedTime); elapsed_time = kMaxElapsedTime; } return elapsed_time; } bool PacingController::ShouldSendKeepalive(Timestamp now) const { if (send_padding_if_silent_ || paused_ || congested_ || !seen_first_packet_) { // We send a padding packet every 500 ms to ensure we won't get stuck in // congested state due to no feedback being received. if (now - last_send_time_ >= kCongestedPacketInterval) { return true; } } return false; } Timestamp PacingController::NextSendTime() const { const Timestamp now = CurrentTime(); Timestamp next_send_time = Timestamp::PlusInfinity(); if (paused_) { return last_send_time_ + kPausedProcessInterval; } // If probing is active, that always takes priority. if (prober_.is_probing() && !probing_send_failure_) { Timestamp probe_time = prober_.NextProbeTime(now); if (!probe_time.IsPlusInfinity()) { return probe_time.IsMinusInfinity() ? now : probe_time; } } // If queue contains a packet which should not be paced, its target send time // is the time at which it was enqueued. Timestamp unpaced_send_time = NextUnpacedSendTime(); if (unpaced_send_time.IsFinite()) { return unpaced_send_time; } if (congested_ || !seen_first_packet_) { // We need to at least send keep-alive packets with some interval. return last_send_time_ + kCongestedPacketInterval; } if (adjusted_media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) { // If packets are allowed to be sent in a burst, the // debt is allowed to grow up to one packet more than what can be sent // during 'send_burst_period_'. TimeDelta drain_time = media_debt_ / adjusted_media_rate_; // Ensure that a burst of sent packet is not larger than kMaxBurstSize in // order to not risk overfilling socket buffers at high bitrate. TimeDelta send_burst_interval = std::min(send_burst_interval_, kMaxBurstSize / adjusted_media_rate_); next_send_time = last_process_time_ + ((send_burst_interval > drain_time) ? TimeDelta::Zero() : drain_time); } else if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) { // If we _don't_ have pending packets, check how long until we have // bandwidth for padding packets. Both media and padding debts must // have been drained to do this. RTC_DCHECK_GT(adjusted_media_rate_, DataRate::Zero()); TimeDelta drain_time = std::max(media_debt_ / adjusted_media_rate_, padding_debt_ / padding_rate_); if (drain_time.IsZero() && (!media_debt_.IsZero() || !padding_debt_.IsZero())) { // We have a non-zero debt, but drain time is smaller than tick size of // TimeDelta, round it up to the smallest possible non-zero delta. drain_time = TimeDelta::Micros(1); } next_send_time = last_process_time_ + drain_time; } else { // Nothing to do. next_send_time = last_process_time_ + kPausedProcessInterval; } if (send_padding_if_silent_) { next_send_time = std::min(next_send_time, last_send_time_ + kPausedProcessInterval); } return next_send_time; } void PacingController::ProcessPackets() { absl::Cleanup cleanup = [packet_sender = packet_sender_] { packet_sender->OnBatchComplete(); }; const Timestamp now = CurrentTime(); Timestamp target_send_time = now; if (ShouldSendKeepalive(now)) { DataSize keepalive_data_sent = DataSize::Zero(); // We can not send padding unless a normal packet has first been sent. If // we do, timestamps get messed up. if (seen_first_packet_) { std::vector> keepalive_packets = packet_sender_->GeneratePadding(DataSize::Bytes(1)); for (auto& packet : keepalive_packets) { keepalive_data_sent += DataSize::Bytes(packet->payload_size() + packet->padding_size()); packet_sender_->SendPacket(std::move(packet), PacedPacketInfo()); for (auto& packet : packet_sender_->FetchFec()) { EnqueuePacket(std::move(packet)); } } } OnPacketSent(RtpPacketMediaType::kPadding, keepalive_data_sent, now); } if (paused_) { return; } TimeDelta early_execute_margin = prober_.is_probing() ? kMaxEarlyProbeProcessing : TimeDelta::Zero(); target_send_time = NextSendTime(); if (now + early_execute_margin < target_send_time) { // We are too early, but if queue is empty still allow draining some debt. // Probing is allowed to be sent up to kMinSleepTime early. UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(now)); return; } TimeDelta elapsed_time = UpdateTimeAndGetElapsed(target_send_time); if (elapsed_time > TimeDelta::Zero()) { UpdateBudgetWithElapsedTime(elapsed_time); } PacedPacketInfo pacing_info; DataSize recommended_probe_size = DataSize::Zero(); bool is_probing = prober_.is_probing(); if (is_probing) { // Probe timing is sensitive, and handled explicitly by BitrateProber, so // use actual send time rather than target. pacing_info = prober_.CurrentCluster(now).value_or(PacedPacketInfo()); if (pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe) { recommended_probe_size = prober_.RecommendedMinProbeSize(); RTC_DCHECK_GT(recommended_probe_size, DataSize::Zero()); } else { // No valid probe cluster returned, probe might have timed out. is_probing = false; } } DataSize data_sent = DataSize::Zero(); int iteration = 0; int packets_sent = 0; int padding_packets_generated = 0; for (; iteration < circuit_breaker_threshold_; ++iteration) { // Fetch packet, so long as queue is not empty or budget is not // exhausted. std::unique_ptr rtp_packet = GetPendingPacket(pacing_info, target_send_time, now); if (rtp_packet == nullptr) { // No packet available to send, check if we should send padding. if (now - target_send_time > kMaxPaddingReplayDuration) { // The target send time is more than `kMaxPaddingReplayDuration` behind // the real-time clock. This can happen if the clock is adjusted forward // without `ProcessPackets()` having been called at the expected times. target_send_time = now - kMaxPaddingReplayDuration; last_process_time_ = std::max(last_process_time_, target_send_time); } DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent); if (padding_to_add > DataSize::Zero()) { std::vector> padding_packets = packet_sender_->GeneratePadding(padding_to_add); if (!padding_packets.empty()) { padding_packets_generated += padding_packets.size(); for (auto& packet : padding_packets) { EnqueuePacket(std::move(packet)); } // Continue loop to send the padding that was just added. continue; } else { // Can't generate padding, still update padding budget for next send // time. UpdatePaddingBudgetWithSentData(padding_to_add); } } // Can't fetch new packet and no padding to send, exit send loop. break; } else { RTC_DCHECK(rtp_packet); RTC_DCHECK(rtp_packet->packet_type().has_value()); const RtpPacketMediaType packet_type = *rtp_packet->packet_type(); DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() + rtp_packet->padding_size()); if (include_overhead_) { packet_size += DataSize::Bytes(rtp_packet->headers_size()) + transport_overhead_per_packet_; } packet_sender_->SendPacket(std::move(rtp_packet), pacing_info); for (auto& packet : packet_sender_->FetchFec()) { EnqueuePacket(std::move(packet)); } data_sent += packet_size; ++packets_sent; // Send done, update send time. OnPacketSent(packet_type, packet_size, now); if (is_probing) { pacing_info.probe_cluster_bytes_sent += packet_size.bytes(); // If we are currently probing, we need to stop the send loop when we // have reached the send target. if (data_sent >= recommended_probe_size) { break; } } // Update target send time in case that are more packets that we are late // in processing. target_send_time = NextSendTime(); if (target_send_time > now) { // Exit loop if not probing. if (!is_probing) { break; } target_send_time = now; } UpdateBudgetWithElapsedTime(UpdateTimeAndGetElapsed(target_send_time)); } } if (iteration >= circuit_breaker_threshold_) { // Circuit break activated. Log warning, adjust send time and return. // TODO(sprang): Consider completely clearing state. RTC_LOG(LS_ERROR) << "PacingController exceeded max iterations in " "send-loop. Debug info: " << " packets sent = " << packets_sent << ", padding packets generated = " << padding_packets_generated << ", bytes sent = " << data_sent.bytes() << ", probing = " << (is_probing ? "true" : "false") << ", recommended_probe_size = " << recommended_probe_size.bytes() << ", now = " << now.us() << ", target_send_time = " << target_send_time.us() << ", last_process_time = " << last_process_time_.us() << ", last_send_time = " << last_send_time_.us() << ", paused = " << (paused_ ? "true" : "false") << ", media_debt = " << media_debt_.bytes() << ", padding_debt = " << padding_debt_.bytes() << ", pacing_rate = " << pacing_rate_.bps() << ", adjusted_media_rate = " << adjusted_media_rate_.bps() << ", padding_rate = " << padding_rate_.bps() << ", queue size (packets) = " << packet_queue_.SizeInPackets() << ", queue size (payload bytes) = " << packet_queue_.SizeInPayloadBytes(); last_send_time_ = now; last_process_time_ = now; return; } if (is_probing) { probing_send_failure_ = data_sent == DataSize::Zero(); if (!probing_send_failure_) { prober_.ProbeSent(CurrentTime(), data_sent); } } // Queue length has probably decreased, check if pacing rate needs to updated. // Poll the time again, since we might have enqueued new fec/padding packets // with a later timestamp than `now`. MaybeUpdateMediaRateDueToLongQueue(CurrentTime()); } DataSize PacingController::PaddingToAdd(DataSize recommended_probe_size, DataSize data_sent) const { if (!packet_queue_.Empty()) { // Actual payload available, no need to add padding. return DataSize::Zero(); } if (congested_) { // Don't add padding if congested, even if requested for probing. return DataSize::Zero(); } if (!recommended_probe_size.IsZero()) { if (recommended_probe_size > data_sent) { return recommended_probe_size - data_sent; } return DataSize::Zero(); } if (padding_rate_ > DataRate::Zero() && padding_debt_ == DataSize::Zero()) { return kTargetPaddingDuration * padding_rate_; } return DataSize::Zero(); } std::unique_ptr PacingController::GetPendingPacket( const PacedPacketInfo& pacing_info, Timestamp target_send_time, Timestamp now) { const bool is_probe = pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe; // If first packet in probe, insert a small padding packet so we have a // more reliable start window for the rate estimation. if (is_probe && pacing_info.probe_cluster_bytes_sent == 0) { auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1)); // If no RTP modules sending media are registered, we may not get a // padding packet back. if (!padding.empty()) { // We should never get more than one padding packets with a requested // size of 1 byte. RTC_DCHECK_EQ(padding.size(), 1u); return std::move(padding[0]); } } if (packet_queue_.Empty()) { return nullptr; } // First, check if there is any reason _not_ to send the next queued packet. // Unpaced packets and probes are exempted from send checks. if (NextUnpacedSendTime().IsInfinite() && !is_probe) { if (congested_) { // Don't send anything if congested. return nullptr; } if (now <= target_send_time && send_burst_interval_.IsZero()) { // We allow sending slightly early if we think that we would actually // had been able to, had we been right on time - i.e. the current debt // is not more than would be reduced to zero at the target sent time. // If we allow packets to be sent in a burst, packet are allowed to be // sent early. TimeDelta flush_time = media_debt_ / adjusted_media_rate_; if (now + flush_time > target_send_time) { return nullptr; } } } return packet_queue_.Pop(); } void PacingController::OnPacketSent(RtpPacketMediaType packet_type, DataSize packet_size, Timestamp send_time) { if (!first_sent_packet_time_ && packet_type != RtpPacketMediaType::kPadding) { first_sent_packet_time_ = send_time; } bool audio_packet = packet_type == RtpPacketMediaType::kAudio; if ((!audio_packet || account_for_audio_) && packet_size > DataSize::Zero()) { UpdateBudgetWithSentData(packet_size); } last_send_time_ = send_time; } void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) { media_debt_ -= std::min(media_debt_, adjusted_media_rate_ * delta); padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta); } void PacingController::UpdateBudgetWithSentData(DataSize size) { media_debt_ += size; media_debt_ = std::min(media_debt_, adjusted_media_rate_ * kMaxDebtInTime); UpdatePaddingBudgetWithSentData(size); } void PacingController::UpdatePaddingBudgetWithSentData(DataSize size) { padding_debt_ += size; padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime); } void PacingController::SetQueueTimeLimit(TimeDelta limit) { queue_time_limit_ = limit; } void PacingController::MaybeUpdateMediaRateDueToLongQueue(Timestamp now) { adjusted_media_rate_ = pacing_rate_; if (!drain_large_queues_) { return; } DataSize queue_size_data = QueueSizeData(); if (queue_size_data > DataSize::Zero()) { // Assuming equal size packets and input/output rate, the average packet // has avg_time_left_ms left to get queue_size_bytes out of the queue, if // time constraint shall be met. Determine bitrate needed for that. packet_queue_.UpdateAverageQueueTime(now); TimeDelta avg_time_left = std::max(TimeDelta::Millis(1), queue_time_limit_ - packet_queue_.AverageQueueTime()); DataRate min_rate_needed = queue_size_data / avg_time_left; if (min_rate_needed > pacing_rate_) { adjusted_media_rate_ = min_rate_needed; RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps=" << pacing_rate_.kbps(); } } } Timestamp PacingController::NextUnpacedSendTime() const { if (!pace_audio_) { Timestamp leading_audio_send_time = packet_queue_.LeadingPacketEnqueueTime(RtpPacketMediaType::kAudio); if (leading_audio_send_time.IsFinite()) { return leading_audio_send_time; } } if (fast_retransmissions_) { Timestamp leading_retransmission_send_time = packet_queue_.LeadingPacketEnqueueTimeForRetransmission(); if (leading_retransmission_send_time.IsFinite()) { return leading_retransmission_send_time; } } return Timestamp::MinusInfinity(); } } // namespace webrtc