/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "absl/algorithm/container.h" #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/fec_test_helper.h" #include "modules/rtp_rtcp/source/flexfec_03_header_reader_writer.h" #include "modules/rtp_rtcp/source/forward_error_correction.h" #include "modules/rtp_rtcp/source/ulpfec_header_reader_writer.h" #include "rtc_base/random.h" #include "test/gtest.h" namespace webrtc { namespace { // Transport header size in bytes. Assume UDP/IPv4 as a reasonable minimum. constexpr size_t kTransportOverhead = 28; constexpr uint32_t kMediaSsrc = 83542; constexpr uint32_t kFlexfecSsrc = 43245; constexpr size_t kMaxMediaPackets = 48; // Deep copies `src` to `dst`, but only keeps every Nth packet. void DeepCopyEveryNthPacket(const ForwardErrorCorrection::PacketList& src, int n, ForwardErrorCorrection::PacketList* dst) { RTC_DCHECK_GT(n, 0); int i = 0; for (const auto& packet : src) { if (i % n == 0) { dst->emplace_back(new ForwardErrorCorrection::Packet(*packet)); } ++i; } } } // namespace using ::testing::Types; template class RtpFecTest : public ::testing::Test { protected: RtpFecTest() : random_(0xabcdef123456), media_packet_generator_( kRtpHeaderSize, // Minimum packet size. IP_PACKET_SIZE - kRtpHeaderSize - kTransportOverhead - fec_.MaxPacketOverhead(), // Maximum packet size. kMediaSsrc, &random_) {} // Construct `received_packets_`: a subset of the media and FEC packets. // // Media packet "i" is lost if media_loss_mask_[i] = 1, received if // media_loss_mask_[i] = 0. // FEC packet "i" is lost if fec_loss_mask_[i] = 1, received if // fec_loss_mask_[i] = 0. void NetworkReceivedPackets(int* media_loss_mask, int* fec_loss_mask); // Add packet from `packet_list` to list of received packets, using the // `loss_mask`. // The `packet_list` may be a media packet list (is_fec = false), or a // FEC packet list (is_fec = true). template void ReceivedPackets(const T& packet_list, int* loss_mask, bool is_fec); // Check for complete recovery after FEC decoding. bool IsRecoveryComplete(); ForwardErrorCorrectionType fec_; Random random_; test::fec::MediaPacketGenerator media_packet_generator_; ForwardErrorCorrection::PacketList media_packets_; std::list generated_fec_packets_; std::vector> received_packets_; ForwardErrorCorrection::RecoveredPacketList recovered_packets_; int media_loss_mask_[kUlpfecMaxMediaPackets]; int fec_loss_mask_[kUlpfecMaxMediaPackets]; }; template void RtpFecTest::NetworkReceivedPackets( int* media_loss_mask, int* fec_loss_mask) { constexpr bool kFecPacket = true; this->received_packets_.clear(); ReceivedPackets(media_packets_, media_loss_mask, !kFecPacket); ReceivedPackets(generated_fec_packets_, fec_loss_mask, kFecPacket); } template template void RtpFecTest::ReceivedPackets( const PacketListType& packet_list, int* loss_mask, bool is_fec) { uint16_t fec_seq_num = ForwardErrorCorrectionType::GetFirstFecSeqNum( media_packet_generator_.GetNextSeqNum()); int packet_idx = 0; for (const auto& packet : packet_list) { if (loss_mask[packet_idx] == 0) { std::unique_ptr received_packet( new ForwardErrorCorrection::ReceivedPacket()); received_packet->pkt = new ForwardErrorCorrection::Packet(); received_packet->pkt->data = packet->data; received_packet->is_fec = is_fec; if (!is_fec) { received_packet->ssrc = kMediaSsrc; // For media packets, the sequence number is obtained from the // RTP header as written by MediaPacketGenerator::ConstructMediaPackets. received_packet->seq_num = ByteReader::ReadBigEndian(packet->data.data() + 2); } else { received_packet->ssrc = ForwardErrorCorrectionType::kFecSsrc; // For FEC packets, we simulate the sequence numbers differently // depending on if ULPFEC or FlexFEC is used. See the definition of // ForwardErrorCorrectionType::GetFirstFecSeqNum. received_packet->seq_num = fec_seq_num; } received_packets_.push_back(std::move(received_packet)); } packet_idx++; // Sequence number of FEC packets are defined as increment by 1 from // last media packet in frame. if (is_fec) fec_seq_num++; } } template bool RtpFecTest::IsRecoveryComplete() { // We must have equally many recovered packets as original packets and all // recovered packets must be identical to the corresponding original packets. return absl::c_equal( media_packets_, recovered_packets_, [](const std::unique_ptr& media_packet, const std::unique_ptr& recovered_packet) { if (media_packet->data.size() != recovered_packet->pkt->data.size()) { return false; } if (memcmp(media_packet->data.cdata(), recovered_packet->pkt->data.cdata(), media_packet->data.size()) != 0) { return false; } return true; }); } // Define gTest typed test to loop over both ULPFEC and FlexFEC. // Since the tests now are parameterized, we need to access // member variables using `this`, thereby enforcing runtime // resolution. class FlexfecForwardErrorCorrection : public ForwardErrorCorrection { public: static const uint32_t kFecSsrc = kFlexfecSsrc; FlexfecForwardErrorCorrection() : ForwardErrorCorrection( std::unique_ptr(new Flexfec03HeaderReader()), std::unique_ptr(new Flexfec03HeaderWriter()), kFecSsrc, kMediaSsrc) {} // For FlexFEC we let the FEC packet sequence numbers be independent of // the media packet sequence numbers. static uint16_t GetFirstFecSeqNum(uint16_t next_media_seq_num) { Random random(0xbe110); return random.Rand(); } }; class UlpfecForwardErrorCorrection : public ForwardErrorCorrection { public: static const uint32_t kFecSsrc = kMediaSsrc; UlpfecForwardErrorCorrection() : ForwardErrorCorrection( std::unique_ptr(new UlpfecHeaderReader()), std::unique_ptr(new UlpfecHeaderWriter()), kFecSsrc, kMediaSsrc) {} // For ULPFEC we assume that the FEC packets are subsequent to the media // packets in terms of sequence number. static uint16_t GetFirstFecSeqNum(uint16_t next_media_seq_num) { return next_media_seq_num; } }; using FecTypes = Types; TYPED_TEST_SUITE(RtpFecTest, FecTypes); TYPED_TEST(RtpFecTest, WillProtectMediaPacketsWithLargeSequenceNumberGap) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 2; constexpr uint8_t kProtectionFactor = 127; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); // Create |kMaxMediaPackets - 1| sequence number difference. ByteWriter::WriteBigEndian( this->media_packets_.front()->data.MutableData() + 2, 1); ByteWriter::WriteBigEndian( this->media_packets_.back()->data.MutableData() + 2, kMaxMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); EXPECT_EQ(1u, this->generated_fec_packets_.size()); } TYPED_TEST(RtpFecTest, WillNotProtectMediaPacketsWithTooLargeSequenceNumberGap) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 2; constexpr uint8_t kProtectionFactor = 127; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); // Create `kMaxMediaPackets` sequence number difference. ByteWriter::WriteBigEndian( this->media_packets_.front()->data.MutableData() + 2, 1); ByteWriter::WriteBigEndian( this->media_packets_.back()->data.MutableData() + 2, kMaxMediaPackets + 1); EXPECT_EQ( -1, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); EXPECT_TRUE(this->generated_fec_packets_.empty()); } TYPED_TEST(RtpFecTest, FecRecoveryNoLoss) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 60; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // No packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // No packets lost, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryWithLoss) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 60; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // 1 media packet lost memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // One packet lost, one FEC packet, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 2 media packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // 2 packets lost, one FEC packet, cannot get complete recovery. EXPECT_FALSE(this->IsRecoveryComplete()); } // Verify that we don't use an old FEC packet for FEC decoding. TYPED_TEST(RtpFecTest, NoFecRecoveryWithOldFecPacket) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 20; // Two frames: first frame (old) with two media packets and 1 FEC packet. // Third frame (new) with 3 media packets, and no FEC packets. // // #0(media) #1(media) #2(FEC) ----Frame 1----- // #32767(media) 32768(media) 32769(media) ----Frame 2----- // #65535(media) #0(media) #1(media). ----Frame 3----- // If we lose either packet 0 or 1 of third frame, FEC decoding should not // try to decode using "old" FEC packet #2. // Construct media packets for first frame, starting at sequence number 0. this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(2, 0); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // Add FEC packet (seq#2) of this first frame to received list (i.e., assume // the two media packet were lost). memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->ReceivedPackets(this->generated_fec_packets_, this->fec_loss_mask_, true); // Construct media packets for second frame, with sequence number wrap. this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 32767); // Expect 3 media packets for this frame. EXPECT_EQ(3u, this->media_packets_.size()); // No packets lost memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); // Construct media packets for third frame, with sequence number wrap. this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 65535); // Expect 3 media packets for this frame. EXPECT_EQ(3u, this->media_packets_.size()); // Second media packet lost (seq#0). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); this->media_loss_mask_[1] = 1; // Add packets #65535, and #1 to received list. this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect that no decoding is done to get missing packet (seq#0) of third // frame, using old FEC packet (seq#2) from first (old) frame. So number of // recovered packets is 5 (0 from first frame, three from second frame, and 2 // for the third frame, with no packets recovered via FEC). EXPECT_EQ(5u, this->recovered_packets_.size()); EXPECT_TRUE(this->recovered_packets_.size() != this->media_packets_.size()); } // Verify we can still recover frame if sequence number wrap occurs within // the frame and FEC packet following wrap is received after media packets. TYPED_TEST(RtpFecTest, FecRecoveryWithSeqNumGapOneFrameRecovery) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 20; // One frame, with sequence number wrap in media packets. // -----Frame 1---- // #65534(media) #65535(media) #0(media) #1(FEC). this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 65534); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // Lose one media packet (seq# 65535). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); // Add FEC packet to received list following the media packets. this->ReceivedPackets(this->generated_fec_packets_, this->fec_loss_mask_, true); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect 3 media packets in recovered list, and complete recovery. // Wrap-around won't remove FEC packet, as it follows the wrap. EXPECT_EQ(3u, this->recovered_packets_.size()); EXPECT_TRUE(this->IsRecoveryComplete()); } // Sequence number wrap occurs within the ULPFEC packets for the frame. // Same problem will occur if wrap is within media packets but ULPFEC packet is // received before the media packets. This may be improved if timing information // is used to detect old ULPFEC packets. // TODO(nisse): There's some logic to discard ULPFEC packets at wrap-around, // however, that is not actually exercised by this test: When the first FEC // packet is processed, it results in full recovery of one media packet and the // FEC packet is forgotten. And then the wraparound isn't noticed when the next // FEC packet is received. We should fix wraparound handling, which currently // appears broken, and then figure out how to test it properly. using RtpFecTestUlpfecOnly = RtpFecTest; TEST_F(RtpFecTestUlpfecOnly, FecRecoveryWithSeqNumGapOneFrameRecovery) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 200; // 1 frame: 3 media packets and 2 FEC packets. // Sequence number wrap in FEC packets. // -----Frame 1---- // #65532(media) #65533(media) #65534(media) #65535(FEC) #0(FEC). this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 65532); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 2 FEC packets. EXPECT_EQ(2u, this->generated_fec_packets_.size()); // Lose the last two media packets (seq# 65533, 65534). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); this->ReceivedPackets(this->generated_fec_packets_, this->fec_loss_mask_, true); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // The two FEC packets are received and should allow for complete recovery, // but because of the wrap the first FEC packet will be discarded, and only // one media packet is recoverable. So expect 2 media packets on recovered // list and no complete recovery. EXPECT_EQ(3u, this->recovered_packets_.size()); EXPECT_EQ(this->recovered_packets_.size(), this->media_packets_.size()); EXPECT_TRUE(this->IsRecoveryComplete()); } // TODO(brandtr): This test mimics the one above, ensuring that the recovery // strategy of FlexFEC matches the recovery strategy of ULPFEC. Since FlexFEC // does not share the sequence number space with the media, however, having a // matching recovery strategy may be suboptimal. Study this further. // TODO(nisse): In this test, recovery based on the first FEC packet fails with // the log message "The recovered packet had a length larger than a typical IP // packet, and is thus dropped." This is probably not intended, and needs // investigation. using RtpFecTestFlexfecOnly = RtpFecTest; TEST_F(RtpFecTestFlexfecOnly, FecRecoveryWithSeqNumGapOneFrameNoRecovery) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 200; // 1 frame: 3 media packets and 2 FEC packets. // Sequence number wrap in FEC packets. // -----Frame 1---- // #65532(media) #65533(media) #65534(media) #65535(FEC) #0(FEC). this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 65532); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 2 FEC packets. EXPECT_EQ(2u, this->generated_fec_packets_.size()); // Overwrite the sequence numbers generated by ConstructMediaPackets, // to make sure that we do have a wrap. auto it = this->generated_fec_packets_.begin(); ByteWriter::WriteBigEndian(&(*it)->data.MutableData()[2], 65535); ++it; ByteWriter::WriteBigEndian(&(*it)->data.MutableData()[2], 0); // Lose the last two media packets (seq# 65533, 65534). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); this->ReceivedPackets(this->generated_fec_packets_, this->fec_loss_mask_, true); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // The two FEC packets are received and should allow for complete recovery, // but because of the wrap the first FEC packet will be discarded, and only // one media packet is recoverable. So expect 2 media packets on recovered // list and no complete recovery. EXPECT_EQ(2u, this->recovered_packets_.size()); EXPECT_TRUE(this->recovered_packets_.size() != this->media_packets_.size()); EXPECT_FALSE(this->IsRecoveryComplete()); } // Verify we can still recover frame if media packets are reordered. TYPED_TEST(RtpFecTest, FecRecoveryWithMediaOutOfOrder) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 20; // One frame: 3 media packets, 1 FEC packet. // -----Frame 1---- // #0(media) #1(media) #2(media) #3(FEC). this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 0); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // Lose one media packet (seq# 1). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); // Reorder received media packets. auto it0 = this->received_packets_.begin(); auto it1 = this->received_packets_.begin(); it1++; std::swap(*it0, *it1); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect 3 media packets in recovered list, and complete recovery. EXPECT_EQ(3u, this->recovered_packets_.size()); EXPECT_TRUE(this->IsRecoveryComplete()); } // Verify we can still recover frame if FEC is received before media packets. TYPED_TEST(RtpFecTest, FecRecoveryWithFecOutOfOrder) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr uint8_t kProtectionFactor = 20; // One frame: 3 media packets, 1 FEC packet. // -----Frame 1---- // #0(media) #1(media) #2(media) #3(FEC). this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(3, 0); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // Lose one media packet (seq# 1). memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; // Add FEC packet to received list before the media packets. this->ReceivedPackets(this->generated_fec_packets_, this->fec_loss_mask_, true); // Add media packets to received list. this->ReceivedPackets(this->media_packets_, this->media_loss_mask_, false); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect 3 media packets in recovered list, and complete recovery. EXPECT_EQ(3u, this->recovered_packets_.size()); EXPECT_TRUE(this->IsRecoveryComplete()); } // Test 50% protection with random mask type: Two cases are considered: // a 50% non-consecutive loss which can be fully recovered, and a 50% // consecutive loss which cannot be fully recovered. TYPED_TEST(RtpFecTest, FecRecoveryWithLoss50percRandomMask) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 255; // Packet Mask for (4,4,0) code, from random mask table. // (kNumMediaPackets = 4; num_fec_packets = 4, kNumImportantPackets = 0) // media#0 media#1 media#2 media#3 // fec#0: 1 1 0 0 // fec#1: 1 0 1 0 // fec#2: 0 0 1 1 // fec#3: 0 1 0 1 // this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskRandom, &this->generated_fec_packets_)); // Expect 4 FEC packets. EXPECT_EQ(4u, this->generated_fec_packets_.size()); // 4 packets lost: 3 media packets (0, 2, 3), and one FEC packet (0) lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->fec_loss_mask_[0] = 1; this->media_loss_mask_[0] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // With media packet#1 and FEC packets #1, #2, #3, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 4 consecutive packets lost: media packets 0, 1, 2, 3. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[0] = 1; this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Cannot get complete recovery for this loss configuration with random mask. EXPECT_FALSE(this->IsRecoveryComplete()); } // Test 50% protection with bursty type: Three cases are considered: // two 50% consecutive losses which can be fully recovered, and one // non-consecutive which cannot be fully recovered. TYPED_TEST(RtpFecTest, FecRecoveryWithLoss50percBurstyMask) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 255; // Packet Mask for (4,4,0) code, from bursty mask table. // (kNumMediaPackets = 4; num_fec_packets = 4, kNumImportantPackets = 0) // media#0 media#1 media#2 media#3 // fec#0: 1 0 0 0 // fec#1: 1 1 0 0 // fec#2: 0 1 1 0 // fec#3: 0 0 1 1 // this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 4 FEC packets. EXPECT_EQ(4u, this->generated_fec_packets_.size()); // 4 consecutive packets lost: media packets 0,1,2,3. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[0] = 1; this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect complete recovery for consecutive packet loss <= 50%. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 4 consecutive packets lost: media packets 1,2, 3, and FEC packet 0. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->fec_loss_mask_[0] = 1; this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Expect complete recovery for consecutive packet loss <= 50%. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 4 packets lost (non-consecutive loss): media packets 0, 3, and FEC# 0, 3. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->fec_loss_mask_[0] = 1; this->fec_loss_mask_[3] = 1; this->media_loss_mask_[0] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Cannot get complete recovery for this loss configuration. EXPECT_FALSE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryNoLossUep) { constexpr int kNumImportantPackets = 2; constexpr bool kUseUnequalProtection = true; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 60; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // No packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // No packets lost, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryWithLossUep) { constexpr int kNumImportantPackets = 2; constexpr bool kUseUnequalProtection = true; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 60; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // 1 media packet lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // One packet lost, one FEC packet, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 2 media packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // 2 packets lost, one FEC packet, cannot get complete recovery. EXPECT_FALSE(this->IsRecoveryComplete()); } // Test 50% protection with random mask type for UEP on. TYPED_TEST(RtpFecTest, FecRecoveryWithLoss50percUepRandomMask) { constexpr int kNumImportantPackets = 1; constexpr bool kUseUnequalProtection = true; constexpr int kNumMediaPackets = 4; constexpr uint8_t kProtectionFactor = 255; // Packet Mask for (4,4,1) code, from random mask table. // (kNumMediaPackets = 4; num_fec_packets = 4, kNumImportantPackets = 1) // media#0 media#1 media#2 media#3 // fec#0: 1 0 0 0 // fec#1: 1 1 0 0 // fec#2: 1 0 1 1 // fec#3: 0 1 1 0 // this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); EXPECT_EQ( 0, this->fec_.EncodeFec(this->media_packets_, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskRandom, &this->generated_fec_packets_)); // Expect 4 FEC packets. EXPECT_EQ(4u, this->generated_fec_packets_.size()); // 4 packets lost: 3 media packets and FEC packet#1 lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->fec_loss_mask_[1] = 1; this->media_loss_mask_[0] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // With media packet#3 and FEC packets #0, #1, #3, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 5 packets lost: 4 media packets and one FEC packet#2 lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->fec_loss_mask_[2] = 1; this->media_loss_mask_[0] = 1; this->media_loss_mask_[1] = 1; this->media_loss_mask_[2] = 1; this->media_loss_mask_[3] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Cannot get complete recovery for this loss configuration. EXPECT_FALSE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryNonConsecutivePackets) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 5; constexpr uint8_t kProtectionFactor = 60; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); // Create a new temporary packet list for generating FEC packets. // This list should have every other packet removed. ForwardErrorCorrection::PacketList protected_media_packets; DeepCopyEveryNthPacket(this->media_packets_, 2, &protected_media_packets); EXPECT_EQ( 0, this->fec_.EncodeFec(protected_media_packets, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 1 FEC packet. EXPECT_EQ(1u, this->generated_fec_packets_.size()); // 1 protected media packet lost memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[2] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // One packet lost, one FEC packet, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // Unprotected packet lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Unprotected packet lost. Recovery not possible. EXPECT_FALSE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 2 media packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[0] = 1; this->media_loss_mask_[2] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // 2 protected packets lost, one FEC packet, cannot get complete recovery. EXPECT_FALSE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryNonConsecutivePacketsExtension) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 21; uint8_t kProtectionFactor = 127; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets(kNumMediaPackets); // Create a new temporary packet list for generating FEC packets. // This list should have every other packet removed. ForwardErrorCorrection::PacketList protected_media_packets; DeepCopyEveryNthPacket(this->media_packets_, 2, &protected_media_packets); // Zero column insertion will have to extend the size of the packet // mask since the number of actual packets are 21, while the number // of protected packets are 11. EXPECT_EQ( 0, this->fec_.EncodeFec(protected_media_packets, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 5 FEC packet. EXPECT_EQ(5u, this->generated_fec_packets_.size()); // Last protected media packet lost memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // One packet lost, one FEC packet, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // Last unprotected packet lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 2] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Unprotected packet lost. Recovery not possible. EXPECT_FALSE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 6 media packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 11] = 1; this->media_loss_mask_[kNumMediaPackets - 9] = 1; this->media_loss_mask_[kNumMediaPackets - 7] = 1; this->media_loss_mask_[kNumMediaPackets - 5] = 1; this->media_loss_mask_[kNumMediaPackets - 3] = 1; this->media_loss_mask_[kNumMediaPackets - 1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // 5 protected packets lost, one FEC packet, cannot get complete recovery. EXPECT_FALSE(this->IsRecoveryComplete()); } TYPED_TEST(RtpFecTest, FecRecoveryNonConsecutivePacketsWrap) { constexpr int kNumImportantPackets = 0; constexpr bool kUseUnequalProtection = false; constexpr int kNumMediaPackets = 21; uint8_t kProtectionFactor = 127; this->media_packets_ = this->media_packet_generator_.ConstructMediaPackets( kNumMediaPackets, 0xFFFF - 5); // Create a new temporary packet list for generating FEC packets. // This list should have every other packet removed. ForwardErrorCorrection::PacketList protected_media_packets; DeepCopyEveryNthPacket(this->media_packets_, 2, &protected_media_packets); // Zero column insertion will have to extend the size of the packet // mask since the number of actual packets are 21, while the number // of protected packets are 11. EXPECT_EQ( 0, this->fec_.EncodeFec(protected_media_packets, kProtectionFactor, kNumImportantPackets, kUseUnequalProtection, kFecMaskBursty, &this->generated_fec_packets_)); // Expect 5 FEC packet. EXPECT_EQ(5u, this->generated_fec_packets_.size()); // Last protected media packet lost memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // One packet lost, one FEC packet, expect complete recovery. EXPECT_TRUE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // Last unprotected packet lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 2] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // Unprotected packet lost. Recovery not possible. EXPECT_FALSE(this->IsRecoveryComplete()); this->recovered_packets_.clear(); // 6 media packets lost. memset(this->media_loss_mask_, 0, sizeof(this->media_loss_mask_)); memset(this->fec_loss_mask_, 0, sizeof(this->fec_loss_mask_)); this->media_loss_mask_[kNumMediaPackets - 11] = 1; this->media_loss_mask_[kNumMediaPackets - 9] = 1; this->media_loss_mask_[kNumMediaPackets - 7] = 1; this->media_loss_mask_[kNumMediaPackets - 5] = 1; this->media_loss_mask_[kNumMediaPackets - 3] = 1; this->media_loss_mask_[kNumMediaPackets - 1] = 1; this->NetworkReceivedPackets(this->media_loss_mask_, this->fec_loss_mask_); for (const auto& received_packet : this->received_packets_) { this->fec_.DecodeFec(*received_packet, &this->recovered_packets_); } // 5 protected packets lost, one FEC packet, cannot get complete recovery. EXPECT_FALSE(this->IsRecoveryComplete()); } } // namespace webrtc