/* * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/rtp_rtcp_impl.h" #include #include #include #include "api/units/time_delta.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/rtcp_packet.h" #include "modules/rtp_rtcp/source/rtcp_packet/nack.h" #include "modules/rtp_rtcp/source/rtp_packet_received.h" #include "modules/rtp_rtcp/source/rtp_sender_video.h" #include "rtc_base/rate_limiter.h" #include "test/explicit_key_value_config.h" #include "test/gmock.h" #include "test/gtest.h" #include "test/rtcp_packet_parser.h" using ::testing::ElementsAre; using ::testing::Eq; using ::testing::Field; using ::testing::Gt; using ::testing::Not; using ::testing::Optional; namespace webrtc { namespace { const uint32_t kSenderSsrc = 0x12345; const uint32_t kReceiverSsrc = 0x23456; constexpr TimeDelta kOneWayNetworkDelay = TimeDelta::Millis(100); const uint8_t kBaseLayerTid = 0; const uint8_t kHigherLayerTid = 1; const uint16_t kSequenceNumber = 100; const uint8_t kPayloadType = 100; const int kWidth = 320; const int kHeight = 100; MATCHER_P2(Near, value, margin, "") { return value - margin <= arg && arg <= value + margin; } #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecated-declarations" class RtcpRttStatsTestImpl : public RtcpRttStats { public: RtcpRttStatsTestImpl() : rtt_ms_(0) {} ~RtcpRttStatsTestImpl() override = default; void OnRttUpdate(int64_t rtt_ms) override { rtt_ms_ = rtt_ms; } int64_t LastProcessedRtt() const override { return rtt_ms_; } int64_t rtt_ms_; }; class SendTransport : public Transport { public: SendTransport() : receiver_(nullptr), clock_(nullptr), delay_ms_(0), rtp_packets_sent_(0), rtcp_packets_sent_(0) {} void SetRtpRtcpModule(ModuleRtpRtcpImpl* receiver) { receiver_ = receiver; } void SimulateNetworkDelay(int64_t delay_ms, SimulatedClock* clock) { clock_ = clock; delay_ms_ = delay_ms; } bool SendRtp(rtc::ArrayView data, const PacketOptions& options) override { RtpPacket packet; EXPECT_TRUE(packet.Parse(data)); ++rtp_packets_sent_; last_rtp_sequence_number_ = packet.SequenceNumber(); return true; } bool SendRtcp(rtc::ArrayView data) override { test::RtcpPacketParser parser; parser.Parse(data); last_nack_list_ = parser.nack()->packet_ids(); if (clock_) { clock_->AdvanceTimeMilliseconds(delay_ms_); } EXPECT_TRUE(receiver_); receiver_->IncomingRtcpPacket(data); ++rtcp_packets_sent_; return true; } size_t NumRtcpSent() { return rtcp_packets_sent_; } ModuleRtpRtcpImpl* receiver_; SimulatedClock* clock_; int64_t delay_ms_; int rtp_packets_sent_; size_t rtcp_packets_sent_; uint16_t last_rtp_sequence_number_; std::vector last_nack_list_; }; class RtpRtcpModule : public RtcpPacketTypeCounterObserver { public: RtpRtcpModule(SimulatedClock* clock, bool is_sender) : is_sender_(is_sender), receive_statistics_(ReceiveStatistics::Create(clock)), clock_(clock) { CreateModuleImpl(); transport_.SimulateNetworkDelay(kOneWayNetworkDelay.ms(), clock); } const bool is_sender_; RtcpPacketTypeCounter packets_sent_; RtcpPacketTypeCounter packets_received_; std::unique_ptr receive_statistics_; SendTransport transport_; RtcpRttStatsTestImpl rtt_stats_; std::unique_ptr impl_; int rtcp_report_interval_ms_ = 0; void RtcpPacketTypesCounterUpdated( uint32_t ssrc, const RtcpPacketTypeCounter& packet_counter) override { counter_map_[ssrc] = packet_counter; } RtcpPacketTypeCounter RtcpSent() { // RTCP counters for remote SSRC. return counter_map_[is_sender_ ? kReceiverSsrc : kSenderSsrc]; } RtcpPacketTypeCounter RtcpReceived() { // Received RTCP stats for (own) local SSRC. return counter_map_[impl_->SSRC()]; } int RtpSent() { return transport_.rtp_packets_sent_; } uint16_t LastRtpSequenceNumber() { return transport_.last_rtp_sequence_number_; } std::vector LastNackListSent() { return transport_.last_nack_list_; } void SetRtcpReportIntervalAndReset(int rtcp_report_interval_ms) { rtcp_report_interval_ms_ = rtcp_report_interval_ms; CreateModuleImpl(); } private: void CreateModuleImpl() { RtpRtcpInterface::Configuration config; config.audio = false; config.clock = clock_; config.outgoing_transport = &transport_; config.receive_statistics = receive_statistics_.get(); config.rtcp_packet_type_counter_observer = this; config.rtt_stats = &rtt_stats_; config.rtcp_report_interval_ms = rtcp_report_interval_ms_; config.local_media_ssrc = is_sender_ ? kSenderSsrc : kReceiverSsrc; config.need_rtp_packet_infos = true; config.non_sender_rtt_measurement = true; impl_.reset(new ModuleRtpRtcpImpl(config)); impl_->SetRemoteSSRC(is_sender_ ? kReceiverSsrc : kSenderSsrc); impl_->SetRTCPStatus(RtcpMode::kCompound); } SimulatedClock* const clock_; std::map counter_map_; }; } // namespace class RtpRtcpImplTest : public ::testing::Test { protected: RtpRtcpImplTest() : clock_(133590000000000), sender_(&clock_, /*is_sender=*/true), receiver_(&clock_, /*is_sender=*/false) {} void SetUp() override { // Send module. EXPECT_EQ(0, sender_.impl_->SetSendingStatus(true)); sender_.impl_->SetSendingMediaStatus(true); sender_.impl_->SetSequenceNumber(kSequenceNumber); sender_.impl_->SetStorePacketsStatus(true, 100); test::ExplicitKeyValueConfig field_trials(""); RTPSenderVideo::Config video_config; video_config.clock = &clock_; video_config.rtp_sender = sender_.impl_->RtpSender(); video_config.field_trials = &field_trials; sender_video_ = std::make_unique(video_config); // Receive module. EXPECT_EQ(0, receiver_.impl_->SetSendingStatus(false)); receiver_.impl_->SetSendingMediaStatus(false); // Transport settings. sender_.transport_.SetRtpRtcpModule(receiver_.impl_.get()); receiver_.transport_.SetRtpRtcpModule(sender_.impl_.get()); } SimulatedClock clock_; RtpRtcpModule sender_; std::unique_ptr sender_video_; RtpRtcpModule receiver_; void SendFrame(const RtpRtcpModule* module, RTPSenderVideo* sender, uint8_t tid) { RTPVideoHeaderVP8 vp8_header = {}; vp8_header.temporalIdx = tid; RTPVideoHeader rtp_video_header; rtp_video_header.frame_type = VideoFrameType::kVideoFrameKey; rtp_video_header.width = kWidth; rtp_video_header.height = kHeight; rtp_video_header.rotation = kVideoRotation_0; rtp_video_header.content_type = VideoContentType::UNSPECIFIED; rtp_video_header.is_first_packet_in_frame = true; rtp_video_header.simulcastIdx = 0; rtp_video_header.codec = kVideoCodecVP8; rtp_video_header.video_type_header = vp8_header; rtp_video_header.video_timing = {0u, 0u, 0u, 0u, 0u, 0u, false}; const uint8_t payload[100] = {0}; EXPECT_TRUE(module->impl_->OnSendingRtpFrame(0, 0, kPayloadType, true)); EXPECT_TRUE(sender->SendVideo( kPayloadType, VideoCodecType::kVideoCodecVP8, 0, clock_.CurrentTime(), payload, sizeof(payload), rtp_video_header, TimeDelta::Zero(), {})); } void IncomingRtcpNack(const RtpRtcpModule* module, uint16_t sequence_number) { bool sender = module->impl_->SSRC() == kSenderSsrc; rtcp::Nack nack; uint16_t list[1]; list[0] = sequence_number; const uint16_t kListLength = sizeof(list) / sizeof(list[0]); nack.SetSenderSsrc(sender ? kReceiverSsrc : kSenderSsrc); nack.SetMediaSsrc(sender ? kSenderSsrc : kReceiverSsrc); nack.SetPacketIds(list, kListLength); module->impl_->IncomingRtcpPacket(nack.Build()); } }; TEST_F(RtpRtcpImplTest, RetransmitsAllLayers) { // Send frames. EXPECT_EQ(0, sender_.RtpSent()); SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // kSequenceNumber SendFrame(&sender_, sender_video_.get(), kHigherLayerTid); // kSequenceNumber + 1 SendFrame(&sender_, sender_video_.get(), kNoTemporalIdx); // kSequenceNumber + 2 EXPECT_EQ(3, sender_.RtpSent()); EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber()); // Min required delay until retransmit = 5 + RTT ms (RTT = 0). clock_.AdvanceTimeMilliseconds(5); // Frame with kBaseLayerTid re-sent. IncomingRtcpNack(&sender_, kSequenceNumber); EXPECT_EQ(4, sender_.RtpSent()); EXPECT_EQ(kSequenceNumber, sender_.LastRtpSequenceNumber()); // Frame with kHigherLayerTid re-sent. IncomingRtcpNack(&sender_, kSequenceNumber + 1); EXPECT_EQ(5, sender_.RtpSent()); EXPECT_EQ(kSequenceNumber + 1, sender_.LastRtpSequenceNumber()); // Frame with kNoTemporalIdx re-sent. IncomingRtcpNack(&sender_, kSequenceNumber + 2); EXPECT_EQ(6, sender_.RtpSent()); EXPECT_EQ(kSequenceNumber + 2, sender_.LastRtpSequenceNumber()); } TEST_F(RtpRtcpImplTest, Rtt) { RtpPacketReceived packet; packet.SetTimestamp(1); packet.SetSequenceNumber(123); packet.SetSsrc(kSenderSsrc); packet.AllocatePayload(100 - 12); receiver_.receive_statistics_->OnRtpPacket(packet); // Send Frame before sending an SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Sender module should send an SR. EXPECT_EQ(0, sender_.impl_->SendRTCP(kRtcpReport)); // Receiver module should send a RR with a response to the last received SR. clock_.AdvanceTimeMilliseconds(1000); EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpReport)); // Verify RTT. EXPECT_THAT(sender_.impl_->LastRtt(), Near(2 * kOneWayNetworkDelay, TimeDelta::Millis(1))); // Verify RTT from rtt_stats config. EXPECT_EQ(0, sender_.rtt_stats_.LastProcessedRtt()); EXPECT_EQ(0, sender_.impl_->rtt_ms()); sender_.impl_->Process(); EXPECT_NEAR(2 * kOneWayNetworkDelay.ms(), sender_.rtt_stats_.LastProcessedRtt(), 1); EXPECT_NEAR(2 * kOneWayNetworkDelay.ms(), sender_.impl_->rtt_ms(), 1); } TEST_F(RtpRtcpImplTest, RttForReceiverOnly) { // Receiver module should send a Receiver reference time report block (RRTR). EXPECT_EQ(0, receiver_.impl_->SendRTCP(kRtcpReport)); // Sender module should send a response to the last received RRTR (DLRR). clock_.AdvanceTimeMilliseconds(1000); // Send Frame before sending a SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); EXPECT_EQ(0, sender_.impl_->SendRTCP(kRtcpReport)); // Verify RTT. EXPECT_EQ(0, receiver_.rtt_stats_.LastProcessedRtt()); EXPECT_EQ(0, receiver_.impl_->rtt_ms()); receiver_.impl_->Process(); EXPECT_NEAR(2 * kOneWayNetworkDelay.ms(), receiver_.rtt_stats_.LastProcessedRtt(), 1); EXPECT_NEAR(2 * kOneWayNetworkDelay.ms(), receiver_.impl_->rtt_ms(), 1); } TEST_F(RtpRtcpImplTest, NoSrBeforeMedia) { // Ignore fake transport delays in this test. sender_.transport_.SimulateNetworkDelay(0, &clock_); receiver_.transport_.SimulateNetworkDelay(0, &clock_); sender_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 0u); // Verify no SR is sent before media has been sent, RR should still be sent // from the receiving module though. clock_.AdvanceTimeMilliseconds(2000); sender_.impl_->Process(); receiver_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 0u); EXPECT_EQ(receiver_.transport_.NumRtcpSent(), 1u); SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 1u); } TEST_F(RtpRtcpImplTest, RtcpPacketTypeCounter_Nack) { EXPECT_EQ(0U, sender_.RtcpReceived().nack_packets); EXPECT_EQ(0U, receiver_.RtcpSent().nack_packets); // Receive module sends a NACK. const uint16_t kNackLength = 1; uint16_t nack_list[kNackLength] = {123}; EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, receiver_.RtcpSent().nack_packets); // Send module receives the NACK. EXPECT_EQ(1U, sender_.RtcpReceived().nack_packets); } TEST_F(RtpRtcpImplTest, AddStreamDataCounters) { StreamDataCounters rtp; rtp.transmitted.packets = 1; rtp.transmitted.payload_bytes = 1; rtp.transmitted.header_bytes = 2; rtp.transmitted.padding_bytes = 3; EXPECT_EQ(rtp.transmitted.TotalBytes(), rtp.transmitted.payload_bytes + rtp.transmitted.header_bytes + rtp.transmitted.padding_bytes); StreamDataCounters rtp2; rtp2.transmitted.packets = 10; rtp2.transmitted.payload_bytes = 10; rtp2.retransmitted.header_bytes = 4; rtp2.retransmitted.payload_bytes = 5; rtp2.retransmitted.padding_bytes = 6; rtp2.retransmitted.packets = 7; rtp2.fec.packets = 8; StreamDataCounters sum = rtp; sum.Add(rtp2); EXPECT_EQ(11U, sum.transmitted.packets); EXPECT_EQ(11U, sum.transmitted.payload_bytes); EXPECT_EQ(2U, sum.transmitted.header_bytes); EXPECT_EQ(3U, sum.transmitted.padding_bytes); EXPECT_EQ(4U, sum.retransmitted.header_bytes); EXPECT_EQ(5U, sum.retransmitted.payload_bytes); EXPECT_EQ(6U, sum.retransmitted.padding_bytes); EXPECT_EQ(7U, sum.retransmitted.packets); EXPECT_EQ(8U, sum.fec.packets); EXPECT_EQ(sum.transmitted.TotalBytes(), rtp.transmitted.TotalBytes() + rtp2.transmitted.TotalBytes()); } TEST_F(RtpRtcpImplTest, SendsInitialNackList) { // Send module sends a NACK. const uint16_t kNackLength = 1; uint16_t nack_list[kNackLength] = {123}; EXPECT_EQ(0U, sender_.RtcpSent().nack_packets); // Send Frame before sending a compound RTCP that starts with SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123)); } TEST_F(RtpRtcpImplTest, SendsExtendedNackList) { // Send module sends a NACK. const uint16_t kNackLength = 1; uint16_t nack_list[kNackLength] = {123}; EXPECT_EQ(0U, sender_.RtcpSent().nack_packets); // Send Frame before sending a compound RTCP that starts with SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123)); // Same list not re-send. EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123)); // Only extended list sent. const uint16_t kNackExtLength = 2; uint16_t nack_list_ext[kNackExtLength] = {123, 124}; EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list_ext, kNackExtLength)); EXPECT_EQ(2U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(124)); } TEST_F(RtpRtcpImplTest, ReSendsNackListAfterRttMs) { sender_.transport_.SimulateNetworkDelay(0, &clock_); // Send module sends a NACK. const uint16_t kNackLength = 2; uint16_t nack_list[kNackLength] = {123, 125}; EXPECT_EQ(0U, sender_.RtcpSent().nack_packets); // Send Frame before sending a compound RTCP that starts with SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123, 125)); // Same list not re-send, rtt interval has not passed. const int kStartupRttMs = 100; clock_.AdvanceTimeMilliseconds(kStartupRttMs); EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, sender_.RtcpSent().nack_packets); // Rtt interval passed, full list sent. clock_.AdvanceTimeMilliseconds(1); EXPECT_EQ(0, sender_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(2U, sender_.RtcpSent().nack_packets); EXPECT_THAT(sender_.LastNackListSent(), ElementsAre(123, 125)); } TEST_F(RtpRtcpImplTest, UniqueNackRequests) { receiver_.transport_.SimulateNetworkDelay(0, &clock_); EXPECT_EQ(0U, receiver_.RtcpSent().nack_packets); EXPECT_EQ(0U, receiver_.RtcpSent().nack_requests); EXPECT_EQ(0U, receiver_.RtcpSent().unique_nack_requests); EXPECT_EQ(0, receiver_.RtcpSent().UniqueNackRequestsInPercent()); // Receive module sends NACK request. const uint16_t kNackLength = 4; uint16_t nack_list[kNackLength] = {10, 11, 13, 18}; EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list, kNackLength)); EXPECT_EQ(1U, receiver_.RtcpSent().nack_packets); EXPECT_EQ(4U, receiver_.RtcpSent().nack_requests); EXPECT_EQ(4U, receiver_.RtcpSent().unique_nack_requests); EXPECT_THAT(receiver_.LastNackListSent(), ElementsAre(10, 11, 13, 18)); // Send module receives the request. EXPECT_EQ(1U, sender_.RtcpReceived().nack_packets); EXPECT_EQ(4U, sender_.RtcpReceived().nack_requests); EXPECT_EQ(4U, sender_.RtcpReceived().unique_nack_requests); EXPECT_EQ(100, sender_.RtcpReceived().UniqueNackRequestsInPercent()); // Receive module sends new request with duplicated packets. const int kStartupRttMs = 100; clock_.AdvanceTimeMilliseconds(kStartupRttMs + 1); const uint16_t kNackLength2 = 4; uint16_t nack_list2[kNackLength2] = {11, 18, 20, 21}; EXPECT_EQ(0, receiver_.impl_->SendNACK(nack_list2, kNackLength2)); EXPECT_EQ(2U, receiver_.RtcpSent().nack_packets); EXPECT_EQ(8U, receiver_.RtcpSent().nack_requests); EXPECT_EQ(6U, receiver_.RtcpSent().unique_nack_requests); EXPECT_THAT(receiver_.LastNackListSent(), ElementsAre(11, 18, 20, 21)); // Send module receives the request. EXPECT_EQ(2U, sender_.RtcpReceived().nack_packets); EXPECT_EQ(8U, sender_.RtcpReceived().nack_requests); EXPECT_EQ(6U, sender_.RtcpReceived().unique_nack_requests); EXPECT_EQ(75, sender_.RtcpReceived().UniqueNackRequestsInPercent()); } TEST_F(RtpRtcpImplTest, ConfigurableRtcpReportInterval) { const int kVideoReportInterval = 3000; // Recreate sender impl with new configuration, and redo setup. sender_.SetRtcpReportIntervalAndReset(kVideoReportInterval); SetUp(); SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Initial state sender_.impl_->Process(); EXPECT_EQ(0u, sender_.transport_.NumRtcpSent()); // Move ahead to the last ms before a rtcp is expected, no action. clock_.AdvanceTimeMilliseconds(kVideoReportInterval / 2 - 1); sender_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 0u); // Move ahead to the first rtcp. Send RTCP. clock_.AdvanceTimeMilliseconds(1); sender_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 1u); SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Move ahead to the last possible second before second rtcp is expected. clock_.AdvanceTimeMilliseconds(kVideoReportInterval * 1 / 2 - 1); sender_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 1u); // Move ahead into the range of second rtcp, the second rtcp may be sent. clock_.AdvanceTimeMilliseconds(1); sender_.impl_->Process(); EXPECT_GE(sender_.transport_.NumRtcpSent(), 1u); clock_.AdvanceTimeMilliseconds(kVideoReportInterval / 2); sender_.impl_->Process(); EXPECT_GE(sender_.transport_.NumRtcpSent(), 1u); // Move out the range of second rtcp, the second rtcp must have been sent. clock_.AdvanceTimeMilliseconds(kVideoReportInterval / 2); sender_.impl_->Process(); EXPECT_EQ(sender_.transport_.NumRtcpSent(), 2u); } TEST_F(RtpRtcpImplTest, StoresPacketInfoForSentPackets) { const uint32_t kStartTimestamp = 1u; SetUp(); sender_.impl_->SetStartTimestamp(kStartTimestamp); sender_.impl_->SetSequenceNumber(1); PacedPacketInfo pacing_info; RtpPacketToSend packet(nullptr); packet.set_packet_type(RtpPacketToSend::Type::kVideo); packet.SetSsrc(kSenderSsrc); // Single-packet frame. packet.SetTimestamp(1); packet.set_first_packet_of_frame(true); packet.SetMarker(true); sender_.impl_->TrySendPacket(std::make_unique(packet), pacing_info); std::vector seqno_info = sender_.impl_->GetSentRtpPacketInfos(std::vector{1}); EXPECT_THAT(seqno_info, ElementsAre(RtpSequenceNumberMap::Info( /*timestamp=*/1 - kStartTimestamp, /*is_first=*/1, /*is_last=*/1))); // Three-packet frame. packet.SetTimestamp(2); packet.set_first_packet_of_frame(true); packet.SetMarker(false); sender_.impl_->TrySendPacket(std::make_unique(packet), pacing_info); packet.set_first_packet_of_frame(false); sender_.impl_->TrySendPacket(std::make_unique(packet), pacing_info); packet.SetMarker(true); sender_.impl_->TrySendPacket(std::make_unique(packet), pacing_info); seqno_info = sender_.impl_->GetSentRtpPacketInfos(std::vector{2, 3, 4}); EXPECT_THAT(seqno_info, ElementsAre(RtpSequenceNumberMap::Info( /*timestamp=*/2 - kStartTimestamp, /*is_first=*/1, /*is_last=*/0), RtpSequenceNumberMap::Info( /*timestamp=*/2 - kStartTimestamp, /*is_first=*/0, /*is_last=*/0), RtpSequenceNumberMap::Info( /*timestamp=*/2 - kStartTimestamp, /*is_first=*/0, /*is_last=*/1))); } // Checks that the remote sender stats are not available if no RTCP SR was sent. TEST_F(RtpRtcpImplTest, SenderReportStatsNotAvailable) { EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Eq(absl::nullopt)); } // Checks that the remote sender stats are available if an RTCP SR was sent. TEST_F(RtpRtcpImplTest, SenderReportStatsAvailable) { // Send a frame in order to send an SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Send an SR. ASSERT_THAT(sender_.impl_->SendRTCP(kRtcpReport), Eq(0)); EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Not(Eq(absl::nullopt))); } // Checks that the remote sender stats are not available if an RTCP SR with an // unexpected SSRC is received. TEST_F(RtpRtcpImplTest, SenderReportStatsNotUpdatedWithUnexpectedSsrc) { constexpr uint32_t kUnexpectedSenderSsrc = 0x87654321; static_assert(kUnexpectedSenderSsrc != kSenderSsrc, ""); // Forge a sender report and pass it to the receiver as if an RTCP SR were // sent by an unexpected sender. rtcp::SenderReport sr; sr.SetSenderSsrc(kUnexpectedSenderSsrc); sr.SetNtp({/*seconds=*/1u, /*fractions=*/1u << 31}); sr.SetPacketCount(123u); sr.SetOctetCount(456u); receiver_.impl_->IncomingRtcpPacket(sr.Build()); EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Eq(absl::nullopt)); } // Checks the stats derived from the last received RTCP SR are set correctly. TEST_F(RtpRtcpImplTest, SenderReportStatsCheckStatsFromLastReport) { using SenderReportStats = RtpRtcpInterface::SenderReportStats; const NtpTime ntp(/*seconds=*/1u, /*fractions=*/1u << 31); constexpr uint32_t kPacketCount = 123u; constexpr uint32_t kOctetCount = 456u; // Forge a sender report and pass it to the receiver as if an RTCP SR were // sent by the sender. rtcp::SenderReport sr; sr.SetSenderSsrc(kSenderSsrc); sr.SetNtp(ntp); sr.SetPacketCount(kPacketCount); sr.SetOctetCount(kOctetCount); receiver_.impl_->IncomingRtcpPacket(sr.Build()); EXPECT_THAT( receiver_.impl_->GetSenderReportStats(), Optional(AllOf(Field(&SenderReportStats::last_remote_timestamp, Eq(ntp)), Field(&SenderReportStats::packets_sent, Eq(kPacketCount)), Field(&SenderReportStats::bytes_sent, Eq(kOctetCount))))); } // Checks that the remote sender stats count equals the number of sent RTCP SRs. TEST_F(RtpRtcpImplTest, SenderReportStatsCount) { using SenderReportStats = RtpRtcpInterface::SenderReportStats; // Send a frame in order to send an SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Send the first SR. ASSERT_THAT(sender_.impl_->SendRTCP(kRtcpReport), Eq(0)); EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Optional(Field(&SenderReportStats::reports_count, Eq(1u)))); // Send the second SR. ASSERT_THAT(sender_.impl_->SendRTCP(kRtcpReport), Eq(0)); EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Optional(Field(&SenderReportStats::reports_count, Eq(2u)))); } // Checks that the remote sender stats include a valid arrival time if an RTCP // SR was sent. TEST_F(RtpRtcpImplTest, SenderReportStatsArrivalTimestampSet) { // Send a frame in order to send an SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); // Send an SR. ASSERT_THAT(sender_.impl_->SendRTCP(kRtcpReport), Eq(0)); auto stats = receiver_.impl_->GetSenderReportStats(); ASSERT_THAT(stats, Not(Eq(absl::nullopt))); EXPECT_TRUE(stats->last_arrival_timestamp.Valid()); } // Checks that the packet and byte counters from an RTCP SR are not zero once // a frame is sent. TEST_F(RtpRtcpImplTest, SenderReportStatsPacketByteCounters) { using SenderReportStats = RtpRtcpInterface::SenderReportStats; // Send a frame in order to send an SR. SendFrame(&sender_, sender_video_.get(), kBaseLayerTid); ASSERT_THAT(sender_.transport_.rtp_packets_sent_, Gt(0)); // Advance time otherwise the RTCP SR report will not include any packets // generated by `SendFrame()`. clock_.AdvanceTimeMilliseconds(1); // Send an SR. ASSERT_THAT(sender_.impl_->SendRTCP(kRtcpReport), Eq(0)); EXPECT_THAT(receiver_.impl_->GetSenderReportStats(), Optional(AllOf(Field(&SenderReportStats::packets_sent, Gt(0u)), Field(&SenderReportStats::bytes_sent, Gt(0u))))); } #pragma clang diagnostic pop } // namespace webrtc