/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/rtp_rtcp/source/ulpfec_generator.h" #include #include #include #include #include "modules/rtp_rtcp/source/byte_io.h" #include "modules/rtp_rtcp/source/fec_test_helper.h" #include "modules/rtp_rtcp/source/forward_error_correction.h" #include "test/gtest.h" namespace webrtc { namespace { using test::fec::AugmentedPacket; using test::fec::AugmentedPacketGenerator; constexpr int kFecPayloadType = 96; constexpr int kRedPayloadType = 97; constexpr uint32_t kMediaSsrc = 835424; } // namespace void VerifyHeader(uint16_t seq_num, uint32_t timestamp, int red_payload_type, int fec_payload_type, bool marker_bit, const rtc::CopyOnWriteBuffer& data) { // Marker bit not set. EXPECT_EQ(marker_bit ? 0x80 : 0, data[1] & 0x80); EXPECT_EQ(red_payload_type, data[1] & 0x7F); EXPECT_EQ(seq_num, (data[2] << 8) + data[3]); uint32_t parsed_timestamp = (data[4] << 24) + (data[5] << 16) + (data[6] << 8) + data[7]; EXPECT_EQ(timestamp, parsed_timestamp); EXPECT_EQ(static_cast(fec_payload_type), data[kRtpHeaderSize]); } class UlpfecGeneratorTest : public ::testing::Test { protected: UlpfecGeneratorTest() : fake_clock_(1), ulpfec_generator_(kRedPayloadType, kFecPayloadType, &fake_clock_), packet_generator_(kMediaSsrc) {} SimulatedClock fake_clock_; UlpfecGenerator ulpfec_generator_; AugmentedPacketGenerator packet_generator_; }; // Verifies bug found via fuzzing, where a gap in the packet sequence caused us // to move past the end of the current FEC packet mask byte without moving to // the next byte. That likely caused us to repeatedly read from the same byte, // and if that byte didn't protect packets we would generate empty FEC. TEST_F(UlpfecGeneratorTest, NoEmptyFecWithSeqNumGaps) { struct Packet { size_t header_size; size_t payload_size; uint16_t seq_num; bool marker_bit; }; std::vector protected_packets; protected_packets.push_back({15, 3, 41, 0}); protected_packets.push_back({14, 1, 43, 0}); protected_packets.push_back({19, 0, 48, 0}); protected_packets.push_back({19, 0, 50, 0}); protected_packets.push_back({14, 3, 51, 0}); protected_packets.push_back({13, 8, 52, 0}); protected_packets.push_back({19, 2, 53, 0}); protected_packets.push_back({12, 3, 54, 0}); protected_packets.push_back({21, 0, 55, 0}); protected_packets.push_back({13, 3, 57, 1}); FecProtectionParams params = {117, 3, kFecMaskBursty}; ulpfec_generator_.SetProtectionParameters(params, params); for (Packet p : protected_packets) { RtpPacketToSend packet(nullptr); packet.SetMarker(p.marker_bit); packet.AllocateExtension(RTPExtensionType::kRtpExtensionMid, p.header_size - packet.headers_size()); packet.SetSequenceNumber(p.seq_num); packet.AllocatePayload(p.payload_size); ulpfec_generator_.AddPacketAndGenerateFec(packet); std::vector> fec_packets = ulpfec_generator_.GetFecPackets(); if (!p.marker_bit) { EXPECT_TRUE(fec_packets.empty()); } else { EXPECT_FALSE(fec_packets.empty()); } } } TEST_F(UlpfecGeneratorTest, OneFrameFec) { // The number of media packets (`kNumPackets`), number of frames (one for // this test), and the protection factor (|params->fec_rate|) are set to make // sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over 1 frame // of packets is within `kMaxExcessOverhead`, and (2) the total number of // media packets for 1 frame is at least `minimum_media_packets_fec_`. constexpr size_t kNumPackets = 4; FecProtectionParams params = {15, 3, kFecMaskRandom}; packet_generator_.NewFrame(kNumPackets); // Expecting one FEC packet. ulpfec_generator_.SetProtectionParameters(params, params); uint32_t last_timestamp = 0; for (size_t i = 0; i < kNumPackets; ++i) { std::unique_ptr packet = packet_generator_.NextPacket(i, 10); RtpPacketToSend rtp_packet(nullptr); EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size())); ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet); last_timestamp = packet->header.timestamp; } std::vector> fec_packets = ulpfec_generator_.GetFecPackets(); EXPECT_EQ(fec_packets.size(), 1u); uint16_t seq_num = packet_generator_.NextPacketSeqNum(); fec_packets[0]->SetSequenceNumber(seq_num); EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty()); EXPECT_EQ(fec_packets[0]->headers_size(), kRtpHeaderSize); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false, fec_packets[0]->Buffer()); } TEST_F(UlpfecGeneratorTest, TwoFrameFec) { // The number of media packets/frame (`kNumPackets`), the number of frames // (`kNumFrames`), and the protection factor (|params->fec_rate|) are set to // make sure the conditions for generating FEC are satisfied. This means: // (1) protection factor is high enough so that actual overhead over // `kNumFrames` is within `kMaxExcessOverhead`, and (2) the total number of // media packets for `kNumFrames` frames is at least // `minimum_media_packets_fec_`. constexpr size_t kNumPackets = 2; constexpr size_t kNumFrames = 2; FecProtectionParams params = {15, 3, kFecMaskRandom}; // Expecting one FEC packet. ulpfec_generator_.SetProtectionParameters(params, params); uint32_t last_timestamp = 0; for (size_t i = 0; i < kNumFrames; ++i) { packet_generator_.NewFrame(kNumPackets); for (size_t j = 0; j < kNumPackets; ++j) { std::unique_ptr packet = packet_generator_.NextPacket(i * kNumPackets + j, 10); RtpPacketToSend rtp_packet(nullptr); EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size())); ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet); last_timestamp = packet->header.timestamp; } } std::vector> fec_packets = ulpfec_generator_.GetFecPackets(); EXPECT_EQ(fec_packets.size(), 1u); const uint16_t seq_num = packet_generator_.NextPacketSeqNum(); fec_packets[0]->SetSequenceNumber(seq_num); VerifyHeader(seq_num, last_timestamp, kRedPayloadType, kFecPayloadType, false, fec_packets[0]->Buffer()); } TEST_F(UlpfecGeneratorTest, MixedMediaRtpHeaderLengths) { constexpr size_t kShortRtpHeaderLength = 12; constexpr size_t kLongRtpHeaderLength = 16; // Only one frame required to generate FEC. FecProtectionParams params = {127, 1, kFecMaskRandom}; ulpfec_generator_.SetProtectionParameters(params, params); // Fill up internal buffer with media packets with short RTP header length. packet_generator_.NewFrame(kUlpfecMaxMediaPackets + 1); for (size_t i = 0; i < kUlpfecMaxMediaPackets; ++i) { std::unique_ptr packet = packet_generator_.NextPacket(i, 10); RtpPacketToSend rtp_packet(nullptr); EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size())); EXPECT_EQ(rtp_packet.headers_size(), kShortRtpHeaderLength); ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet); EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty()); } // Kick off FEC generation with media packet with long RTP header length. // Since the internal buffer is full, this packet will not be protected. std::unique_ptr packet = packet_generator_.NextPacket(kUlpfecMaxMediaPackets, 10); RtpPacketToSend rtp_packet(nullptr); EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size())); EXPECT_TRUE(rtp_packet.SetPayloadSize(0) != nullptr); const uint32_t csrcs[]{1}; rtp_packet.SetCsrcs(csrcs); EXPECT_EQ(rtp_packet.headers_size(), kLongRtpHeaderLength); ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet); std::vector> fec_packets = ulpfec_generator_.GetFecPackets(); EXPECT_FALSE(fec_packets.empty()); // Ensure that the RED header is placed correctly, i.e. the correct // RTP header length was used in the RED packet creation. uint16_t seq_num = packet_generator_.NextPacketSeqNum(); for (const auto& fec_packet : fec_packets) { fec_packet->SetSequenceNumber(seq_num++); EXPECT_EQ(kFecPayloadType, fec_packet->data()[kShortRtpHeaderLength]); } } TEST_F(UlpfecGeneratorTest, UpdatesProtectionParameters) { const FecProtectionParams kKeyFrameParams = {25, /*max_fec_frames=*/2, kFecMaskRandom}; const FecProtectionParams kDeltaFrameParams = {25, /*max_fec_frames=*/5, kFecMaskRandom}; ulpfec_generator_.SetProtectionParameters(kDeltaFrameParams, kKeyFrameParams); // No params applied yet. EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 0); // Helper function to add a single-packet frame market as either key-frame // or delta-frame. auto add_frame = [&](bool is_keyframe) { packet_generator_.NewFrame(1); std::unique_ptr packet = packet_generator_.NextPacket(0, 10); RtpPacketToSend rtp_packet(nullptr); EXPECT_TRUE(rtp_packet.Parse(packet->data.data(), packet->data.size())); rtp_packet.set_is_key_frame(is_keyframe); ulpfec_generator_.AddPacketAndGenerateFec(rtp_packet); }; // Add key-frame, keyframe params should apply, no FEC generated yet. add_frame(true); EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2); EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty()); // Add delta-frame, generated FEC packet. Params will not be updated until // next added packet though. add_frame(false); EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2); EXPECT_FALSE(ulpfec_generator_.GetFecPackets().empty()); // Add delta-frame, now params get updated. add_frame(false); EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 5); EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty()); // Add yet another delta-frame. add_frame(false); EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 5); EXPECT_TRUE(ulpfec_generator_.GetFecPackets().empty()); // Add key-frame, params immediately switch to key-frame ones. The two // buffered frames plus the key-frame is protected and fec emitted, // even though the frame count is technically over the keyframe frame count // threshold. add_frame(true); EXPECT_EQ(ulpfec_generator_.CurrentParams().max_fec_frames, 2); EXPECT_FALSE(ulpfec_generator_.GetFecPackets().empty()); } } // namespace webrtc