/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/codecs/test/videoprocessor.h" #include #include #include #include #include #include #include "api/scoped_refptr.h" #include "api/video/builtin_video_bitrate_allocator_factory.h" #include "api/video/i420_buffer.h" #include "api/video/video_bitrate_allocator_factory.h" #include "api/video/video_frame_buffer.h" #include "api/video/video_rotation.h" #include "api/video_codecs/video_codec.h" #include "api/video_codecs/video_encoder.h" #include "common_video/h264/h264_common.h" #include "common_video/libyuv/include/webrtc_libyuv.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/video_coding/codecs/interface/common_constants.h" #include "modules/video_coding/include/video_error_codes.h" #include "rtc_base/checks.h" #include "rtc_base/time_utils.h" #include "test/gtest.h" #include "third_party/libyuv/include/libyuv/compare.h" #include "third_party/libyuv/include/libyuv/scale.h" namespace webrtc { namespace test { namespace { const int kMsToRtpTimestamp = kVideoPayloadTypeFrequency / 1000; const int kMaxBufferedInputFrames = 20; const VideoEncoder::Capabilities kCapabilities(false); size_t GetMaxNaluSizeBytes(const EncodedImage& encoded_frame, const VideoCodecTestFixture::Config& config) { if (config.codec_settings.codecType != kVideoCodecH264) return 0; std::vector nalu_indices = webrtc::H264::FindNaluIndices(encoded_frame.data(), encoded_frame.size()); RTC_CHECK(!nalu_indices.empty()); size_t max_size = 0; for (const webrtc::H264::NaluIndex& index : nalu_indices) max_size = std::max(max_size, index.payload_size); return max_size; } size_t GetTemporalLayerIndex(const CodecSpecificInfo& codec_specific) { size_t temporal_idx = 0; if (codec_specific.codecType == kVideoCodecVP8) { temporal_idx = codec_specific.codecSpecific.VP8.temporalIdx; } else if (codec_specific.codecType == kVideoCodecVP9) { temporal_idx = codec_specific.codecSpecific.VP9.temporal_idx; } if (temporal_idx == kNoTemporalIdx) { temporal_idx = 0; } return temporal_idx; } int GetElapsedTimeMicroseconds(int64_t start_ns, int64_t stop_ns) { int64_t diff_us = (stop_ns - start_ns) / rtc::kNumNanosecsPerMicrosec; RTC_DCHECK_GE(diff_us, std::numeric_limits::min()); RTC_DCHECK_LE(diff_us, std::numeric_limits::max()); return static_cast(diff_us); } void CalculateFrameQuality(const I420BufferInterface& ref_buffer, const I420BufferInterface& dec_buffer, VideoCodecTestStats::FrameStatistics* frame_stat, bool calc_ssim) { if (ref_buffer.width() != dec_buffer.width() || ref_buffer.height() != dec_buffer.height()) { RTC_CHECK_GE(ref_buffer.width(), dec_buffer.width()); RTC_CHECK_GE(ref_buffer.height(), dec_buffer.height()); // Downscale reference frame. rtc::scoped_refptr scaled_buffer = I420Buffer::Create(dec_buffer.width(), dec_buffer.height()); I420Scale(ref_buffer.DataY(), ref_buffer.StrideY(), ref_buffer.DataU(), ref_buffer.StrideU(), ref_buffer.DataV(), ref_buffer.StrideV(), ref_buffer.width(), ref_buffer.height(), scaled_buffer->MutableDataY(), scaled_buffer->StrideY(), scaled_buffer->MutableDataU(), scaled_buffer->StrideU(), scaled_buffer->MutableDataV(), scaled_buffer->StrideV(), scaled_buffer->width(), scaled_buffer->height(), libyuv::kFilterBox); CalculateFrameQuality(*scaled_buffer, dec_buffer, frame_stat, calc_ssim); } else { const uint64_t sse_y = libyuv::ComputeSumSquareErrorPlane( dec_buffer.DataY(), dec_buffer.StrideY(), ref_buffer.DataY(), ref_buffer.StrideY(), dec_buffer.width(), dec_buffer.height()); const uint64_t sse_u = libyuv::ComputeSumSquareErrorPlane( dec_buffer.DataU(), dec_buffer.StrideU(), ref_buffer.DataU(), ref_buffer.StrideU(), dec_buffer.width() / 2, dec_buffer.height() / 2); const uint64_t sse_v = libyuv::ComputeSumSquareErrorPlane( dec_buffer.DataV(), dec_buffer.StrideV(), ref_buffer.DataV(), ref_buffer.StrideV(), dec_buffer.width() / 2, dec_buffer.height() / 2); const size_t num_y_samples = dec_buffer.width() * dec_buffer.height(); const size_t num_u_samples = dec_buffer.width() / 2 * dec_buffer.height() / 2; frame_stat->psnr_y = libyuv::SumSquareErrorToPsnr(sse_y, num_y_samples); frame_stat->psnr_u = libyuv::SumSquareErrorToPsnr(sse_u, num_u_samples); frame_stat->psnr_v = libyuv::SumSquareErrorToPsnr(sse_v, num_u_samples); frame_stat->psnr = libyuv::SumSquareErrorToPsnr( sse_y + sse_u + sse_v, num_y_samples + 2 * num_u_samples); if (calc_ssim) { frame_stat->ssim = I420SSIM(ref_buffer, dec_buffer); } } } } // namespace VideoProcessor::VideoProcessor(webrtc::VideoEncoder* encoder, VideoDecoderList* decoders, FrameReader* input_frame_reader, const VideoCodecTestFixture::Config& config, VideoCodecTestStatsImpl* stats, IvfFileWriterMap* encoded_frame_writers, FrameWriterList* decoded_frame_writers) : config_(config), num_simulcast_or_spatial_layers_( std::max(config_.NumberOfSimulcastStreams(), config_.NumberOfSpatialLayers())), analyze_frame_quality_(!config_.measure_cpu), stats_(stats), encoder_(encoder), decoders_(decoders), bitrate_allocator_( CreateBuiltinVideoBitrateAllocatorFactory() ->CreateVideoBitrateAllocator(config_.codec_settings)), encode_callback_(this), input_frame_reader_(input_frame_reader), merged_encoded_frames_(num_simulcast_or_spatial_layers_), encoded_frame_writers_(encoded_frame_writers), decoded_frame_writers_(decoded_frame_writers), last_inputed_frame_num_(0), last_inputed_timestamp_(0), first_encoded_frame_(num_simulcast_or_spatial_layers_, true), last_encoded_frame_num_(num_simulcast_or_spatial_layers_), first_decoded_frame_(num_simulcast_or_spatial_layers_, true), last_decoded_frame_num_(num_simulcast_or_spatial_layers_), last_decoded_frame_buffer_(num_simulcast_or_spatial_layers_), post_encode_time_ns_(0), is_finalized_(false) { // Sanity checks. RTC_CHECK(TaskQueueBase::Current()) << "VideoProcessor must be run on a task queue."; RTC_CHECK(stats_); RTC_CHECK(encoder_); RTC_CHECK(decoders_); RTC_CHECK_EQ(decoders_->size(), num_simulcast_or_spatial_layers_); RTC_CHECK(input_frame_reader_); RTC_CHECK(encoded_frame_writers_); RTC_CHECK(!decoded_frame_writers || decoded_frame_writers->size() == num_simulcast_or_spatial_layers_); // Setup required callbacks for the encoder and decoder and initialize them. RTC_CHECK_EQ(encoder_->RegisterEncodeCompleteCallback(&encode_callback_), WEBRTC_VIDEO_CODEC_OK); // Initialize codecs so that they are ready to receive frames. RTC_CHECK_EQ(encoder_->InitEncode( &config_.codec_settings, VideoEncoder::Settings( kCapabilities, static_cast(config_.NumberOfCores()), config_.max_payload_size_bytes)), WEBRTC_VIDEO_CODEC_OK); for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { decode_callback_.push_back( std::make_unique(this, i)); VideoDecoder::Settings decoder_settings; decoder_settings.set_max_render_resolution( {config_.codec_settings.width, config_.codec_settings.height}); decoder_settings.set_codec_type(config_.codec_settings.codecType); decoder_settings.set_number_of_cores(config_.NumberOfCores()); RTC_CHECK(decoders_->at(i)->Configure(decoder_settings)); RTC_CHECK_EQ(decoders_->at(i)->RegisterDecodeCompleteCallback( decode_callback_.at(i).get()), WEBRTC_VIDEO_CODEC_OK); } } VideoProcessor::~VideoProcessor() { RTC_DCHECK_RUN_ON(&sequence_checker_); if (!is_finalized_) { Finalize(); } // Explicitly reset codecs, in case they don't do that themselves when they // go out of scope. RTC_CHECK_EQ(encoder_->Release(), WEBRTC_VIDEO_CODEC_OK); encoder_->RegisterEncodeCompleteCallback(nullptr); for (auto& decoder : *decoders_) { RTC_CHECK_EQ(decoder->Release(), WEBRTC_VIDEO_CODEC_OK); decoder->RegisterDecodeCompleteCallback(nullptr); } // Sanity check. RTC_CHECK_LE(input_frames_.size(), kMaxBufferedInputFrames); } void VideoProcessor::ProcessFrame() { RTC_DCHECK_RUN_ON(&sequence_checker_); RTC_DCHECK(!is_finalized_); RTC_DCHECK_GT(target_rates_.size(), 0u); RTC_DCHECK_EQ(target_rates_.begin()->first, 0u); RateProfile target_rate = std::prev(target_rates_.upper_bound(last_inputed_frame_num_))->second; const size_t frame_number = last_inputed_frame_num_++; // Get input frame and store for future quality calculation. Resolution resolution = Resolution({.width = config_.codec_settings.width, .height = config_.codec_settings.height}); FrameReader::Ratio framerate_scale = FrameReader::Ratio( {.num = config_.clip_fps.value_or(config_.codec_settings.maxFramerate), .den = static_cast(config_.codec_settings.maxFramerate)}); rtc::scoped_refptr buffer = input_frame_reader_->PullFrame( /*frame_num*/ nullptr, resolution, framerate_scale); RTC_CHECK(buffer) << "Tried to read too many frames from the file."; const size_t timestamp = last_inputed_timestamp_ + static_cast(kVideoPayloadTypeFrequency / target_rate.input_fps); VideoFrame input_frame = VideoFrame::Builder() .set_video_frame_buffer(buffer) .set_timestamp_rtp(static_cast(timestamp)) .set_timestamp_ms(static_cast(timestamp / kMsToRtpTimestamp)) .set_rotation(webrtc::kVideoRotation_0) .build(); // Store input frame as a reference for quality calculations. if (config_.decode && !config_.measure_cpu) { if (input_frames_.size() == kMaxBufferedInputFrames) { input_frames_.erase(input_frames_.begin()); } if (config_.reference_width != -1 && config_.reference_height != -1 && (input_frame.width() != config_.reference_width || input_frame.height() != config_.reference_height)) { rtc::scoped_refptr scaled_buffer = I420Buffer::Create( config_.codec_settings.width, config_.codec_settings.height); scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420()); VideoFrame scaled_reference_frame = input_frame; scaled_reference_frame.set_video_frame_buffer(scaled_buffer); input_frames_.emplace(frame_number, scaled_reference_frame); if (config_.reference_width == config_.codec_settings.width && config_.reference_height == config_.codec_settings.height) { // Both encoding and comparison uses the same down-scale factor, reuse // it for encoder below. input_frame = scaled_reference_frame; } } else { input_frames_.emplace(frame_number, input_frame); } } last_inputed_timestamp_ = timestamp; post_encode_time_ns_ = 0; // Create frame statistics object for all simulcast/spatial layers. for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { FrameStatistics frame_stat(frame_number, timestamp, i); stats_->AddFrame(frame_stat); } // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. const int64_t encode_start_ns = rtc::TimeNanos(); for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i); frame_stat->encode_start_ns = encode_start_ns; } if (input_frame.width() != config_.codec_settings.width || input_frame.height() != config_.codec_settings.height) { rtc::scoped_refptr scaled_buffer = I420Buffer::Create( config_.codec_settings.width, config_.codec_settings.height); scaled_buffer->ScaleFrom(*input_frame.video_frame_buffer()->ToI420()); input_frame.set_video_frame_buffer(scaled_buffer); } // Encode. const std::vector frame_types = (frame_number == 0) ? std::vector(num_simulcast_or_spatial_layers_, VideoFrameType::kVideoFrameKey) : std::vector(num_simulcast_or_spatial_layers_, VideoFrameType::kVideoFrameDelta); const int encode_return_code = encoder_->Encode(input_frame, &frame_types); for (size_t i = 0; i < num_simulcast_or_spatial_layers_; ++i) { FrameStatistics* frame_stat = stats_->GetFrame(frame_number, i); frame_stat->encode_return_code = encode_return_code; } } void VideoProcessor::SetRates(size_t bitrate_kbps, double framerate_fps) { RTC_DCHECK_RUN_ON(&sequence_checker_); RTC_DCHECK(!is_finalized_); target_rates_[last_inputed_frame_num_] = RateProfile({.target_kbps = bitrate_kbps, .input_fps = framerate_fps}); auto bitrate_allocation = bitrate_allocator_->Allocate(VideoBitrateAllocationParameters( static_cast(bitrate_kbps * 1000), framerate_fps)); encoder_->SetRates( VideoEncoder::RateControlParameters(bitrate_allocation, framerate_fps)); } int32_t VideoProcessor::VideoProcessorDecodeCompleteCallback::Decoded( VideoFrame& image) { // Post the callback to the right task queue, if needed. if (!task_queue_->IsCurrent()) { // There might be a limited amount of output buffers, make a copy to make // sure we don't block the decoder. VideoFrame copy = VideoFrame::Builder() .set_video_frame_buffer(I420Buffer::Copy( *image.video_frame_buffer()->ToI420())) .set_rotation(image.rotation()) .set_timestamp_us(image.timestamp_us()) .set_id(image.id()) .build(); copy.set_timestamp(image.timestamp()); task_queue_->PostTask([this, copy]() { video_processor_->FrameDecoded(copy, simulcast_svc_idx_); }); return 0; } video_processor_->FrameDecoded(image, simulcast_svc_idx_); return 0; } void VideoProcessor::FrameEncoded( const webrtc::EncodedImage& encoded_image, const webrtc::CodecSpecificInfo& codec_specific) { RTC_DCHECK_RUN_ON(&sequence_checker_); // For the highest measurement accuracy of the encode time, the start/stop // time recordings should wrap the Encode call as tightly as possible. const int64_t encode_stop_ns = rtc::TimeNanos(); const VideoCodecType codec_type = codec_specific.codecType; if (config_.encoded_frame_checker) { config_.encoded_frame_checker->CheckEncodedFrame(codec_type, encoded_image); } // Layer metadata. // We could either have simulcast layers or spatial layers. // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of // simulcast and SVC we'll also need to consider the case where we have both // simulcast and spatial indices. size_t stream_idx = encoded_image.SpatialIndex().value_or( encoded_image.SimulcastIndex().value_or(0)); size_t temporal_idx = GetTemporalLayerIndex(codec_specific); FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), stream_idx); const size_t frame_number = frame_stat->frame_number; // Ensure that the encode order is monotonically increasing, within this // simulcast/spatial layer. RTC_CHECK(first_encoded_frame_[stream_idx] || last_encoded_frame_num_[stream_idx] < frame_number); // Ensure SVC spatial layers are delivered in ascending order. const size_t num_spatial_layers = config_.NumberOfSpatialLayers(); if (!first_encoded_frame_[stream_idx] && num_spatial_layers > 1) { for (size_t i = 0; i < stream_idx; ++i) { RTC_CHECK_LE(last_encoded_frame_num_[i], frame_number); } for (size_t i = stream_idx + 1; i < num_simulcast_or_spatial_layers_; ++i) { RTC_CHECK_GT(frame_number, last_encoded_frame_num_[i]); } } first_encoded_frame_[stream_idx] = false; last_encoded_frame_num_[stream_idx] = frame_number; RateProfile target_rate = std::prev(target_rates_.upper_bound(frame_number))->second; auto bitrate_allocation = bitrate_allocator_->Allocate(VideoBitrateAllocationParameters( static_cast(target_rate.target_kbps * 1000), target_rate.input_fps)); // Update frame statistics. frame_stat->encoding_successful = true; frame_stat->encode_time_us = GetElapsedTimeMicroseconds( frame_stat->encode_start_ns, encode_stop_ns - post_encode_time_ns_); frame_stat->target_bitrate_kbps = bitrate_allocation.GetTemporalLayerSum(stream_idx, temporal_idx) / 1000; frame_stat->target_framerate_fps = target_rate.input_fps; frame_stat->length_bytes = encoded_image.size(); frame_stat->frame_type = encoded_image._frameType; frame_stat->temporal_idx = temporal_idx; frame_stat->max_nalu_size_bytes = GetMaxNaluSizeBytes(encoded_image, config_); frame_stat->qp = encoded_image.qp_; if (codec_type == kVideoCodecVP9) { const CodecSpecificInfoVP9& vp9_info = codec_specific.codecSpecific.VP9; frame_stat->inter_layer_predicted = vp9_info.inter_layer_predicted; frame_stat->non_ref_for_inter_layer_pred = vp9_info.non_ref_for_inter_layer_pred; } else { frame_stat->inter_layer_predicted = false; frame_stat->non_ref_for_inter_layer_pred = true; } const webrtc::EncodedImage* encoded_image_for_decode = &encoded_image; if (config_.decode || !encoded_frame_writers_->empty()) { if (num_spatial_layers > 1) { encoded_image_for_decode = BuildAndStoreSuperframe( encoded_image, codec_type, frame_number, stream_idx, frame_stat->inter_layer_predicted); } } if (config_.decode) { DecodeFrame(*encoded_image_for_decode, stream_idx); if (codec_specific.end_of_picture && num_spatial_layers > 1) { // If inter-layer prediction is enabled and upper layer was dropped then // base layer should be passed to upper layer decoder. Otherwise decoder // won't be able to decode next superframe. const EncodedImage* base_image = nullptr; const FrameStatistics* base_stat = nullptr; for (size_t i = 0; i < num_spatial_layers; ++i) { const bool layer_dropped = (first_decoded_frame_[i] || last_decoded_frame_num_[i] < frame_number); // Ensure current layer was decoded. RTC_CHECK(layer_dropped == false || i != stream_idx); if (!layer_dropped) { base_image = &merged_encoded_frames_[i]; base_stat = stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), i); } else if (base_image && !base_stat->non_ref_for_inter_layer_pred) { DecodeFrame(*base_image, i); } } } } else { frame_stat->decode_return_code = WEBRTC_VIDEO_CODEC_NO_OUTPUT; } // Since frames in higher TLs typically depend on frames in lower TLs, // write out frames in lower TLs to bitstream dumps of higher TLs. for (size_t write_temporal_idx = temporal_idx; write_temporal_idx < config_.NumberOfTemporalLayers(); ++write_temporal_idx) { const VideoProcessor::LayerKey layer_key(stream_idx, write_temporal_idx); auto it = encoded_frame_writers_->find(layer_key); if (it != encoded_frame_writers_->cend()) { RTC_CHECK(it->second->WriteFrame(*encoded_image_for_decode, config_.codec_settings.codecType)); } } if (!config_.encode_in_real_time) { // To get pure encode time for next layers, measure time spent in encode // callback and subtract it from encode time of next layers. post_encode_time_ns_ += rtc::TimeNanos() - encode_stop_ns; } } void VideoProcessor::CalcFrameQuality(const I420BufferInterface& decoded_frame, FrameStatistics* frame_stat) { RTC_DCHECK_RUN_ON(&sequence_checker_); const auto reference_frame = input_frames_.find(frame_stat->frame_number); RTC_CHECK(reference_frame != input_frames_.cend()) << "The codecs are either buffering too much, dropping too much, or " "being too slow relative to the input frame rate."; // SSIM calculation is not optimized. Skip it in real-time mode. const bool calc_ssim = !config_.encode_in_real_time; CalculateFrameQuality(*reference_frame->second.video_frame_buffer()->ToI420(), decoded_frame, frame_stat, calc_ssim); frame_stat->quality_analysis_successful = true; } void VideoProcessor::WriteDecodedFrame(const I420BufferInterface& decoded_frame, FrameWriter& frame_writer) { int input_video_width = config_.codec_settings.width; int input_video_height = config_.codec_settings.height; rtc::scoped_refptr scaled_buffer; const I420BufferInterface* scaled_frame; if (decoded_frame.width() == input_video_width && decoded_frame.height() == input_video_height) { scaled_frame = &decoded_frame; } else { EXPECT_DOUBLE_EQ( static_cast(input_video_width) / input_video_height, static_cast(decoded_frame.width()) / decoded_frame.height()); scaled_buffer = I420Buffer::Create(input_video_width, input_video_height); scaled_buffer->ScaleFrom(decoded_frame); scaled_frame = scaled_buffer.get(); } // Ensure there is no padding. RTC_CHECK_EQ(scaled_frame->StrideY(), input_video_width); RTC_CHECK_EQ(scaled_frame->StrideU(), input_video_width / 2); RTC_CHECK_EQ(scaled_frame->StrideV(), input_video_width / 2); RTC_CHECK_EQ(3 * input_video_width * input_video_height / 2, frame_writer.FrameLength()); RTC_CHECK(frame_writer.WriteFrame(scaled_frame->DataY())); } void VideoProcessor::FrameDecoded(const VideoFrame& decoded_frame, size_t spatial_idx) { RTC_DCHECK_RUN_ON(&sequence_checker_); // For the highest measurement accuracy of the decode time, the start/stop // time recordings should wrap the Decode call as tightly as possible. const int64_t decode_stop_ns = rtc::TimeNanos(); FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp(decoded_frame.timestamp(), spatial_idx); const size_t frame_number = frame_stat->frame_number; if (!first_decoded_frame_[spatial_idx]) { for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1; dropped_frame_number < frame_number; ++dropped_frame_number) { FrameStatistics* dropped_frame_stat = stats_->GetFrame(dropped_frame_number, spatial_idx); if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) { // Calculate frame quality comparing input frame with last decoded one. CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], dropped_frame_stat); } if (decoded_frame_writers_ != nullptr) { // Fill drops with last decoded frame to make them look like freeze at // playback and to keep decoded layers in sync. WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], *decoded_frame_writers_->at(spatial_idx)); } } } // Ensure that the decode order is monotonically increasing, within this // simulcast/spatial layer. RTC_CHECK(first_decoded_frame_[spatial_idx] || last_decoded_frame_num_[spatial_idx] < frame_number); first_decoded_frame_[spatial_idx] = false; last_decoded_frame_num_[spatial_idx] = frame_number; // Update frame statistics. frame_stat->decoding_successful = true; frame_stat->decode_time_us = GetElapsedTimeMicroseconds(frame_stat->decode_start_ns, decode_stop_ns); frame_stat->decoded_width = decoded_frame.width(); frame_stat->decoded_height = decoded_frame.height(); // Skip quality metrics calculation to not affect CPU usage. if (analyze_frame_quality_ || decoded_frame_writers_) { // Save last decoded frame to handle possible future drops. rtc::scoped_refptr i420buffer = decoded_frame.video_frame_buffer()->ToI420(); // Copy decoded frame to a buffer without padding/stride such that we can // dump Y, U and V planes into a file in one shot. last_decoded_frame_buffer_[spatial_idx] = I420Buffer::Copy( i420buffer->width(), i420buffer->height(), i420buffer->DataY(), i420buffer->StrideY(), i420buffer->DataU(), i420buffer->StrideU(), i420buffer->DataV(), i420buffer->StrideV()); } if (analyze_frame_quality_) { CalcFrameQuality(*decoded_frame.video_frame_buffer()->ToI420(), frame_stat); } if (decoded_frame_writers_ != nullptr) { WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], *decoded_frame_writers_->at(spatial_idx)); } // Erase all buffered input frames that we have moved past for all // simulcast/spatial layers. Never buffer more than // `kMaxBufferedInputFrames` frames, to protect against long runs of // consecutive frame drops for a particular layer. const auto min_last_decoded_frame_num = std::min_element( last_decoded_frame_num_.cbegin(), last_decoded_frame_num_.cend()); const size_t min_buffered_frame_num = std::max(0, static_cast(frame_number) - kMaxBufferedInputFrames + 1); RTC_CHECK(min_last_decoded_frame_num != last_decoded_frame_num_.cend()); const auto input_frames_erase_before = input_frames_.lower_bound( std::max(*min_last_decoded_frame_num, min_buffered_frame_num)); input_frames_.erase(input_frames_.cbegin(), input_frames_erase_before); } void VideoProcessor::DecodeFrame(const EncodedImage& encoded_image, size_t spatial_idx) { RTC_DCHECK_RUN_ON(&sequence_checker_); FrameStatistics* frame_stat = stats_->GetFrameWithTimestamp(encoded_image.RtpTimestamp(), spatial_idx); frame_stat->decode_start_ns = rtc::TimeNanos(); frame_stat->decode_return_code = decoders_->at(spatial_idx)->Decode(encoded_image, 0); } const webrtc::EncodedImage* VideoProcessor::BuildAndStoreSuperframe( const EncodedImage& encoded_image, const VideoCodecType codec, size_t frame_number, size_t spatial_idx, bool inter_layer_predicted) { // Should only be called for SVC. RTC_CHECK_GT(config_.NumberOfSpatialLayers(), 1); EncodedImage base_image; RTC_CHECK_EQ(base_image.size(), 0); // Each SVC layer is decoded with dedicated decoder. Find the nearest // non-dropped base frame and merge it and current frame into superframe. if (inter_layer_predicted) { for (int base_idx = static_cast(spatial_idx) - 1; base_idx >= 0; --base_idx) { EncodedImage lower_layer = merged_encoded_frames_.at(base_idx); if (lower_layer.RtpTimestamp() == encoded_image.RtpTimestamp()) { base_image = lower_layer; break; } } } const size_t payload_size_bytes = base_image.size() + encoded_image.size(); auto buffer = EncodedImageBuffer::Create(payload_size_bytes); if (base_image.size()) { RTC_CHECK(base_image.data()); memcpy(buffer->data(), base_image.data(), base_image.size()); } memcpy(buffer->data() + base_image.size(), encoded_image.data(), encoded_image.size()); EncodedImage copied_image = encoded_image; copied_image.SetEncodedData(buffer); if (base_image.size()) copied_image._frameType = base_image._frameType; // Replace previous EncodedImage for this spatial layer. merged_encoded_frames_.at(spatial_idx) = std::move(copied_image); return &merged_encoded_frames_.at(spatial_idx); } void VideoProcessor::Finalize() { RTC_DCHECK_RUN_ON(&sequence_checker_); RTC_DCHECK(!is_finalized_); is_finalized_ = true; if (!(analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) && decoded_frame_writers_ == nullptr) { return; } for (size_t spatial_idx = 0; spatial_idx < num_simulcast_or_spatial_layers_; ++spatial_idx) { if (first_decoded_frame_[spatial_idx]) { continue; // No decoded frames on this spatial layer. } for (size_t dropped_frame_number = last_decoded_frame_num_[spatial_idx] + 1; dropped_frame_number < last_inputed_frame_num_; ++dropped_frame_number) { FrameStatistics* frame_stat = stats_->GetFrame(dropped_frame_number, spatial_idx); RTC_DCHECK(!frame_stat->decoding_successful); if (analyze_frame_quality_ && config_.analyze_quality_of_dropped_frames) { CalcFrameQuality(*last_decoded_frame_buffer_[spatial_idx], frame_stat); } if (decoded_frame_writers_ != nullptr) { WriteDecodedFrame(*last_decoded_frame_buffer_[spatial_idx], *decoded_frame_writers_->at(spatial_idx)); } } } } } // namespace test } // namespace webrtc