/* * Copyright (c) 2011 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "modules/video_coding/timing/jitter_estimator.h" #include #include #include #include #include "absl/types/optional.h" #include "api/field_trials_view.h" #include "api/units/data_size.h" #include "api/units/frequency.h" #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "modules/video_coding/timing/rtt_filter.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "system_wrappers/include/clock.h" namespace webrtc { namespace { // Number of frames to wait for before post processing estimate. Also used in // the frame rate estimator ramp-up. constexpr size_t kFrameProcessingStartupCount = 30; // Number of frames to wait for before enabling the frame size filters. constexpr size_t kFramesUntilSizeFiltering = 5; // Initial value for frame size filters. constexpr double kInitialAvgAndMaxFrameSizeBytes = 500.0; // Time constant for average frame size filter. constexpr double kPhi = 0.97; // Time constant for max frame size filter. constexpr double kPsi = 0.9999; // Default constants for percentile frame size filter. constexpr double kDefaultMaxFrameSizePercentile = 0.95; constexpr int kDefaultFrameSizeWindow = 30 * 10; // Outlier rejection constants. constexpr double kNumStdDevDelayClamp = 3.5; constexpr double kNumStdDevDelayOutlier = 15.0; constexpr double kNumStdDevSizeOutlier = 3.0; constexpr double kCongestionRejectionFactor = -0.25; // Rampup constant for deviation noise filters. constexpr size_t kAlphaCountMax = 400; // Noise threshold constants. // ~Less than 1% chance (look up in normal distribution table)... constexpr double kNoiseStdDevs = 2.33; // ...of getting 30 ms freezes constexpr double kNoiseStdDevOffset = 30.0; // Jitter estimate clamping limits. constexpr TimeDelta kMinJitterEstimate = TimeDelta::Millis(1); constexpr TimeDelta kMaxJitterEstimate = TimeDelta::Seconds(10); // A constant describing the delay from the jitter buffer to the delay on the // receiving side which is not accounted for by the jitter buffer nor the // decoding delay estimate. constexpr TimeDelta OPERATING_SYSTEM_JITTER = TimeDelta::Millis(10); // Time constant for reseting the NACK count. constexpr TimeDelta kNackCountTimeout = TimeDelta::Seconds(60); // RTT mult activation. constexpr size_t kNackLimit = 3; // Frame rate estimate clamping limit. constexpr Frequency kMaxFramerateEstimate = Frequency::Hertz(200); } // namespace constexpr char JitterEstimator::Config::kFieldTrialsKey[]; JitterEstimator::Config JitterEstimator::Config::ParseAndValidate( absl::string_view field_trial) { Config config; config.Parser()->Parse(field_trial); // The `MovingPercentileFilter` RTC_CHECKs on the validity of the // percentile and window length, so we'd better validate the field trial // provided values here. if (config.max_frame_size_percentile) { double original = *config.max_frame_size_percentile; config.max_frame_size_percentile = std::min(std::max(0.0, original), 1.0); if (config.max_frame_size_percentile != original) { RTC_LOG(LS_ERROR) << "Skipping invalid max_frame_size_percentile=" << original; } } if (config.frame_size_window && config.frame_size_window < 1) { RTC_LOG(LS_ERROR) << "Skipping invalid frame_size_window=" << *config.frame_size_window; config.frame_size_window = 1; } // General sanity checks. if (config.num_stddev_delay_clamp && config.num_stddev_delay_clamp < 0.0) { RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_clamp=" << *config.num_stddev_delay_clamp; config.num_stddev_delay_clamp = 0.0; } if (config.num_stddev_delay_outlier && config.num_stddev_delay_outlier < 0.0) { RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_delay_outlier=" << *config.num_stddev_delay_outlier; config.num_stddev_delay_outlier = 0.0; } if (config.num_stddev_size_outlier && config.num_stddev_size_outlier < 0.0) { RTC_LOG(LS_ERROR) << "Skipping invalid num_stddev_size_outlier=" << *config.num_stddev_size_outlier; config.num_stddev_size_outlier = 0.0; } return config; } JitterEstimator::JitterEstimator(Clock* clock, const FieldTrialsView& field_trials) : config_(Config::ParseAndValidate( field_trials.Lookup(Config::kFieldTrialsKey))), avg_frame_size_median_bytes_(static_cast( config_.frame_size_window.value_or(kDefaultFrameSizeWindow))), max_frame_size_bytes_percentile_( config_.max_frame_size_percentile.value_or( kDefaultMaxFrameSizePercentile), static_cast( config_.frame_size_window.value_or(kDefaultFrameSizeWindow))), fps_counter_(30), // TODO(sprang): Use an estimator with limit based // on time, rather than number of samples. clock_(clock) { Reset(); } JitterEstimator::~JitterEstimator() = default; // Resets the JitterEstimate. void JitterEstimator::Reset() { avg_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes; max_frame_size_bytes_ = kInitialAvgAndMaxFrameSizeBytes; var_frame_size_bytes2_ = 100; avg_frame_size_median_bytes_.Reset(); max_frame_size_bytes_percentile_.Reset(); last_update_time_ = absl::nullopt; prev_estimate_ = absl::nullopt; prev_frame_size_ = absl::nullopt; avg_noise_ms_ = 0.0; var_noise_ms2_ = 4.0; alpha_count_ = 1; filter_jitter_estimate_ = TimeDelta::Zero(); latest_nack_ = Timestamp::Zero(); nack_count_ = 0; startup_frame_size_sum_bytes_ = 0; startup_frame_size_count_ = 0; startup_count_ = 0; rtt_filter_.Reset(); fps_counter_.Reset(); kalman_filter_ = FrameDelayVariationKalmanFilter(); } // Updates the estimates with the new measurements. void JitterEstimator::UpdateEstimate(TimeDelta frame_delay, DataSize frame_size) { if (frame_size.IsZero()) { return; } // Can't use DataSize since this can be negative. double delta_frame_bytes = frame_size.bytes() - prev_frame_size_.value_or(DataSize::Zero()).bytes(); if (startup_frame_size_count_ < kFramesUntilSizeFiltering) { startup_frame_size_sum_bytes_ += frame_size.bytes(); startup_frame_size_count_++; } else if (startup_frame_size_count_ == kFramesUntilSizeFiltering) { // Give the frame size filter. avg_frame_size_bytes_ = startup_frame_size_sum_bytes_ / static_cast(startup_frame_size_count_); startup_frame_size_count_++; } double avg_frame_size_bytes = kPhi * avg_frame_size_bytes_ + (1 - kPhi) * frame_size.bytes(); double deviation_size_bytes = 2 * sqrt(var_frame_size_bytes2_); if (frame_size.bytes() < avg_frame_size_bytes_ + deviation_size_bytes) { // Only update the average frame size if this sample wasn't a key frame. avg_frame_size_bytes_ = avg_frame_size_bytes; } double delta_bytes = frame_size.bytes() - avg_frame_size_bytes; var_frame_size_bytes2_ = std::max( kPhi * var_frame_size_bytes2_ + (1 - kPhi) * (delta_bytes * delta_bytes), 1.0); // Update non-linear IIR estimate of max frame size. max_frame_size_bytes_ = std::max(kPsi * max_frame_size_bytes_, frame_size.bytes()); // Maybe update percentile estimates of frame sizes. if (config_.avg_frame_size_median) { avg_frame_size_median_bytes_.Insert(frame_size.bytes()); } if (config_.MaxFrameSizePercentileEnabled()) { max_frame_size_bytes_percentile_.Insert(frame_size.bytes()); } if (!prev_frame_size_) { prev_frame_size_ = frame_size; return; } prev_frame_size_ = frame_size; // Cap frame_delay based on the current time deviation noise. double num_stddev_delay_clamp = config_.num_stddev_delay_clamp.value_or(kNumStdDevDelayClamp); TimeDelta max_time_deviation = TimeDelta::Millis(num_stddev_delay_clamp * sqrt(var_noise_ms2_) + 0.5); frame_delay.Clamp(-max_time_deviation, max_time_deviation); double delay_deviation_ms = frame_delay.ms() - kalman_filter_.GetFrameDelayVariationEstimateTotal(delta_frame_bytes); // Outlier rejection: these conditions depend on filtered versions of the // delay and frame size _means_, respectively, together with a configurable // number of standard deviations. If a sample is large with respect to the // corresponding mean and dispersion (defined by the number of // standard deviations and the sample standard deviation), it is deemed an // outlier. This "empirical rule" is further described in // https://en.wikipedia.org/wiki/68-95-99.7_rule. Note that neither of the // estimated means are true sample means, which implies that they are possibly // not normally distributed. Hence, this rejection method is just a heuristic. double num_stddev_delay_outlier = config_.num_stddev_delay_outlier.value_or(kNumStdDevDelayOutlier); // Delay outlier rejection is two-sided. bool abs_delay_is_not_outlier = fabs(delay_deviation_ms) < num_stddev_delay_outlier * sqrt(var_noise_ms2_); // The reasoning above means, in particular, that we should use the sample // mean-style `avg_frame_size_bytes_` estimate, as opposed to the // median-filtered version, even if configured to use latter for the // calculation in `CalculateEstimate()`. // Size outlier rejection is one-sided. double num_stddev_size_outlier = config_.num_stddev_size_outlier.value_or(kNumStdDevSizeOutlier); bool size_is_positive_outlier = frame_size.bytes() > avg_frame_size_bytes_ + num_stddev_size_outlier * sqrt(var_frame_size_bytes2_); // Only update the Kalman filter if the sample is not considered an extreme // outlier. Even if it is an extreme outlier from a delay point of view, if // the frame size also is large the deviation is probably due to an incorrect // line slope. if (abs_delay_is_not_outlier || size_is_positive_outlier) { // Prevent updating with frames which have been congested by a large frame, // and therefore arrives almost at the same time as that frame. // This can occur when we receive a large frame (key frame) which has been // delayed. The next frame is of normal size (delta frame), and thus deltaFS // will be << 0. This removes all frame samples which arrives after a key // frame. double congestion_rejection_factor = config_.congestion_rejection_factor.value_or( kCongestionRejectionFactor); double filtered_max_frame_size_bytes = config_.MaxFrameSizePercentileEnabled() ? max_frame_size_bytes_percentile_.GetFilteredValue() : max_frame_size_bytes_; bool is_not_congested = delta_frame_bytes > congestion_rejection_factor * filtered_max_frame_size_bytes; if (is_not_congested || config_.estimate_noise_when_congested) { // Update the variance of the deviation from the line given by the Kalman // filter. EstimateRandomJitter(delay_deviation_ms); } if (is_not_congested) { // Neither a delay outlier nor a congested frame, so we can safely update // the Kalman filter with the sample. kalman_filter_.PredictAndUpdate(frame_delay.ms(), delta_frame_bytes, filtered_max_frame_size_bytes, var_noise_ms2_); } } else { // Delay outliers affect the noise estimate through a value equal to the // outlier rejection threshold. double num_stddev = (delay_deviation_ms >= 0) ? num_stddev_delay_outlier : -num_stddev_delay_outlier; EstimateRandomJitter(num_stddev * sqrt(var_noise_ms2_)); } // Post process the total estimated jitter if (startup_count_ >= kFrameProcessingStartupCount) { PostProcessEstimate(); } else { startup_count_++; } } // Updates the nack/packet ratio. void JitterEstimator::FrameNacked() { if (nack_count_ < kNackLimit) { nack_count_++; } latest_nack_ = clock_->CurrentTime(); } void JitterEstimator::UpdateRtt(TimeDelta rtt) { rtt_filter_.Update(rtt); } JitterEstimator::Config JitterEstimator::GetConfigForTest() const { return config_; } // Estimates the random jitter by calculating the variance of the sample // distance from the line given by the Kalman filter. void JitterEstimator::EstimateRandomJitter(double d_dT) { Timestamp now = clock_->CurrentTime(); if (last_update_time_.has_value()) { fps_counter_.AddSample((now - *last_update_time_).us()); } last_update_time_ = now; if (alpha_count_ == 0) { RTC_DCHECK_NOTREACHED(); return; } double alpha = static_cast(alpha_count_ - 1) / static_cast(alpha_count_); alpha_count_++; if (alpha_count_ > kAlphaCountMax) alpha_count_ = kAlphaCountMax; // In order to avoid a low frame rate stream to react slower to changes, // scale the alpha weight relative a 30 fps stream. Frequency fps = GetFrameRate(); if (fps > Frequency::Zero()) { constexpr Frequency k30Fps = Frequency::Hertz(30); double rate_scale = k30Fps / fps; // At startup, there can be a lot of noise in the fps estimate. // Interpolate rate_scale linearly, from 1.0 at sample #1, to 30.0 / fps // at sample #kFrameProcessingStartupCount. if (alpha_count_ < kFrameProcessingStartupCount) { rate_scale = (alpha_count_ * rate_scale + (kFrameProcessingStartupCount - alpha_count_)) / kFrameProcessingStartupCount; } alpha = pow(alpha, rate_scale); } double avg_noise_ms = alpha * avg_noise_ms_ + (1 - alpha) * d_dT; double var_noise_ms2 = alpha * var_noise_ms2_ + (1 - alpha) * (d_dT - avg_noise_ms_) * (d_dT - avg_noise_ms_); avg_noise_ms_ = avg_noise_ms; var_noise_ms2_ = var_noise_ms2; if (var_noise_ms2_ < 1.0) { // The variance should never be zero, since we might get stuck and consider // all samples as outliers. var_noise_ms2_ = 1.0; } } double JitterEstimator::NoiseThreshold() const { double noise_threshold_ms = kNoiseStdDevs * sqrt(var_noise_ms2_) - kNoiseStdDevOffset; if (noise_threshold_ms < 1.0) { noise_threshold_ms = 1.0; } return noise_threshold_ms; } // Calculates the current jitter estimate from the filtered estimates. TimeDelta JitterEstimator::CalculateEstimate() { // Using median- and percentile-filtered versions of the frame sizes may be // more robust than using sample mean-style estimates. double filtered_avg_frame_size_bytes = config_.avg_frame_size_median ? avg_frame_size_median_bytes_.GetFilteredValue() : avg_frame_size_bytes_; double filtered_max_frame_size_bytes = config_.MaxFrameSizePercentileEnabled() ? max_frame_size_bytes_percentile_.GetFilteredValue() : max_frame_size_bytes_; double worst_case_frame_size_deviation_bytes = filtered_max_frame_size_bytes - filtered_avg_frame_size_bytes; double ret_ms = kalman_filter_.GetFrameDelayVariationEstimateSizeBased( worst_case_frame_size_deviation_bytes) + NoiseThreshold(); TimeDelta ret = TimeDelta::Millis(ret_ms); // A very low estimate (or negative) is neglected. if (ret < kMinJitterEstimate) { ret = prev_estimate_.value_or(kMinJitterEstimate); // Sanity check to make sure that no other method has set `prev_estimate_` // to a value lower than `kMinJitterEstimate`. RTC_DCHECK_GE(ret, kMinJitterEstimate); } else if (ret > kMaxJitterEstimate) { // Sanity ret = kMaxJitterEstimate; } prev_estimate_ = ret; return ret; } void JitterEstimator::PostProcessEstimate() { filter_jitter_estimate_ = CalculateEstimate(); } // Returns the current filtered estimate if available, // otherwise tries to calculate an estimate. TimeDelta JitterEstimator::GetJitterEstimate( double rtt_multiplier, absl::optional rtt_mult_add_cap) { TimeDelta jitter = CalculateEstimate() + OPERATING_SYSTEM_JITTER; Timestamp now = clock_->CurrentTime(); if (now - latest_nack_ > kNackCountTimeout) nack_count_ = 0; if (filter_jitter_estimate_ > jitter) jitter = filter_jitter_estimate_; if (nack_count_ >= kNackLimit) { if (rtt_mult_add_cap.has_value()) { jitter += std::min(rtt_filter_.Rtt() * rtt_multiplier, rtt_mult_add_cap.value()); } else { jitter += rtt_filter_.Rtt() * rtt_multiplier; } } static const Frequency kJitterScaleLowThreshold = Frequency::Hertz(5); static const Frequency kJitterScaleHighThreshold = Frequency::Hertz(10); Frequency fps = GetFrameRate(); // Ignore jitter for very low fps streams. if (fps < kJitterScaleLowThreshold) { if (fps.IsZero()) { return std::max(TimeDelta::Zero(), jitter); } return TimeDelta::Zero(); } // Semi-low frame rate; scale by factor linearly interpolated from 0.0 at // kJitterScaleLowThreshold to 1.0 at kJitterScaleHighThreshold. if (fps < kJitterScaleHighThreshold) { jitter = (1.0 / (kJitterScaleHighThreshold - kJitterScaleLowThreshold)) * (fps - kJitterScaleLowThreshold) * jitter; } return std::max(TimeDelta::Zero(), jitter); } Frequency JitterEstimator::GetFrameRate() const { TimeDelta mean_frame_period = TimeDelta::Micros(fps_counter_.ComputeMean()); if (mean_frame_period <= TimeDelta::Zero()) return Frequency::Zero(); Frequency fps = 1 / mean_frame_period; // Sanity check. RTC_DCHECK_GE(fps, Frequency::Zero()); return std::min(fps, kMaxFramerateEstimate); } } // namespace webrtc