/* * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "net/dcsctp/tx/outstanding_data.h" #include #include #include #include #include "api/units/time_delta.h" #include "api/units/timestamp.h" #include "net/dcsctp/common/math.h" #include "net/dcsctp/common/sequence_numbers.h" #include "net/dcsctp/public/types.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" namespace dcsctp { using ::webrtc::Timestamp; // The number of times a packet must be NACKed before it's retransmitted. // See https://tools.ietf.org/html/rfc4960#section-7.2.4 constexpr uint8_t kNumberOfNacksForRetransmission = 3; // Returns how large a chunk will be, serialized, carrying the data size_t OutstandingData::GetSerializedChunkSize(const Data& data) const { return RoundUpTo4(data_chunk_header_size_ + data.size()); } void OutstandingData::Item::Ack() { if (lifecycle_ != Lifecycle::kAbandoned) { lifecycle_ = Lifecycle::kActive; } ack_state_ = AckState::kAcked; } OutstandingData::Item::NackAction OutstandingData::Item::Nack( bool retransmit_now) { ack_state_ = AckState::kNacked; ++nack_count_; if (!should_be_retransmitted() && !is_abandoned() && (retransmit_now || nack_count_ >= kNumberOfNacksForRetransmission)) { // Nacked enough times - it's considered lost. if (num_retransmissions_ < *max_retransmissions_) { lifecycle_ = Lifecycle::kToBeRetransmitted; return NackAction::kRetransmit; } Abandon(); return NackAction::kAbandon; } return NackAction::kNothing; } void OutstandingData::Item::MarkAsRetransmitted() { lifecycle_ = Lifecycle::kActive; ack_state_ = AckState::kUnacked; nack_count_ = 0; ++num_retransmissions_; } void OutstandingData::Item::Abandon() { RTC_DCHECK(!expires_at_.IsPlusInfinity() || max_retransmissions_ != MaxRetransmits::NoLimit()); lifecycle_ = Lifecycle::kAbandoned; } bool OutstandingData::Item::has_expired(Timestamp now) const { return expires_at_ <= now; } bool OutstandingData::IsConsistent() const { size_t actual_unacked_bytes = 0; size_t actual_unacked_items = 0; std::set combined_to_be_retransmitted; combined_to_be_retransmitted.insert(to_be_retransmitted_.begin(), to_be_retransmitted_.end()); combined_to_be_retransmitted.insert(to_be_fast_retransmitted_.begin(), to_be_fast_retransmitted_.end()); std::set actual_combined_to_be_retransmitted; UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (const Item& item : outstanding_data_) { tsn.Increment(); if (item.is_outstanding()) { actual_unacked_bytes += GetSerializedChunkSize(item.data()); ++actual_unacked_items; } if (item.should_be_retransmitted()) { actual_combined_to_be_retransmitted.insert(tsn); } } return actual_unacked_bytes == unacked_bytes_ && actual_unacked_items == unacked_items_ && actual_combined_to_be_retransmitted == combined_to_be_retransmitted; } void OutstandingData::AckChunk(AckInfo& ack_info, UnwrappedTSN tsn, Item& item) { if (!item.is_acked()) { size_t serialized_size = GetSerializedChunkSize(item.data()); ack_info.bytes_acked += serialized_size; if (item.is_outstanding()) { unacked_bytes_ -= serialized_size; --unacked_items_; } if (item.should_be_retransmitted()) { RTC_DCHECK(to_be_fast_retransmitted_.find(tsn) == to_be_fast_retransmitted_.end()); to_be_retransmitted_.erase(tsn); } item.Ack(); ack_info.highest_tsn_acked = std::max(ack_info.highest_tsn_acked, tsn); } } OutstandingData::AckInfo OutstandingData::HandleSack( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, bool is_in_fast_recovery) { OutstandingData::AckInfo ack_info(cumulative_tsn_ack); // Erase all items up to cumulative_tsn_ack. RemoveAcked(cumulative_tsn_ack, ack_info); // ACK packets reported in the gap ack blocks AckGapBlocks(cumulative_tsn_ack, gap_ack_blocks, ack_info); // NACK and possibly mark for retransmit chunks that weren't acked. NackBetweenAckBlocks(cumulative_tsn_ack, gap_ack_blocks, is_in_fast_recovery, ack_info); RTC_DCHECK(IsConsistent()); return ack_info; } OutstandingData::Item& OutstandingData::GetItem(UnwrappedTSN tsn) { RTC_DCHECK(tsn > last_cumulative_tsn_ack_); RTC_DCHECK(tsn < next_tsn()); int index = UnwrappedTSN::Difference(tsn, last_cumulative_tsn_ack_) - 1; RTC_DCHECK(index >= 0); RTC_DCHECK(index < static_cast(outstanding_data_.size())); return outstanding_data_[index]; } const OutstandingData::Item& OutstandingData::GetItem(UnwrappedTSN tsn) const { RTC_DCHECK(tsn > last_cumulative_tsn_ack_); RTC_DCHECK(tsn < next_tsn()); int index = UnwrappedTSN::Difference(tsn, last_cumulative_tsn_ack_) - 1; RTC_DCHECK(index >= 0); RTC_DCHECK(index < static_cast(outstanding_data_.size())); return outstanding_data_[index]; } void OutstandingData::RemoveAcked(UnwrappedTSN cumulative_tsn_ack, AckInfo& ack_info) { while (!outstanding_data_.empty() && last_cumulative_tsn_ack_ < cumulative_tsn_ack) { UnwrappedTSN tsn = last_cumulative_tsn_ack_.next_value(); Item& item = outstanding_data_.front(); AckChunk(ack_info, tsn, item); if (item.lifecycle_id().IsSet()) { RTC_DCHECK(item.data().is_end); if (item.is_abandoned()) { ack_info.abandoned_lifecycle_ids.push_back(item.lifecycle_id()); } else { ack_info.acked_lifecycle_ids.push_back(item.lifecycle_id()); } } outstanding_data_.pop_front(); last_cumulative_tsn_ack_.Increment(); } stream_reset_breakpoint_tsns_.erase(stream_reset_breakpoint_tsns_.begin(), stream_reset_breakpoint_tsns_.upper_bound( cumulative_tsn_ack.next_value())); } void OutstandingData::AckGapBlocks( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, AckInfo& ack_info) { // Mark all non-gaps as ACKED (but they can't be removed) as (from RFC) // "SCTP considers the information carried in the Gap Ack Blocks in the // SACK chunk as advisory.". Note that when NR-SACK is supported, this can be // handled differently. for (auto& block : gap_ack_blocks) { UnwrappedTSN start = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start); UnwrappedTSN end = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end); for (UnwrappedTSN tsn = start; tsn <= end; tsn = tsn.next_value()) { if (tsn > last_cumulative_tsn_ack_ && tsn < next_tsn()) { Item& item = GetItem(tsn); AckChunk(ack_info, tsn, item); } } } } void OutstandingData::NackBetweenAckBlocks( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, bool is_in_fast_recovery, OutstandingData::AckInfo& ack_info) { // Mark everything between the blocks as NACKED/TO_BE_RETRANSMITTED. // https://tools.ietf.org/html/rfc4960#section-7.2.4 // "Mark the DATA chunk(s) with three miss indications for retransmission." // "For each incoming SACK, miss indications are incremented only for // missing TSNs prior to the highest TSN newly acknowledged in the SACK." // // What this means is that only when there is a increasing stream of data // received and there are new packets seen (since last time), packets that are // in-flight and between gaps should be nacked. This means that SCTP relies on // the T3-RTX-timer to re-send packets otherwise. UnwrappedTSN max_tsn_to_nack = ack_info.highest_tsn_acked; if (is_in_fast_recovery && cumulative_tsn_ack > last_cumulative_tsn_ack_) { // https://tools.ietf.org/html/rfc4960#section-7.2.4 // "If an endpoint is in Fast Recovery and a SACK arrives that advances // the Cumulative TSN Ack Point, the miss indications are incremented for // all TSNs reported missing in the SACK." max_tsn_to_nack = UnwrappedTSN::AddTo( cumulative_tsn_ack, gap_ack_blocks.empty() ? 0 : gap_ack_blocks.rbegin()->end); } UnwrappedTSN prev_block_last_acked = cumulative_tsn_ack; for (auto& block : gap_ack_blocks) { UnwrappedTSN cur_block_first_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start); for (UnwrappedTSN tsn = prev_block_last_acked.next_value(); tsn < cur_block_first_acked && tsn <= max_tsn_to_nack; tsn = tsn.next_value()) { ack_info.has_packet_loss |= NackItem(tsn, /*retransmit_now=*/false, /*do_fast_retransmit=*/!is_in_fast_recovery); } prev_block_last_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end); } // Note that packets are not NACKED which are above the highest gap-ack-block // (or above the cumulative ack TSN if no gap-ack-blocks) as only packets // up until the highest_tsn_acked (see above) should be considered when // NACKing. } bool OutstandingData::NackItem(UnwrappedTSN tsn, bool retransmit_now, bool do_fast_retransmit) { Item& item = GetItem(tsn); if (item.is_outstanding()) { unacked_bytes_ -= GetSerializedChunkSize(item.data()); --unacked_items_; } switch (item.Nack(retransmit_now)) { case Item::NackAction::kNothing: return false; case Item::NackAction::kRetransmit: if (do_fast_retransmit) { to_be_fast_retransmitted_.insert(tsn); } else { to_be_retransmitted_.insert(tsn); } RTC_DLOG(LS_VERBOSE) << *tsn.Wrap() << " marked for retransmission"; break; case Item::NackAction::kAbandon: RTC_DLOG(LS_VERBOSE) << *tsn.Wrap() << " Nacked, resulted in abandoning"; AbandonAllFor(item); break; } return true; } void OutstandingData::AbandonAllFor(const Item& item) { // Erase all remaining chunks from the producer, if any. if (discard_from_send_queue_(item.data().stream_id, item.message_id())) { // There were remaining chunks to be produced for this message. Since the // receiver may have already received all chunks (up till now) for this // message, we can't just FORWARD-TSN to the last fragment in this // (abandoned) message and start sending a new message, as the receiver will // then see a new message before the end of the previous one was seen (or // skipped over). So create a new fragment, representing the end, that the // received will never see as it is abandoned immediately and used as cum // TSN in the sent FORWARD-TSN. Data message_end(item.data().stream_id, item.data().ssn, item.data().mid, item.data().fsn, item.data().ppid, std::vector(), Data::IsBeginning(false), Data::IsEnd(true), item.data().is_unordered); UnwrappedTSN tsn = next_tsn(); Item& added_item = outstanding_data_.emplace_back( item.message_id(), std::move(message_end), Timestamp::Zero(), MaxRetransmits(0), Timestamp::PlusInfinity(), LifecycleId::NotSet()); // The added chunk shouldn't be included in `unacked_bytes`, so set it // as acked. added_item.Ack(); RTC_DLOG(LS_VERBOSE) << "Adding unsent end placeholder for message at tsn=" << *tsn.Wrap(); } UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (Item& other : outstanding_data_) { tsn.Increment(); if (!other.is_abandoned() && other.data().stream_id == item.data().stream_id && other.message_id() == item.message_id()) { RTC_DLOG(LS_VERBOSE) << "Marking chunk " << *tsn.Wrap() << " as abandoned"; if (other.should_be_retransmitted()) { to_be_fast_retransmitted_.erase(tsn); to_be_retransmitted_.erase(tsn); } other.Abandon(); } } } std::vector> OutstandingData::ExtractChunksThatCanFit( std::set& chunks, size_t max_size) { std::vector> result; for (auto it = chunks.begin(); it != chunks.end();) { UnwrappedTSN tsn = *it; Item& item = GetItem(tsn); RTC_DCHECK(item.should_be_retransmitted()); RTC_DCHECK(!item.is_outstanding()); RTC_DCHECK(!item.is_abandoned()); RTC_DCHECK(!item.is_acked()); size_t serialized_size = GetSerializedChunkSize(item.data()); if (serialized_size <= max_size) { item.MarkAsRetransmitted(); result.emplace_back(tsn.Wrap(), item.data().Clone()); max_size -= serialized_size; unacked_bytes_ += serialized_size; ++unacked_items_; it = chunks.erase(it); } else { ++it; } // No point in continuing if the packet is full. if (max_size <= data_chunk_header_size_) { break; } } return result; } std::vector> OutstandingData::GetChunksToBeFastRetransmitted(size_t max_size) { std::vector> result = ExtractChunksThatCanFit(to_be_fast_retransmitted_, max_size); // https://datatracker.ietf.org/doc/html/rfc4960#section-7.2.4 // "Those TSNs marked for retransmission due to the Fast-Retransmit algorithm // that did not fit in the sent datagram carrying K other TSNs are also marked // as ineligible for a subsequent Fast Retransmit. However, as they are // marked for retransmission they will be retransmitted later on as soon as // cwnd allows." if (!to_be_fast_retransmitted_.empty()) { to_be_retransmitted_.insert(to_be_fast_retransmitted_.begin(), to_be_fast_retransmitted_.end()); to_be_fast_retransmitted_.clear(); } RTC_DCHECK(IsConsistent()); return result; } std::vector> OutstandingData::GetChunksToBeRetransmitted( size_t max_size) { // Chunks scheduled for fast retransmission must be sent first. RTC_DCHECK(to_be_fast_retransmitted_.empty()); return ExtractChunksThatCanFit(to_be_retransmitted_, max_size); } void OutstandingData::ExpireOutstandingChunks(Timestamp now) { UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (const Item& item : outstanding_data_) { tsn.Increment(); // Chunks that are nacked can be expired. Care should be taken not to expire // unacked (in-flight) chunks as they might have been received, but the SACK // is either delayed or in-flight and may be received later. if (item.is_abandoned()) { // Already abandoned. } else if (item.is_nacked() && item.has_expired(now)) { RTC_DLOG(LS_VERBOSE) << "Marking nacked chunk " << *tsn.Wrap() << " and message " << *item.data().mid << " as expired"; AbandonAllFor(item); } else { // A non-expired chunk. No need to iterate any further. break; } } RTC_DCHECK(IsConsistent()); } UnwrappedTSN OutstandingData::highest_outstanding_tsn() const { return UnwrappedTSN::AddTo(last_cumulative_tsn_ack_, outstanding_data_.size()); } absl::optional OutstandingData::Insert( OutgoingMessageId message_id, const Data& data, Timestamp time_sent, MaxRetransmits max_retransmissions, Timestamp expires_at, LifecycleId lifecycle_id) { // All chunks are always padded to be even divisible by 4. size_t chunk_size = GetSerializedChunkSize(data); unacked_bytes_ += chunk_size; ++unacked_items_; UnwrappedTSN tsn = next_tsn(); Item& item = outstanding_data_.emplace_back(message_id, data.Clone(), time_sent, max_retransmissions, expires_at, lifecycle_id); if (item.has_expired(time_sent)) { // No need to send it - it was expired when it was in the send // queue. RTC_DLOG(LS_VERBOSE) << "Marking freshly produced chunk " << *tsn.Wrap() << " and message " << *item.data().mid << " as expired"; AbandonAllFor(item); RTC_DCHECK(IsConsistent()); return absl::nullopt; } RTC_DCHECK(IsConsistent()); return tsn; } void OutstandingData::NackAll() { UnwrappedTSN tsn = last_cumulative_tsn_ack_; // A two-pass algorithm is needed, as NackItem will invalidate iterators. std::vector tsns_to_nack; for (Item& item : outstanding_data_) { tsn.Increment(); if (!item.is_acked()) { tsns_to_nack.push_back(tsn); } } for (UnwrappedTSN tsn : tsns_to_nack) { NackItem(tsn, /*retransmit_now=*/true, /*do_fast_retransmit=*/false); } RTC_DCHECK(IsConsistent()); } webrtc::TimeDelta OutstandingData::MeasureRTT(Timestamp now, UnwrappedTSN tsn) const { if (tsn > last_cumulative_tsn_ack_ && tsn < next_tsn()) { const Item& item = GetItem(tsn); if (!item.has_been_retransmitted()) { // https://tools.ietf.org/html/rfc4960#section-6.3.1 // "Karn's algorithm: RTT measurements MUST NOT be made using // packets that were retransmitted (and thus for which it is ambiguous // whether the reply was for the first instance of the chunk or for a // later instance)" return now - item.time_sent(); } } return webrtc::TimeDelta::PlusInfinity(); } std::vector> OutstandingData::GetChunkStatesForTesting() const { std::vector> states; states.emplace_back(last_cumulative_tsn_ack_.Wrap(), State::kAcked); UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (const Item& item : outstanding_data_) { tsn.Increment(); State state; if (item.is_abandoned()) { state = State::kAbandoned; } else if (item.should_be_retransmitted()) { state = State::kToBeRetransmitted; } else if (item.is_acked()) { state = State::kAcked; } else if (item.is_outstanding()) { state = State::kInFlight; } else { state = State::kNacked; } states.emplace_back(tsn.Wrap(), state); } return states; } bool OutstandingData::ShouldSendForwardTsn() const { if (!outstanding_data_.empty()) { return outstanding_data_.front().is_abandoned(); } return false; } ForwardTsnChunk OutstandingData::CreateForwardTsn() const { std::map skipped_per_ordered_stream; UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (const Item& item : outstanding_data_) { tsn.Increment(); if (stream_reset_breakpoint_tsns_.contains(tsn) || (tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { break; } new_cumulative_ack = tsn; if (!item.data().is_unordered && item.data().ssn > skipped_per_ordered_stream[item.data().stream_id]) { skipped_per_ordered_stream[item.data().stream_id] = item.data().ssn; } } std::vector skipped_streams; skipped_streams.reserve(skipped_per_ordered_stream.size()); for (const auto& [stream_id, ssn] : skipped_per_ordered_stream) { skipped_streams.emplace_back(stream_id, ssn); } return ForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams)); } IForwardTsnChunk OutstandingData::CreateIForwardTsn() const { std::map, MID> skipped_per_stream; UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; UnwrappedTSN tsn = last_cumulative_tsn_ack_; for (const Item& item : outstanding_data_) { tsn.Increment(); if (stream_reset_breakpoint_tsns_.contains(tsn) || (tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { break; } new_cumulative_ack = tsn; std::pair stream_id = std::make_pair(item.data().is_unordered, item.data().stream_id); if (item.data().mid > skipped_per_stream[stream_id]) { skipped_per_stream[stream_id] = item.data().mid; } } std::vector skipped_streams; skipped_streams.reserve(skipped_per_stream.size()); for (const auto& [stream, mid] : skipped_per_stream) { skipped_streams.emplace_back(stream.first, stream.second, mid); } return IForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams)); } void OutstandingData::ResetSequenceNumbers(UnwrappedTSN last_cumulative_tsn) { RTC_DCHECK(outstanding_data_.empty()); last_cumulative_tsn_ack_ = last_cumulative_tsn; } void OutstandingData::BeginResetStreams() { stream_reset_breakpoint_tsns_.insert(next_tsn()); } } // namespace dcsctp