/* * Copyright 2020 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "pc/sctp_data_channel.h" #include #include #include #include #include "media/sctp/sctp_transport_internal.h" #include "pc/proxy.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/system/unused.h" #include "rtc_base/thread.h" namespace webrtc { namespace { static size_t kMaxQueuedReceivedDataBytes = 16 * 1024 * 1024; static std::atomic g_unique_id{0}; int GenerateUniqueId() { return ++g_unique_id; } // Define proxy for DataChannelInterface. BEGIN_PROXY_MAP(DataChannel) PROXY_PRIMARY_THREAD_DESTRUCTOR() BYPASS_PROXY_METHOD1(void, RegisterObserver, DataChannelObserver*) BYPASS_PROXY_METHOD0(void, UnregisterObserver) BYPASS_PROXY_CONSTMETHOD0(std::string, label) BYPASS_PROXY_CONSTMETHOD0(bool, reliable) BYPASS_PROXY_CONSTMETHOD0(bool, ordered) BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmitTime) BYPASS_PROXY_CONSTMETHOD0(uint16_t, maxRetransmits) BYPASS_PROXY_CONSTMETHOD0(absl::optional, maxRetransmitsOpt) BYPASS_PROXY_CONSTMETHOD0(absl::optional, maxPacketLifeTime) BYPASS_PROXY_CONSTMETHOD0(std::string, protocol) BYPASS_PROXY_CONSTMETHOD0(bool, negotiated) // Can't bypass the proxy since the id may change. PROXY_SECONDARY_CONSTMETHOD0(int, id) BYPASS_PROXY_CONSTMETHOD0(Priority, priority) BYPASS_PROXY_CONSTMETHOD0(DataState, state) BYPASS_PROXY_CONSTMETHOD0(RTCError, error) PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_sent) PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_sent) PROXY_SECONDARY_CONSTMETHOD0(uint32_t, messages_received) PROXY_SECONDARY_CONSTMETHOD0(uint64_t, bytes_received) PROXY_SECONDARY_CONSTMETHOD0(uint64_t, buffered_amount) PROXY_SECONDARY_METHOD0(void, Close) PROXY_SECONDARY_METHOD1(bool, Send, const DataBuffer&) BYPASS_PROXY_METHOD2(void, SendAsync, DataBuffer, absl::AnyInvocable) END_PROXY_MAP(DataChannel) } // namespace InternalDataChannelInit::InternalDataChannelInit(const DataChannelInit& base) : DataChannelInit(base), open_handshake_role(kOpener) { // If the channel is externally negotiated, do not send the OPEN message. if (base.negotiated) { open_handshake_role = kNone; } else { // Datachannel is externally negotiated. Ignore the id value. // Specified in createDataChannel, WebRTC spec section 6.1 bullet 13. id = -1; } // Backwards compatibility: If maxRetransmits or maxRetransmitTime // are negative, the feature is not enabled. // Values are clamped to a 16bit range. if (maxRetransmits) { if (*maxRetransmits < 0) { RTC_LOG(LS_ERROR) << "Accepting maxRetransmits < 0 for backwards compatibility"; maxRetransmits = absl::nullopt; } else if (*maxRetransmits > std::numeric_limits::max()) { maxRetransmits = std::numeric_limits::max(); } } if (maxRetransmitTime) { if (*maxRetransmitTime < 0) { RTC_LOG(LS_ERROR) << "Accepting maxRetransmitTime < 0 for backwards compatibility"; maxRetransmitTime = absl::nullopt; } else if (*maxRetransmitTime > std::numeric_limits::max()) { maxRetransmitTime = std::numeric_limits::max(); } } } bool InternalDataChannelInit::IsValid() const { if (id < -1) return false; if (maxRetransmits.has_value() && maxRetransmits.value() < 0) return false; if (maxRetransmitTime.has_value() && maxRetransmitTime.value() < 0) return false; // Only one of these can be set. if (maxRetransmits.has_value() && maxRetransmitTime.has_value()) return false; return true; } StreamId SctpSidAllocator::AllocateSid(rtc::SSLRole role) { RTC_DCHECK_RUN_ON(&sequence_checker_); int potential_sid = (role == rtc::SSL_CLIENT) ? 0 : 1; while (potential_sid <= static_cast(cricket::kMaxSctpSid)) { StreamId sid(potential_sid); if (used_sids_.insert(sid).second) return sid; potential_sid += 2; } RTC_LOG(LS_ERROR) << "SCTP sid allocation pool exhausted."; return StreamId(); } bool SctpSidAllocator::ReserveSid(StreamId sid) { RTC_DCHECK_RUN_ON(&sequence_checker_); if (!sid.HasValue() || sid.stream_id_int() > cricket::kMaxSctpSid) return false; return used_sids_.insert(sid).second; } void SctpSidAllocator::ReleaseSid(StreamId sid) { RTC_DCHECK_RUN_ON(&sequence_checker_); used_sids_.erase(sid); } // A DataChannelObserver implementation that offers backwards compatibility with // implementations that aren't yet ready to be called back on the network // thread. This implementation posts events to the signaling thread where // events are delivered. // In the class, and together with the `SctpDataChannel` implementation, there's // special handling for the `state()` property whereby if that property is // queried on the channel object while inside an event callback, we return // the state that was active at the time the event was issued. This is to avoid // a problem with calling the `state()` getter on the proxy, which would do // a blocking call to the network thread, effectively flushing operations on // the network thread that could cause the state to change and eventually return // a misleading or arguably, wrong, state value to the callback implementation. // As a future improvement to the ObserverAdapter, we could do the same for // other properties that need to be read on the network thread. Eventually // all implementations should expect to be called on the network thread though // and the ObserverAdapter no longer be necessary. class SctpDataChannel::ObserverAdapter : public DataChannelObserver { public: explicit ObserverAdapter( SctpDataChannel* channel, rtc::scoped_refptr signaling_safety) : channel_(channel), signaling_safety_(std::move(signaling_safety)) {} bool IsInsideCallback() const { RTC_DCHECK_RUN_ON(signaling_thread()); return cached_getters_ != nullptr; } DataChannelInterface::DataState cached_state() const { RTC_DCHECK_RUN_ON(signaling_thread()); RTC_DCHECK(IsInsideCallback()); return cached_getters_->state(); } RTCError cached_error() const { RTC_DCHECK_RUN_ON(signaling_thread()); RTC_DCHECK(IsInsideCallback()); return cached_getters_->error(); } void SetDelegate(DataChannelObserver* delegate) { RTC_DCHECK_RUN_ON(signaling_thread()); delegate_ = delegate; safety_.reset(PendingTaskSafetyFlag::CreateDetached()); } static void DeleteOnSignalingThread( std::unique_ptr observer) { auto* signaling_thread = observer->signaling_thread(); if (!signaling_thread->IsCurrent()) signaling_thread->PostTask([observer = std::move(observer)]() {}); } private: class CachedGetters { public: explicit CachedGetters(ObserverAdapter* adapter) : adapter_(adapter), cached_state_(adapter_->channel_->state()), cached_error_(adapter_->channel_->error()) { RTC_DCHECK_RUN_ON(adapter->network_thread()); } ~CachedGetters() { if (!was_dropped_) { RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); RTC_DCHECK_EQ(adapter_->cached_getters_, this); adapter_->cached_getters_ = nullptr; } } bool PrepareForCallback() { RTC_DCHECK_RUN_ON(adapter_->signaling_thread()); RTC_DCHECK(was_dropped_); was_dropped_ = false; adapter_->cached_getters_ = this; return adapter_->delegate_ && adapter_->signaling_safety_->alive(); } RTCError error() { return cached_error_; } DataChannelInterface::DataState state() { return cached_state_; } private: ObserverAdapter* const adapter_; bool was_dropped_ = true; const DataChannelInterface::DataState cached_state_; const RTCError cached_error_; }; void OnStateChange() override { RTC_DCHECK_RUN_ON(network_thread()); signaling_thread()->PostTask( SafeTask(safety_.flag(), [this, cached_state = std::make_unique(this)] { RTC_DCHECK_RUN_ON(signaling_thread()); if (cached_state->PrepareForCallback()) delegate_->OnStateChange(); })); } void OnMessage(const DataBuffer& buffer) override { RTC_DCHECK_RUN_ON(network_thread()); signaling_thread()->PostTask(SafeTask( safety_.flag(), [this, buffer = buffer, cached_state = std::make_unique(this)] { RTC_DCHECK_RUN_ON(signaling_thread()); if (cached_state->PrepareForCallback()) delegate_->OnMessage(buffer); })); } void OnBufferedAmountChange(uint64_t sent_data_size) override { RTC_DCHECK_RUN_ON(network_thread()); signaling_thread()->PostTask(SafeTask( safety_.flag(), [this, sent_data_size, cached_state = std::make_unique(this)] { RTC_DCHECK_RUN_ON(signaling_thread()); if (cached_state->PrepareForCallback()) delegate_->OnBufferedAmountChange(sent_data_size); })); } bool IsOkToCallOnTheNetworkThread() override { return true; } rtc::Thread* signaling_thread() const { return signaling_thread_; } rtc::Thread* network_thread() const { return channel_->network_thread_; } DataChannelObserver* delegate_ RTC_GUARDED_BY(signaling_thread()) = nullptr; SctpDataChannel* const channel_; // Make sure to keep our own signaling_thread_ pointer to avoid dereferencing // `channel_` in the `RTC_DCHECK_RUN_ON` checks on the signaling thread. rtc::Thread* const signaling_thread_{channel_->signaling_thread_}; ScopedTaskSafety safety_; rtc::scoped_refptr signaling_safety_; CachedGetters* cached_getters_ RTC_GUARDED_BY(signaling_thread()) = nullptr; }; // static rtc::scoped_refptr SctpDataChannel::Create( rtc::WeakPtr controller, const std::string& label, bool connected_to_transport, const InternalDataChannelInit& config, rtc::Thread* signaling_thread, rtc::Thread* network_thread) { RTC_DCHECK(config.IsValid()); return rtc::make_ref_counted( config, std::move(controller), label, connected_to_transport, signaling_thread, network_thread); } // static rtc::scoped_refptr SctpDataChannel::CreateProxy( rtc::scoped_refptr channel, rtc::scoped_refptr signaling_safety) { // Copy thread params to local variables before `std::move()`. auto* signaling_thread = channel->signaling_thread_; auto* network_thread = channel->network_thread_; channel->observer_adapter_ = std::make_unique( channel.get(), std::move(signaling_safety)); return DataChannelProxy::Create(signaling_thread, network_thread, std::move(channel)); } SctpDataChannel::SctpDataChannel( const InternalDataChannelInit& config, rtc::WeakPtr controller, const std::string& label, bool connected_to_transport, rtc::Thread* signaling_thread, rtc::Thread* network_thread) : signaling_thread_(signaling_thread), network_thread_(network_thread), id_n_(config.id), internal_id_(GenerateUniqueId()), label_(label), protocol_(config.protocol), max_retransmit_time_(config.maxRetransmitTime), max_retransmits_(config.maxRetransmits), priority_(config.priority), negotiated_(config.negotiated), ordered_(config.ordered), observer_(nullptr), controller_(std::move(controller)) { RTC_DCHECK_RUN_ON(network_thread_); // Since we constructed on the network thread we can't (yet) check the // `controller_` pointer since doing so will trigger a thread check. RTC_UNUSED(network_thread_); RTC_DCHECK(config.IsValid()); if (connected_to_transport) network_safety_->SetAlive(); switch (config.open_handshake_role) { case InternalDataChannelInit::kNone: // pre-negotiated handshake_state_ = kHandshakeReady; break; case InternalDataChannelInit::kOpener: handshake_state_ = kHandshakeShouldSendOpen; break; case InternalDataChannelInit::kAcker: handshake_state_ = kHandshakeShouldSendAck; break; } } SctpDataChannel::~SctpDataChannel() { if (observer_adapter_) ObserverAdapter::DeleteOnSignalingThread(std::move(observer_adapter_)); } void SctpDataChannel::RegisterObserver(DataChannelObserver* observer) { // Note: at this point, we do not know on which thread we're being called // from since this method bypasses the proxy. On Android in particular, // registration methods are called from unknown threads. // Check if we should set up an observer adapter that will make sure that // callbacks are delivered on the signaling thread rather than directly // on the network thread. const auto* current_thread = rtc::Thread::Current(); // TODO(webrtc:11547): Eventually all DataChannelObserver implementations // should be called on the network thread and IsOkToCallOnTheNetworkThread(). if (!observer->IsOkToCallOnTheNetworkThread()) { RTC_LOG(LS_WARNING) << "DataChannelObserver - adapter needed"; auto prepare_observer = [&]() { RTC_DCHECK(observer_adapter_) << "CreateProxy hasn't been called"; observer_adapter_->SetDelegate(observer); return observer_adapter_.get(); }; // Instantiate the adapter in the right context and then substitute the // observer pointer the SctpDataChannel will call back on, with the adapter. if (signaling_thread_ == current_thread) { observer = prepare_observer(); } else { observer = signaling_thread_->BlockingCall(std::move(prepare_observer)); } } // Now do the observer registration on the network thread. In the common case, // we'll do this asynchronously via `PostTask()`. For that reason we grab // a reference to ourselves while the task is in flight. We can't use // `SafeTask(network_safety_, ...)` for this since we can't assume that we // have a transport (network_safety_ represents the transport connection). rtc::scoped_refptr me(this); auto register_observer = [me = std::move(me), observer = observer] { RTC_DCHECK_RUN_ON(me->network_thread_); me->observer_ = observer; me->DeliverQueuedReceivedData(); }; if (network_thread_ == current_thread) { register_observer(); } else { network_thread_->BlockingCall(std::move(register_observer)); } } void SctpDataChannel::UnregisterObserver() { // Note: As with `RegisterObserver`, the proxy is being bypassed. const auto* current_thread = rtc::Thread::Current(); // Callers must not be invoking the unregistration from the network thread // (assuming a multi-threaded environment where we have a dedicated network // thread). That would indicate non-network related work happening on the // network thread or that unregistration is being done from within a callback // (without unwinding the stack, which is a requirement). // The network thread is not allowed to make blocking calls to the signaling // thread, so that would blow up if attempted. Since we support an adapter // for observers that are not safe to call on the network thread, we do // need to check+free it on the signaling thread. RTC_DCHECK(current_thread != network_thread_ || network_thread_ == signaling_thread_); auto unregister_observer = [&] { RTC_DCHECK_RUN_ON(network_thread_); observer_ = nullptr; }; if (current_thread == network_thread_) { unregister_observer(); } else { network_thread_->BlockingCall(std::move(unregister_observer)); } auto clear_observer = [&]() { if (observer_adapter_) observer_adapter_->SetDelegate(nullptr); }; if (current_thread != signaling_thread_) { signaling_thread_->BlockingCall(std::move(clear_observer)); } else { clear_observer(); } } std::string SctpDataChannel::label() const { return label_; } bool SctpDataChannel::reliable() const { // May be called on any thread. return !max_retransmits_ && !max_retransmit_time_; } bool SctpDataChannel::ordered() const { return ordered_; } uint16_t SctpDataChannel::maxRetransmitTime() const { return max_retransmit_time_ ? *max_retransmit_time_ : static_cast(-1); } uint16_t SctpDataChannel::maxRetransmits() const { return max_retransmits_ ? *max_retransmits_ : static_cast(-1); } absl::optional SctpDataChannel::maxPacketLifeTime() const { return max_retransmit_time_; } absl::optional SctpDataChannel::maxRetransmitsOpt() const { return max_retransmits_; } std::string SctpDataChannel::protocol() const { return protocol_; } bool SctpDataChannel::negotiated() const { return negotiated_; } int SctpDataChannel::id() const { RTC_DCHECK_RUN_ON(network_thread_); return id_n_.stream_id_int(); } Priority SctpDataChannel::priority() const { return priority_ ? *priority_ : Priority::kLow; } uint64_t SctpDataChannel::buffered_amount() const { RTC_DCHECK_RUN_ON(network_thread_); return queued_send_data_.byte_count(); } void SctpDataChannel::Close() { RTC_DCHECK_RUN_ON(network_thread_); if (state_ == kClosing || state_ == kClosed) return; SetState(kClosing); // Will send queued data before beginning the underlying closing procedure. UpdateState(); } SctpDataChannel::DataState SctpDataChannel::state() const { // Note: The proxy is bypassed for the `state()` accessor. This is to allow // observer callbacks to query what the new state is from within a state // update notification without having to do a blocking call to the network // thread from within a callback. This also makes it so that the returned // state is guaranteed to be the new state that provoked the state change // notification, whereby a blocking call to the network thread might end up // getting put behind other messages on the network thread and eventually // fetch a different state value (since pending messages might cause the // state to change in the meantime). const auto* current_thread = rtc::Thread::Current(); if (current_thread == signaling_thread_ && observer_adapter_ && observer_adapter_->IsInsideCallback()) { return observer_adapter_->cached_state(); } auto return_state = [&] { RTC_DCHECK_RUN_ON(network_thread_); return state_; }; return current_thread == network_thread_ ? return_state() : network_thread_->BlockingCall(std::move(return_state)); } RTCError SctpDataChannel::error() const { const auto* current_thread = rtc::Thread::Current(); if (current_thread == signaling_thread_ && observer_adapter_ && observer_adapter_->IsInsideCallback()) { return observer_adapter_->cached_error(); } auto return_error = [&] { RTC_DCHECK_RUN_ON(network_thread_); return error_; }; return current_thread == network_thread_ ? return_error() : network_thread_->BlockingCall(std::move(return_error)); } uint32_t SctpDataChannel::messages_sent() const { RTC_DCHECK_RUN_ON(network_thread_); return messages_sent_; } uint64_t SctpDataChannel::bytes_sent() const { RTC_DCHECK_RUN_ON(network_thread_); return bytes_sent_; } uint32_t SctpDataChannel::messages_received() const { RTC_DCHECK_RUN_ON(network_thread_); return messages_received_; } uint64_t SctpDataChannel::bytes_received() const { RTC_DCHECK_RUN_ON(network_thread_); return bytes_received_; } bool SctpDataChannel::Send(const DataBuffer& buffer) { RTC_DCHECK_RUN_ON(network_thread_); RTCError err = SendImpl(buffer); if (err.type() == RTCErrorType::INVALID_STATE || err.type() == RTCErrorType::RESOURCE_EXHAUSTED) { return false; } // Always return true for SCTP DataChannel per the spec. return true; } // RTC_RUN_ON(network_thread_); RTCError SctpDataChannel::SendImpl(DataBuffer buffer) { if (state_ != kOpen) { error_ = RTCError(RTCErrorType::INVALID_STATE); return error_; } // If the queue is non-empty, we're waiting for SignalReadyToSend, // so just add to the end of the queue and keep waiting. if (!queued_send_data_.Empty()) { error_ = QueueSendDataMessage(buffer) ? RTCError::OK() : RTCError(RTCErrorType::RESOURCE_EXHAUSTED); return error_; } return SendDataMessage(buffer, true); } void SctpDataChannel::SendAsync( DataBuffer buffer, absl::AnyInvocable on_complete) { // Note: at this point, we do not know on which thread we're being called // since this method bypasses the proxy. On Android the thread might be VM // owned, on other platforms it might be the signaling thread, or in Chrome // it can be the JS thread. We also don't know if it's consistently the same // thread. So we always post to the network thread (even if the current thread // might be the network thread - in theory a call could even come from within // the `on_complete` callback). network_thread_->PostTask(SafeTask( network_safety_, [this, buffer = std::move(buffer), on_complete = std::move(on_complete)]() mutable { RTC_DCHECK_RUN_ON(network_thread_); RTCError err = SendImpl(std::move(buffer)); if (on_complete) std::move(on_complete)(err); })); } void SctpDataChannel::SetSctpSid_n(StreamId sid) { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(!id_n_.HasValue()); RTC_DCHECK(sid.HasValue()); RTC_DCHECK_NE(handshake_state_, kHandshakeWaitingForAck); RTC_DCHECK_EQ(state_, kConnecting); id_n_ = sid; } void SctpDataChannel::OnClosingProcedureStartedRemotely() { RTC_DCHECK_RUN_ON(network_thread_); if (state_ != kClosing && state_ != kClosed) { // Don't bother sending queued data since the side that initiated the // closure wouldn't receive it anyway. See crbug.com/559394 for a lengthy // discussion about this. queued_send_data_.Clear(); queued_control_data_.Clear(); // Just need to change state to kClosing, SctpTransport will handle the // rest of the closing procedure and OnClosingProcedureComplete will be // called later. started_closing_procedure_ = true; SetState(kClosing); } } void SctpDataChannel::OnClosingProcedureComplete() { RTC_DCHECK_RUN_ON(network_thread_); // If the closing procedure is complete, we should have finished sending // all pending data and transitioned to kClosing already. RTC_DCHECK_EQ(state_, kClosing); RTC_DCHECK(queued_send_data_.Empty()); SetState(kClosed); } void SctpDataChannel::OnTransportChannelCreated() { RTC_DCHECK_RUN_ON(network_thread_); network_safety_->SetAlive(); } void SctpDataChannel::OnTransportChannelClosed(RTCError error) { RTC_DCHECK_RUN_ON(network_thread_); // The SctpTransport is unusable, which could come from multiple reasons: // - the SCTP m= section was rejected // - the DTLS transport is closed // - the SCTP transport is closed CloseAbruptlyWithError(std::move(error)); } DataChannelStats SctpDataChannel::GetStats() const { RTC_DCHECK_RUN_ON(network_thread_); DataChannelStats stats{internal_id_, id(), label(), protocol(), state(), messages_sent(), messages_received(), bytes_sent(), bytes_received()}; return stats; } void SctpDataChannel::OnDataReceived(DataMessageType type, const rtc::CopyOnWriteBuffer& payload) { RTC_DCHECK_RUN_ON(network_thread_); if (type == DataMessageType::kControl) { if (handshake_state_ != kHandshakeWaitingForAck) { // Ignore it if we are not expecting an ACK message. RTC_LOG(LS_WARNING) << "DataChannel received unexpected CONTROL message, sid = " << id_n_.stream_id_int(); return; } if (ParseDataChannelOpenAckMessage(payload)) { // We can send unordered as soon as we receive the ACK message. handshake_state_ = kHandshakeReady; RTC_LOG(LS_INFO) << "DataChannel received OPEN_ACK message, sid = " << id_n_.stream_id_int(); } else { RTC_LOG(LS_WARNING) << "DataChannel failed to parse OPEN_ACK message, sid = " << id_n_.stream_id_int(); } return; } RTC_DCHECK(type == DataMessageType::kBinary || type == DataMessageType::kText); RTC_DLOG(LS_VERBOSE) << "DataChannel received DATA message, sid = " << id_n_.stream_id_int(); // We can send unordered as soon as we receive any DATA message since the // remote side must have received the OPEN (and old clients do not send // OPEN_ACK). if (handshake_state_ == kHandshakeWaitingForAck) { handshake_state_ = kHandshakeReady; } bool binary = (type == DataMessageType::kBinary); auto buffer = std::make_unique(payload, binary); if (state_ == kOpen && observer_) { ++messages_received_; bytes_received_ += buffer->size(); observer_->OnMessage(*buffer.get()); } else { if (queued_received_data_.byte_count() + payload.size() > kMaxQueuedReceivedDataBytes) { RTC_LOG(LS_ERROR) << "Queued received data exceeds the max buffer size."; queued_received_data_.Clear(); CloseAbruptlyWithError( RTCError(RTCErrorType::RESOURCE_EXHAUSTED, "Queued received data exceeds the max buffer size.")); return; } queued_received_data_.PushBack(std::move(buffer)); } } void SctpDataChannel::OnTransportReady() { RTC_DCHECK_RUN_ON(network_thread_); RTC_DCHECK(connected_to_transport()); RTC_DCHECK(id_n_.HasValue()); SendQueuedControlMessages(); SendQueuedDataMessages(); UpdateState(); } void SctpDataChannel::CloseAbruptlyWithError(RTCError error) { RTC_DCHECK_RUN_ON(network_thread_); if (state_ == kClosed) { return; } network_safety_->SetNotAlive(); // Closing abruptly means any queued data gets thrown away. queued_send_data_.Clear(); queued_control_data_.Clear(); // Still go to "kClosing" before "kClosed", since observers may be expecting // that. SetState(kClosing); error_ = std::move(error); SetState(kClosed); } void SctpDataChannel::CloseAbruptlyWithDataChannelFailure( const std::string& message) { RTC_DCHECK_RUN_ON(network_thread_); RTCError error(RTCErrorType::OPERATION_ERROR_WITH_DATA, message); error.set_error_detail(RTCErrorDetailType::DATA_CHANNEL_FAILURE); CloseAbruptlyWithError(std::move(error)); } // RTC_RUN_ON(network_thread_). void SctpDataChannel::UpdateState() { // UpdateState determines what to do from a few state variables. Include // all conditions required for each state transition here for // clarity. OnTransportReady(true) will send any queued data and then invoke // UpdateState(). switch (state_) { case kConnecting: { if (connected_to_transport() && controller_) { if (handshake_state_ == kHandshakeShouldSendOpen) { rtc::CopyOnWriteBuffer payload; WriteDataChannelOpenMessage(label_, protocol_, priority_, ordered_, max_retransmits_, max_retransmit_time_, &payload); SendControlMessage(payload); } else if (handshake_state_ == kHandshakeShouldSendAck) { rtc::CopyOnWriteBuffer payload; WriteDataChannelOpenAckMessage(&payload); SendControlMessage(payload); } if (handshake_state_ == kHandshakeReady || handshake_state_ == kHandshakeWaitingForAck) { SetState(kOpen); // If we have received buffers before the channel got writable. // Deliver them now. DeliverQueuedReceivedData(); } } else { RTC_DCHECK(!id_n_.HasValue()); } break; } case kOpen: { break; } case kClosing: { if (connected_to_transport() && controller_) { // Wait for all queued data to be sent before beginning the closing // procedure. if (queued_send_data_.Empty() && queued_control_data_.Empty()) { // For SCTP data channels, we need to wait for the closing procedure // to complete; after calling RemoveSctpDataStream, // OnClosingProcedureComplete will end up called asynchronously // afterwards. if (!started_closing_procedure_ && id_n_.HasValue()) { started_closing_procedure_ = true; controller_->RemoveSctpDataStream(id_n_); } } } else { // When we're not connected to a transport, we'll transition // directly to the `kClosed` state from here. queued_send_data_.Clear(); queued_control_data_.Clear(); SetState(kClosed); } break; } case kClosed: break; } } // RTC_RUN_ON(network_thread_). void SctpDataChannel::SetState(DataState state) { if (state_ == state) { return; } state_ = state; if (observer_) { observer_->OnStateChange(); } if (controller_) controller_->OnChannelStateChanged(this, state_); } // RTC_RUN_ON(network_thread_). void SctpDataChannel::DeliverQueuedReceivedData() { if (!observer_ || state_ != kOpen) { return; } while (!queued_received_data_.Empty()) { std::unique_ptr buffer = queued_received_data_.PopFront(); ++messages_received_; bytes_received_ += buffer->size(); observer_->OnMessage(*buffer); } } // RTC_RUN_ON(network_thread_). void SctpDataChannel::SendQueuedDataMessages() { if (queued_send_data_.Empty()) { return; } RTC_DCHECK(state_ == kOpen || state_ == kClosing); while (!queued_send_data_.Empty()) { std::unique_ptr buffer = queued_send_data_.PopFront(); if (!SendDataMessage(*buffer, false).ok()) { // Return the message to the front of the queue if sending is aborted. queued_send_data_.PushFront(std::move(buffer)); break; } } } // RTC_RUN_ON(network_thread_). RTCError SctpDataChannel::SendDataMessage(const DataBuffer& buffer, bool queue_if_blocked) { SendDataParams send_params; if (!controller_) { error_ = RTCError(RTCErrorType::INVALID_STATE); return error_; } send_params.ordered = ordered_; // Send as ordered if it is still going through OPEN/ACK signaling. if (handshake_state_ != kHandshakeReady && !ordered_) { send_params.ordered = true; RTC_DLOG(LS_VERBOSE) << "Sending data as ordered for unordered DataChannel " "because the OPEN_ACK message has not been received."; } send_params.max_rtx_count = max_retransmits_; send_params.max_rtx_ms = max_retransmit_time_; send_params.type = buffer.binary ? DataMessageType::kBinary : DataMessageType::kText; error_ = controller_->SendData(id_n_, send_params, buffer.data); if (error_.ok()) { ++messages_sent_; bytes_sent_ += buffer.size(); if (observer_ && buffer.size() > 0) { observer_->OnBufferedAmountChange(buffer.size()); } return error_; } if (error_.type() == RTCErrorType::RESOURCE_EXHAUSTED) { if (!queue_if_blocked) return error_; if (QueueSendDataMessage(buffer)) { error_ = RTCError::OK(); return error_; } } // Close the channel if the error is not SDR_BLOCK, or if queuing the // message failed. RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send data, " "send_result = " << ToString(error_.type()) << ":" << error_.message(); CloseAbruptlyWithError( RTCError(RTCErrorType::NETWORK_ERROR, "Failure to send data")); return error_; } // RTC_RUN_ON(network_thread_). bool SctpDataChannel::QueueSendDataMessage(const DataBuffer& buffer) { size_t start_buffered_amount = queued_send_data_.byte_count(); if (start_buffered_amount + buffer.size() > DataChannelInterface::MaxSendQueueSize()) { RTC_LOG(LS_ERROR) << "Can't buffer any more data for the data channel."; error_ = RTCError(RTCErrorType::RESOURCE_EXHAUSTED); return false; } queued_send_data_.PushBack(std::make_unique(buffer)); return true; } // RTC_RUN_ON(network_thread_). void SctpDataChannel::SendQueuedControlMessages() { PacketQueue control_packets; control_packets.Swap(&queued_control_data_); while (!control_packets.Empty()) { std::unique_ptr buf = control_packets.PopFront(); SendControlMessage(buf->data); } } // RTC_RUN_ON(network_thread_). bool SctpDataChannel::SendControlMessage(const rtc::CopyOnWriteBuffer& buffer) { RTC_DCHECK(connected_to_transport()); RTC_DCHECK(id_n_.HasValue()); RTC_DCHECK(controller_); bool is_open_message = handshake_state_ == kHandshakeShouldSendOpen; RTC_DCHECK(!is_open_message || !negotiated_); SendDataParams send_params; // Send data as ordered before we receive any message from the remote peer to // make sure the remote peer will not receive any data before it receives the // OPEN message. send_params.ordered = ordered_ || is_open_message; send_params.type = DataMessageType::kControl; RTCError err = controller_->SendData(id_n_, send_params, buffer); if (err.ok()) { RTC_DLOG(LS_VERBOSE) << "Sent CONTROL message on channel " << id_n_.stream_id_int(); if (handshake_state_ == kHandshakeShouldSendAck) { handshake_state_ = kHandshakeReady; } else if (handshake_state_ == kHandshakeShouldSendOpen) { handshake_state_ = kHandshakeWaitingForAck; } } else if (err.type() == RTCErrorType::RESOURCE_EXHAUSTED) { queued_control_data_.PushBack(std::make_unique(buffer, true)); } else { RTC_LOG(LS_ERROR) << "Closing the DataChannel due to a failure to send" " the CONTROL message, send_result = " << ToString(err.type()); err.set_message("Failed to send a CONTROL message"); CloseAbruptlyWithError(err); } return err.ok(); } // static void SctpDataChannel::ResetInternalIdAllocatorForTesting(int new_value) { g_unique_id = new_value; } } // namespace webrtc