/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/rolling_accumulator.h" #include #include "test/gtest.h" namespace rtc { namespace { const double kLearningRate = 0.5; // Add `n` samples drawn from uniform distribution in [a;b]. void FillStatsFromUniformDistribution(RollingAccumulator& stats, int n, double a, double b) { std::mt19937 gen{std::random_device()()}; std::uniform_real_distribution<> dis(a, b); for (int i = 1; i <= n; i++) { stats.AddSample(dis(gen)); } } } // namespace TEST(RollingAccumulatorTest, ZeroSamples) { RollingAccumulator accum(10); EXPECT_EQ(0U, accum.count()); EXPECT_DOUBLE_EQ(0.0, accum.ComputeMean()); EXPECT_DOUBLE_EQ(0.0, accum.ComputeVariance()); EXPECT_EQ(0, accum.ComputeMin()); EXPECT_EQ(0, accum.ComputeMax()); } TEST(RollingAccumulatorTest, SomeSamples) { RollingAccumulator accum(10); for (int i = 0; i < 4; ++i) { accum.AddSample(i); } EXPECT_EQ(4U, accum.count()); EXPECT_DOUBLE_EQ(1.5, accum.ComputeMean()); EXPECT_NEAR(2.26666, accum.ComputeWeightedMean(kLearningRate), 0.01); EXPECT_DOUBLE_EQ(1.25, accum.ComputeVariance()); EXPECT_EQ(0, accum.ComputeMin()); EXPECT_EQ(3, accum.ComputeMax()); } TEST(RollingAccumulatorTest, RollingSamples) { RollingAccumulator accum(10); for (int i = 0; i < 12; ++i) { accum.AddSample(i); } EXPECT_EQ(10U, accum.count()); EXPECT_DOUBLE_EQ(6.5, accum.ComputeMean()); EXPECT_NEAR(10.0, accum.ComputeWeightedMean(kLearningRate), 0.01); EXPECT_NEAR(9.0, accum.ComputeVariance(), 1.0); EXPECT_EQ(2, accum.ComputeMin()); EXPECT_EQ(11, accum.ComputeMax()); } TEST(RollingAccumulatorTest, ResetSamples) { RollingAccumulator accum(10); for (int i = 0; i < 10; ++i) { accum.AddSample(100); } EXPECT_EQ(10U, accum.count()); EXPECT_DOUBLE_EQ(100.0, accum.ComputeMean()); EXPECT_EQ(100, accum.ComputeMin()); EXPECT_EQ(100, accum.ComputeMax()); accum.Reset(); EXPECT_EQ(0U, accum.count()); for (int i = 0; i < 5; ++i) { accum.AddSample(i); } EXPECT_EQ(5U, accum.count()); EXPECT_DOUBLE_EQ(2.0, accum.ComputeMean()); EXPECT_EQ(0, accum.ComputeMin()); EXPECT_EQ(4, accum.ComputeMax()); } TEST(RollingAccumulatorTest, RollingSamplesDouble) { RollingAccumulator accum(10); for (int i = 0; i < 23; ++i) { accum.AddSample(5 * i); } EXPECT_EQ(10u, accum.count()); EXPECT_DOUBLE_EQ(87.5, accum.ComputeMean()); EXPECT_NEAR(105.049, accum.ComputeWeightedMean(kLearningRate), 0.1); EXPECT_NEAR(229.166667, accum.ComputeVariance(), 25); EXPECT_DOUBLE_EQ(65.0, accum.ComputeMin()); EXPECT_DOUBLE_EQ(110.0, accum.ComputeMax()); } TEST(RollingAccumulatorTest, ComputeWeightedMeanCornerCases) { RollingAccumulator accum(10); EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(kLearningRate)); EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(0.0)); EXPECT_DOUBLE_EQ(0.0, accum.ComputeWeightedMean(1.1)); for (int i = 0; i < 8; ++i) { accum.AddSample(i); } EXPECT_DOUBLE_EQ(3.5, accum.ComputeMean()); EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(0)); EXPECT_DOUBLE_EQ(3.5, accum.ComputeWeightedMean(1.1)); EXPECT_NEAR(6.0, accum.ComputeWeightedMean(kLearningRate), 0.1); } TEST(RollingAccumulatorTest, VarianceFromUniformDistribution) { // Check variance converge to 1/12 for [0;1) uniform distribution. // Acts as a sanity check for NumericStabilityForVariance test. RollingAccumulator stats(/*max_count=*/0.5e6); FillStatsFromUniformDistribution(stats, 1e6, 0, 1); EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); } TEST(RollingAccumulatorTest, NumericStabilityForVariance) { // Same test as VarianceFromUniformDistribution, // except the range is shifted to [1e9;1e9+1). // Variance should also converge to 1/12. // NB: Although we lose precision for the samples themselves, the fractional // part still enjoys 22 bits of mantissa and errors should even out, // so that couldn't explain a mismatch. RollingAccumulator stats(/*max_count=*/0.5e6); FillStatsFromUniformDistribution(stats, 1e6, 1e9, 1e9 + 1); EXPECT_NEAR(stats.ComputeVariance(), 1. / 12, 1e-3); } } // namespace rtc