/* * Copyright 2011 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/ssl_identity.h" #include #include #include #include #include "absl/strings/str_replace.h" #include "absl/strings/string_view.h" #include "rtc_base/checks.h" #include "rtc_base/fake_ssl_identity.h" #include "rtc_base/helpers.h" #include "rtc_base/logging.h" #include "rtc_base/message_digest.h" #include "rtc_base/ssl_fingerprint.h" #include "test/gtest.h" using rtc::SSLIdentity; const char kTestCertificate[] = "-----BEGIN CERTIFICATE-----\n" "MIIB6TCCAVICAQYwDQYJKoZIhvcNAQEEBQAwWzELMAkGA1UEBhMCQVUxEzARBgNV\n" "BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMRswGQYD\n" "VQQDExJUZXN0IENBICgxMDI0IGJpdCkwHhcNMDAxMDE2MjIzMTAzWhcNMDMwMTE0\n" "MjIzMTAzWjBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEaMBgG\n" "A1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0IGNl\n" "cnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8SMVIP\n" "Fe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8Ey2//\n" "Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAAOBgQCT0grFQeZaqYb5EYfk20XixZV4\n" "GmyAbXMftG1Eo7qGiMhYzRwGNWxEYojf5PZkYZXvSqZ/ZXHXa4g59jK/rJNnaVGM\n" "k+xIX8mxQvlV0n5O9PIha5BX5teZnkHKgL8aKKLKW1BK7YTngsfSzzaeame5iKfz\n" "itAE+OjGF+PFKbwX8Q==\n" "-----END CERTIFICATE-----\n"; const unsigned char kTestCertSha1[] = {0xA6, 0xC8, 0x59, 0xEA, 0xC3, 0x7E, 0x6D, 0x33, 0xCF, 0xE2, 0x69, 0x9D, 0x74, 0xE6, 0xF6, 0x8A, 0x9E, 0x47, 0xA7, 0xCA}; const unsigned char kTestCertSha224[] = { 0xd4, 0xce, 0xc6, 0xcf, 0x28, 0xcb, 0xe9, 0x77, 0x38, 0x36, 0xcf, 0xb1, 0x3b, 0x4a, 0xd7, 0xbd, 0xae, 0x24, 0x21, 0x08, 0xcf, 0x6a, 0x44, 0x0d, 0x3f, 0x94, 0x2a, 0x5b}; const unsigned char kTestCertSha256[] = { 0x41, 0x6b, 0xb4, 0x93, 0x47, 0x79, 0x77, 0x24, 0x77, 0x0b, 0x8b, 0x2e, 0xa6, 0x2b, 0xe0, 0xf9, 0x0a, 0xed, 0x1f, 0x31, 0xa6, 0xf7, 0x5c, 0xa1, 0x5a, 0xc4, 0xb0, 0xa2, 0xa4, 0x78, 0xb9, 0x76}; const unsigned char kTestCertSha384[] = { 0x42, 0x31, 0x9a, 0x79, 0x1d, 0xd6, 0x08, 0xbf, 0x3b, 0xba, 0x36, 0xd8, 0x37, 0x4a, 0x9a, 0x75, 0xd3, 0x25, 0x6e, 0x28, 0x92, 0xbe, 0x06, 0xb7, 0xc5, 0xa0, 0x83, 0xe3, 0x86, 0xb1, 0x03, 0xfc, 0x64, 0x47, 0xd6, 0xd8, 0xaa, 0xd9, 0x36, 0x60, 0x04, 0xcc, 0xbe, 0x7d, 0x6a, 0xe8, 0x34, 0x49}; const unsigned char kTestCertSha512[] = { 0x51, 0x1d, 0xec, 0x02, 0x3d, 0x51, 0x45, 0xd3, 0xd8, 0x1d, 0xa4, 0x9d, 0x43, 0xc9, 0xee, 0x32, 0x6f, 0x4f, 0x37, 0xee, 0xab, 0x3f, 0x25, 0xdf, 0x72, 0xfc, 0x61, 0x1a, 0xd5, 0x92, 0xff, 0x6b, 0x28, 0x71, 0x58, 0xb3, 0xe1, 0x8a, 0x18, 0xcf, 0x61, 0x33, 0x0e, 0x14, 0xc3, 0x04, 0xaa, 0x07, 0xf6, 0xa5, 0xda, 0xdc, 0x42, 0x42, 0x22, 0x35, 0xce, 0x26, 0x58, 0x4a, 0x33, 0x6d, 0xbc, 0xb6}; // These PEM strings were created by generating an identity with // `SSLIdentity::Create` and invoking `identity->PrivateKeyToPEMString()`, // `identity->PublicKeyToPEMString()` and // `identity->certificate().ToPEMString()`. If the crypto library is updated, // and the update changes the string form of the keys, these will have to be // updated too. The fingerprint, fingerprint algorithm and base64 certificate // were created by calling `identity->certificate().GetStats()`. static const char kRSA_PRIVATE_KEY_PEM[] = "-----BEGIN PRIVATE KEY-----\n" "MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAMQPqDStRlYeDpkX\n" "erRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr\n" "4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuFLNEl\n" "7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAECgYA8FWBC5GcNtSBcIinkZyigF0A7\n" "6j081sa+J/uNz4xUuI257ZXM6biygUhhvuXK06/XoIULJfhyN0fAm1yb0HtNhiUs\n" "kMOYeon6b8FqFaPjrQf7Gr9FMiIHXNK19uegTMKztXyPZoUWlX84X0iawY95x0Y3\n" "73f6P2rN2UOjlVVjAQJBAOKy3l2w3Zj2w0oAJox0eMwl+RxBNt1C42SHrob2mFUT\n" "rytpVVYOasr8CoDI0kjacjI94sLum+buJoXXX6YTGO0CQQDdZwlYIEkoS3ftfxPa\n" "Ai0YTBzAWvHJg0r8Gk/TkHo6IM+LSsZ9ZYUv/vBe4BKLw1I4hZ+bQvBiq+f8ROtk\n" "+TDRAkAPL3ghwoU1h+IRBO2QHwUwd6K2N9AbBi4BP+168O3HVSg4ujeTKigRLMzv\n" "T4R2iNt5bhfQgvdCgtVlxcWMdF8JAkBwDCg3eEdt5BuyjwBt8XH+/O4ED0KUWCTH\n" "x00k5dZlupsuhE5Fwe4QpzXg3gekwdnHjyCCQ/NCDHvgOMTkmhQxAkA9V03KRX9b\n" "bhvEzY/fu8gEp+EzsER96/D79az5z1BaMGL5OPM2xHBPJATKlswnAa7Lp3QKGZGk\n" "TxslfL18J71s\n" "-----END PRIVATE KEY-----\n"; static const char kRSA_PUBLIC_KEY_PEM[] = "-----BEGIN PUBLIC KEY-----\n" "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDED6g0rUZWHg6ZF3q0Zr/mtZ2j\n" "PL0lUmNIBtqZZ656H1YlkVtzEalgvtNtDLCI94T2XkgJ7f8vxS/56+BGuzV3MHUa\n" "Nf9cRCu1P3/3I0oNWrp8rxwh8HBXDK99Ryxbx69GYHBcG4CLhSzRJe5CuRzDvQD8\n" "9Z7VI3pPAZgY/MjJfQIDAQAB\n" "-----END PUBLIC KEY-----\n"; static const char kRSA_CERT_PEM[] = "-----BEGIN CERTIFICATE-----\n" "MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNV\n" "BAMMBXRlc3QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwG\n" "A1UEAwwFdGVzdDEwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYe\n" "DpkXerRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/F\n" "L/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuF\n" "LNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhvcNAQELBQADgYEA\n" "C3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJi8dx\n" "yTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFq\n" "e3UkexqNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=\n" "-----END CERTIFICATE-----\n"; static const char kRSA_FINGERPRINT[] = "3C:E8:B2:70:09:CF:A9:09:5A:F4:EF:8F:8D:8A:32:FF:EA:04:91:BA:6E:D4:17:78:16" ":2A:EE:F9:9A:DD:E2:2B"; static const char kRSA_FINGERPRINT_ALGORITHM[] = "sha-256"; static const char kRSA_BASE64_CERTIFICATE[] = "MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNVBAMMBXRlc3" "QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwGA1UEAwwFdGVzdDEwgZ8w" "DQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYeDpkXerRmv+a1naM8vSVSY0gG2plnrn" "ofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHw" "cFcMr31HLFvHr0ZgcFwbgIuFLNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhv" "cNAQELBQADgYEAC3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJ" "i8dxyTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFqe3Ukex" "qNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q="; static const char kECDSA_PRIVATE_KEY_PEM[] = "-----BEGIN PRIVATE KEY-----\n" "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg/AkEA2hklq7dQ2rN\n" "ZxYL6hOUACL4pn7P4FYlA3ZQhIChRANCAAR7YgdO3utP/8IqVRq8G4VZKreMAxeN\n" "rUa12twthv4uFjuHAHa9D9oyAjncmn+xvZZRyVmKrA56jRzENcEEHoAg\n" "-----END PRIVATE KEY-----\n"; static const char kECDSA_PUBLIC_KEY_PEM[] = "-----BEGIN PUBLIC KEY-----\n" "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEe2IHTt7rT//CKlUavBuFWSq3jAMX\n" "ja1GtdrcLYb+LhY7hwB2vQ/aMgI53Jp/sb2WUclZiqwOeo0cxDXBBB6AIA==\n" "-----END PUBLIC KEY-----\n"; static const char kECDSA_CERT_PEM[] = "-----BEGIN CERTIFICATE-----\n" "MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwF\n" "dGVzdDMwHhcNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQD\n" "DAV0ZXN0MzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwb\n" "hVkqt4wDF42tRrXa3C2G/i4WO4cAdr0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQe\n" "gCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuPPpirsd0e/4WGLHou6bIOSQks\n" "DYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99hkekw==\n" "-----END CERTIFICATE-----\n"; static const char kECDSA_FINGERPRINT[] = "9F:47:FA:88:76:3D:18:B8:00:A0:59:9D:C3:5D:34:0B:1F:B8:99:9E:68:DA:F3:A5:DA" ":50:33:A9:FF:4D:31:89"; static const char kECDSA_FINGERPRINT_ALGORITHM[] = "sha-256"; static const char kECDSA_BASE64_CERTIFICATE[] = "MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwFdGVzdDMwHh" "cNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQDDAV0ZXN0MzBZMBMGByqG" "SM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwbhVkqt4wDF42tRrXa3C2G/i4WO4cAdr" "0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQegCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuP" "Ppirsd0e/4WGLHou6bIOSQksDYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99h" "kekw=="; struct IdentityAndInfo { std::unique_ptr identity; std::vector ders; std::vector pems; std::vector fingerprints; }; IdentityAndInfo CreateFakeIdentityAndInfoFromDers( const std::vector& ders) { RTC_CHECK(!ders.empty()); IdentityAndInfo info; info.ders = ders; for (const std::string& der : ders) { info.pems.push_back(rtc::SSLIdentity::DerToPem( "CERTIFICATE", reinterpret_cast(der.c_str()), der.length())); } info.identity.reset(new rtc::FakeSSLIdentity(info.pems)); // Strip header/footer and newline characters of PEM strings. for (size_t i = 0; i < info.pems.size(); ++i) { absl::StrReplaceAll({{"-----BEGIN CERTIFICATE-----", ""}, {"-----END CERTIFICATE-----", ""}, {"\n", ""}}, &info.pems[i]); } // Fingerprints for the whole certificate chain, starting with leaf // certificate. const rtc::SSLCertChain& chain = info.identity->cert_chain(); std::unique_ptr fp; for (size_t i = 0; i < chain.GetSize(); i++) { fp = rtc::SSLFingerprint::Create("sha-1", chain.Get(i)); EXPECT_TRUE(fp); info.fingerprints.push_back(fp->GetRfc4572Fingerprint()); } EXPECT_EQ(info.ders.size(), info.fingerprints.size()); return info; } class SSLIdentityTest : public ::testing::Test { public: void SetUp() override { identity_rsa1_ = SSLIdentity::Create("test1", rtc::KT_RSA); identity_rsa2_ = SSLIdentity::Create("test2", rtc::KT_RSA); identity_ecdsa1_ = SSLIdentity::Create("test3", rtc::KT_ECDSA); identity_ecdsa2_ = SSLIdentity::Create("test4", rtc::KT_ECDSA); ASSERT_TRUE(identity_rsa1_); ASSERT_TRUE(identity_rsa2_); ASSERT_TRUE(identity_ecdsa1_); ASSERT_TRUE(identity_ecdsa2_); test_cert_ = rtc::SSLCertificate::FromPEMString(kTestCertificate); ASSERT_TRUE(test_cert_); } void TestGetSignatureDigestAlgorithm() { std::string digest_algorithm; ASSERT_TRUE(identity_rsa1_->certificate().GetSignatureDigestAlgorithm( &digest_algorithm)); ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); ASSERT_TRUE(identity_rsa2_->certificate().GetSignatureDigestAlgorithm( &digest_algorithm)); ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); ASSERT_TRUE(identity_ecdsa1_->certificate().GetSignatureDigestAlgorithm( &digest_algorithm)); ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); ASSERT_TRUE(identity_ecdsa2_->certificate().GetSignatureDigestAlgorithm( &digest_algorithm)); ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); // The test certificate has an MD5-based signature. ASSERT_TRUE(test_cert_->GetSignatureDigestAlgorithm(&digest_algorithm)); ASSERT_EQ(rtc::DIGEST_MD5, digest_algorithm); } typedef unsigned char DigestType[rtc::MessageDigest::kMaxSize]; void TestDigestHelper(DigestType digest, const SSLIdentity* identity, absl::string_view algorithm, size_t expected_len) { DigestType digest1; size_t digest_len; bool rv; memset(digest, 0, expected_len); rv = identity->certificate().ComputeDigest(algorithm, digest, sizeof(DigestType), &digest_len); EXPECT_TRUE(rv); EXPECT_EQ(expected_len, digest_len); // Repeat digest computation for the identity as a sanity check. memset(digest1, 0xff, expected_len); rv = identity->certificate().ComputeDigest(algorithm, digest1, sizeof(DigestType), &digest_len); EXPECT_TRUE(rv); EXPECT_EQ(expected_len, digest_len); EXPECT_EQ(0, memcmp(digest, digest1, expected_len)); } void TestDigestForGeneratedCert(absl::string_view algorithm, size_t expected_len) { DigestType digest[4]; ASSERT_TRUE(expected_len <= sizeof(DigestType)); TestDigestHelper(digest[0], identity_rsa1_.get(), algorithm, expected_len); TestDigestHelper(digest[1], identity_rsa2_.get(), algorithm, expected_len); TestDigestHelper(digest[2], identity_ecdsa1_.get(), algorithm, expected_len); TestDigestHelper(digest[3], identity_ecdsa2_.get(), algorithm, expected_len); // Sanity check that all four digests are unique. This could theoretically // fail, since cryptographic hash collisions have a non-zero probability. for (int i = 0; i < 4; i++) { for (int j = 0; j < 4; j++) { if (i != j) EXPECT_NE(0, memcmp(digest[i], digest[j], expected_len)); } } } void TestDigestForFixedCert(absl::string_view algorithm, size_t expected_len, const unsigned char* expected_digest) { bool rv; DigestType digest; size_t digest_len; ASSERT_TRUE(expected_len <= sizeof(DigestType)); rv = test_cert_->ComputeDigest(algorithm, digest, sizeof(digest), &digest_len); EXPECT_TRUE(rv); EXPECT_EQ(expected_len, digest_len); EXPECT_EQ(0, memcmp(digest, expected_digest, expected_len)); } void TestCloningIdentity(const SSLIdentity& identity) { // Convert `identity` to PEM strings and create a new identity by converting // back from the string format. std::string priv_pem = identity.PrivateKeyToPEMString(); std::string publ_pem = identity.PublicKeyToPEMString(); std::string cert_pem = identity.certificate().ToPEMString(); std::unique_ptr clone = SSLIdentity::CreateFromPEMStrings(priv_pem, cert_pem); EXPECT_TRUE(clone); // Make sure the clone is identical to the original. EXPECT_TRUE(identity == *clone); ASSERT_EQ(identity.certificate().CertificateExpirationTime(), clone->certificate().CertificateExpirationTime()); // At this point we are confident that the identities are identical. To be // extra sure, we compare PEM strings of the clone with the original. Note // that the PEM strings of two identities are not strictly guaranteed to be // equal (they describe structs whose members could be listed in a different // order, for example). But because the same function is used to produce // both PEMs, its a good enough bet that this comparison will work. If the // assumption stops holding in the future we can always remove this from the // unittest. std::string clone_priv_pem = clone->PrivateKeyToPEMString(); std::string clone_publ_pem = clone->PublicKeyToPEMString(); std::string clone_cert_pem = clone->certificate().ToPEMString(); ASSERT_EQ(priv_pem, clone_priv_pem); ASSERT_EQ(publ_pem, clone_publ_pem); ASSERT_EQ(cert_pem, clone_cert_pem); } protected: std::unique_ptr identity_rsa1_; std::unique_ptr identity_rsa2_; std::unique_ptr identity_ecdsa1_; std::unique_ptr identity_ecdsa2_; std::unique_ptr test_cert_; }; TEST_F(SSLIdentityTest, FixedDigestSHA1) { TestDigestForFixedCert(rtc::DIGEST_SHA_1, 20, kTestCertSha1); } // HASH_AlgSHA224 is not supported in the chromium linux build. TEST_F(SSLIdentityTest, FixedDigestSHA224) { TestDigestForFixedCert(rtc::DIGEST_SHA_224, 28, kTestCertSha224); } TEST_F(SSLIdentityTest, FixedDigestSHA256) { TestDigestForFixedCert(rtc::DIGEST_SHA_256, 32, kTestCertSha256); } TEST_F(SSLIdentityTest, FixedDigestSHA384) { TestDigestForFixedCert(rtc::DIGEST_SHA_384, 48, kTestCertSha384); } TEST_F(SSLIdentityTest, FixedDigestSHA512) { TestDigestForFixedCert(rtc::DIGEST_SHA_512, 64, kTestCertSha512); } // HASH_AlgSHA224 is not supported in the chromium linux build. TEST_F(SSLIdentityTest, DigestSHA224) { TestDigestForGeneratedCert(rtc::DIGEST_SHA_224, 28); } TEST_F(SSLIdentityTest, DigestSHA256) { TestDigestForGeneratedCert(rtc::DIGEST_SHA_256, 32); } TEST_F(SSLIdentityTest, DigestSHA384) { TestDigestForGeneratedCert(rtc::DIGEST_SHA_384, 48); } TEST_F(SSLIdentityTest, DigestSHA512) { TestDigestForGeneratedCert(rtc::DIGEST_SHA_512, 64); } TEST_F(SSLIdentityTest, IdentityComparison) { EXPECT_TRUE(*identity_rsa1_ == *identity_rsa1_); EXPECT_FALSE(*identity_rsa1_ == *identity_rsa2_); EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa1_); EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa2_); EXPECT_TRUE(*identity_rsa2_ == *identity_rsa2_); EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa1_); EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa2_); EXPECT_TRUE(*identity_ecdsa1_ == *identity_ecdsa1_); EXPECT_FALSE(*identity_ecdsa1_ == *identity_ecdsa2_); } TEST_F(SSLIdentityTest, FromPEMStringsRSA) { std::unique_ptr identity( SSLIdentity::CreateFromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM)); EXPECT_TRUE(identity); EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); EXPECT_EQ(kRSA_CERT_PEM, identity->certificate().ToPEMString()); } TEST_F(SSLIdentityTest, FromPEMStringsEC) { std::unique_ptr identity(SSLIdentity::CreateFromPEMStrings( kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM)); EXPECT_TRUE(identity); EXPECT_EQ(kECDSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); EXPECT_EQ(kECDSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); EXPECT_EQ(kECDSA_CERT_PEM, identity->certificate().ToPEMString()); } TEST_F(SSLIdentityTest, FromPEMChainStrings) { // This doesn't form a valid certificate chain, but that doesn't matter for // the purposes of the test std::string chain(kRSA_CERT_PEM); chain.append(kTestCertificate); std::unique_ptr identity( SSLIdentity::CreateFromPEMChainStrings(kRSA_PRIVATE_KEY_PEM, chain)); EXPECT_TRUE(identity); EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); ASSERT_EQ(2u, identity->cert_chain().GetSize()); EXPECT_EQ(kRSA_CERT_PEM, identity->cert_chain().Get(0).ToPEMString()); EXPECT_EQ(kTestCertificate, identity->cert_chain().Get(1).ToPEMString()); } TEST_F(SSLIdentityTest, CloneIdentityRSA) { TestCloningIdentity(*identity_rsa1_); TestCloningIdentity(*identity_rsa2_); } TEST_F(SSLIdentityTest, CloneIdentityECDSA) { TestCloningIdentity(*identity_ecdsa1_); TestCloningIdentity(*identity_ecdsa2_); } TEST_F(SSLIdentityTest, PemDerConversion) { std::string der; EXPECT_TRUE(SSLIdentity::PemToDer("CERTIFICATE", kTestCertificate, &der)); EXPECT_EQ( kTestCertificate, SSLIdentity::DerToPem("CERTIFICATE", reinterpret_cast(der.data()), der.length())); } TEST_F(SSLIdentityTest, GetSignatureDigestAlgorithm) { TestGetSignatureDigestAlgorithm(); } TEST_F(SSLIdentityTest, SSLCertificateGetStatsRSA) { std::unique_ptr identity( SSLIdentity::CreateFromPEMStrings(kRSA_PRIVATE_KEY_PEM, kRSA_CERT_PEM)); std::unique_ptr stats = identity->certificate().GetStats(); EXPECT_EQ(stats->fingerprint, kRSA_FINGERPRINT); EXPECT_EQ(stats->fingerprint_algorithm, kRSA_FINGERPRINT_ALGORITHM); EXPECT_EQ(stats->base64_certificate, kRSA_BASE64_CERTIFICATE); EXPECT_FALSE(stats->issuer); } TEST_F(SSLIdentityTest, SSLCertificateGetStatsECDSA) { std::unique_ptr identity(SSLIdentity::CreateFromPEMStrings( kECDSA_PRIVATE_KEY_PEM, kECDSA_CERT_PEM)); std::unique_ptr stats = identity->certificate().GetStats(); EXPECT_EQ(stats->fingerprint, kECDSA_FINGERPRINT); EXPECT_EQ(stats->fingerprint_algorithm, kECDSA_FINGERPRINT_ALGORITHM); EXPECT_EQ(stats->base64_certificate, kECDSA_BASE64_CERTIFICATE); EXPECT_FALSE(stats->issuer); } TEST_F(SSLIdentityTest, SSLCertificateGetStatsWithChain) { std::vector ders; ders.push_back("every der results in"); ders.push_back("an identity + certificate"); ders.push_back("in a certificate chain"); IdentityAndInfo info = CreateFakeIdentityAndInfoFromDers(ders); EXPECT_TRUE(info.identity); EXPECT_EQ(info.ders, ders); EXPECT_EQ(info.pems.size(), info.ders.size()); EXPECT_EQ(info.fingerprints.size(), info.ders.size()); std::unique_ptr first_stats = info.identity->cert_chain().GetStats(); rtc::SSLCertificateStats* cert_stats = first_stats.get(); for (size_t i = 0; i < info.ders.size(); ++i) { EXPECT_EQ(cert_stats->fingerprint, info.fingerprints[i]); EXPECT_EQ(cert_stats->fingerprint_algorithm, "sha-1"); EXPECT_EQ(cert_stats->base64_certificate, info.pems[i]); cert_stats = cert_stats->issuer.get(); EXPECT_EQ(static_cast(cert_stats), i + 1 < info.ders.size()); } } class SSLIdentityExpirationTest : public ::testing::Test { public: SSLIdentityExpirationTest() { // Set use of the test RNG to get deterministic expiration timestamp. rtc::SetRandomTestMode(true); } ~SSLIdentityExpirationTest() override { // Put it back for the next test. rtc::SetRandomTestMode(false); } void TestASN1TimeToSec() { struct asn_example { const char* string; bool long_format; int64_t want; } static const data[] = { // clang-format off // clang formatting breaks this nice alignment // Valid examples. {"19700101000000Z", true, 0}, {"700101000000Z", false, 0}, {"19700101000001Z", true, 1}, {"700101000001Z", false, 1}, {"19700101000100Z", true, 60}, {"19700101000101Z", true, 61}, {"19700101010000Z", true, 3600}, {"19700101010001Z", true, 3601}, {"19700101010100Z", true, 3660}, {"19700101010101Z", true, 3661}, {"710911012345Z", false, 53400225}, {"20000101000000Z", true, 946684800}, {"20000101000000Z", true, 946684800}, {"20151130140156Z", true, 1448892116}, {"151130140156Z", false, 1448892116}, {"20491231235959Z", true, 2524607999}, {"491231235959Z", false, 2524607999}, {"20500101000000Z", true, 2524607999+1}, {"20700101000000Z", true, 3155760000}, {"21000101000000Z", true, 4102444800}, {"24000101000000Z", true, 13569465600}, // Invalid examples. {"19700101000000", true, -1}, // missing Z long format {"19700101000000X", true, -1}, // X instead of Z long format {"197001010000000", true, -1}, // 0 instead of Z long format {"1970010100000000Z", true, -1}, // excess digits long format {"700101000000", false, -1}, // missing Z short format {"700101000000X", false, -1}, // X instead of Z short format {"7001010000000", false, -1}, // 0 instead of Z short format {"70010100000000Z", false, -1}, // excess digits short format {":9700101000000Z", true, -1}, // invalid character {"1:700101000001Z", true, -1}, // invalid character {"19:00101000100Z", true, -1}, // invalid character {"197:0101000101Z", true, -1}, // invalid character {"1970:101010000Z", true, -1}, // invalid character {"19700:01010001Z", true, -1}, // invalid character {"197001:1010100Z", true, -1}, // invalid character {"1970010:010101Z", true, -1}, // invalid character {"70010100:000Z", false, -1}, // invalid character {"700101000:01Z", false, -1}, // invalid character {"2000010100:000Z", true, -1}, // invalid character {"21000101000:00Z", true, -1}, // invalid character {"240001010000:0Z", true, -1}, // invalid character {"500101000000Z", false, -1}, // but too old for epoch {"691231235959Z", false, -1}, // too old for epoch {"19611118043000Z", false, -1}, // way too old for epoch // clang-format off }; unsigned char buf[20]; // Run all examples and check for the expected result. for (const auto& entry : data) { size_t length = strlen(entry.string); memcpy(buf, entry.string, length); // Copy the ASN1 string... buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. int64_t res = rtc::ASN1TimeToSec(buf, length, entry.long_format); RTC_LOG(LS_VERBOSE) << entry.string; ASSERT_EQ(entry.want, res); } // Run all examples again, but with an invalid length. for (const auto& entry : data) { size_t length = strlen(entry.string); memcpy(buf, entry.string, length); // Copy the ASN1 string... buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. int64_t res = rtc::ASN1TimeToSec(buf, length - 1, entry.long_format); RTC_LOG(LS_VERBOSE) << entry.string; ASSERT_EQ(-1, res); } } void TestExpireTime(int times) { // We test just ECDSA here since what we're out to exercise is the // interfaces for expiration setting and reading. for (int i = 0; i < times; i++) { // We limit the time to < 2^31 here, i.e., we stay before 2038, since else // we hit time offset limitations in OpenSSL on some 32-bit systems. time_t time_before_generation = time(nullptr); time_t lifetime = rtc::CreateRandomId() % (0x80000000 - time_before_generation); rtc::KeyParams key_params = rtc::KeyParams::ECDSA(rtc::EC_NIST_P256); auto identity = rtc::SSLIdentity::Create("", key_params, lifetime); time_t time_after_generation = time(nullptr); EXPECT_LE(time_before_generation + lifetime, identity->certificate().CertificateExpirationTime()); EXPECT_GE(time_after_generation + lifetime, identity->certificate().CertificateExpirationTime()); } } }; TEST_F(SSLIdentityExpirationTest, TestASN1TimeToSec) { TestASN1TimeToSec(); } TEST_F(SSLIdentityExpirationTest, TestExpireTime) { TestExpireTime(500); }