/* * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef RTC_BASE_SWAP_QUEUE_H_ #define RTC_BASE_SWAP_QUEUE_H_ #include #include #include #include #include "absl/base/attributes.h" #include "rtc_base/checks.h" namespace webrtc { namespace internal { // (Internal; please don't use outside this file.) template bool NoopSwapQueueItemVerifierFunction(const T&) { return true; } } // namespace internal // Functor to use when supplying a verifier function for the queue. template class SwapQueueItemVerifier { public: bool operator()(const T& t) const { return QueueItemVerifierFunction(t); } }; // This class is a fixed-size queue. A single producer calls Insert() to insert // an element of type T at the back of the queue, and a single consumer calls // Remove() to remove an element from the front of the queue. It's safe for the // producer and the consumer to access the queue concurrently, from different // threads. // // To avoid the construction, copying, and destruction of Ts that a naive // queue implementation would require, for each "full" T passed from // producer to consumer, SwapQueue passes an "empty" T in the other // direction (an "empty" T is one that contains nothing of value for the // consumer). This bidirectional movement is implemented with swap(). // // // Create queue: // Bottle proto(568); // Prepare an empty Bottle. Heap allocates space for // // 568 ml. // SwapQueue q(N, proto); // Init queue with N copies of proto. // // Each copy allocates on the heap. // // Producer pseudo-code: // Bottle b(568); // Prepare an empty Bottle. Heap allocates space for 568 ml. // loop { // b.Fill(amount); // Where amount <= 568 ml. // q.Insert(&b); // Swap our full Bottle for an empty one from q. // } // // // Consumer pseudo-code: // Bottle b(568); // Prepare an empty Bottle. Heap allocates space for 568 ml. // loop { // q.Remove(&b); // Swap our empty Bottle for the next-in-line full Bottle. // Drink(&b); // } // // For a well-behaved Bottle class, there are no allocations in the // producer, since it just fills an empty Bottle that's already large // enough; no deallocations in the consumer, since it returns each empty // Bottle to the queue after having drunk it; and no copies along the // way, since the queue uses swap() everywhere to move full Bottles in // one direction and empty ones in the other. template > class SwapQueue { public: // Creates a queue of size size and fills it with default constructed Ts. explicit SwapQueue(size_t size) : queue_(size) { RTC_DCHECK(VerifyQueueSlots()); } // Same as above and accepts an item verification functor. SwapQueue(size_t size, const QueueItemVerifier& queue_item_verifier) : queue_item_verifier_(queue_item_verifier), queue_(size) { RTC_DCHECK(VerifyQueueSlots()); } // Creates a queue of size size and fills it with copies of prototype. SwapQueue(size_t size, const T& prototype) : queue_(size, prototype) { RTC_DCHECK(VerifyQueueSlots()); } // Same as above and accepts an item verification functor. SwapQueue(size_t size, const T& prototype, const QueueItemVerifier& queue_item_verifier) : queue_item_verifier_(queue_item_verifier), queue_(size, prototype) { RTC_DCHECK(VerifyQueueSlots()); } // Resets the queue to have zero content while maintaining the queue size. // Just like Remove(), this can only be called (safely) from the // consumer. void Clear() { // Drop all non-empty elements by resetting num_elements_ and incrementing // next_read_index_ by the previous value of num_elements_. Relaxed memory // ordering is sufficient since the dropped elements are not accessed. next_read_index_ += std::atomic_exchange_explicit( &num_elements_, size_t{0}, std::memory_order_relaxed); if (next_read_index_ >= queue_.size()) { next_read_index_ -= queue_.size(); } RTC_DCHECK_LT(next_read_index_, queue_.size()); } // Inserts a "full" T at the back of the queue by swapping *input with an // "empty" T from the queue. // Returns true if the item was inserted or false if not (the queue was full). // When specified, the T given in *input must pass the ItemVerifier() test. // The contents of *input after the call are then also guaranteed to pass the // ItemVerifier() test. ABSL_MUST_USE_RESULT bool Insert(T* input) { RTC_DCHECK(input); RTC_DCHECK(queue_item_verifier_(*input)); // Load the value of num_elements_. Acquire memory ordering prevents reads // and writes to queue_[next_write_index_] to be reordered to before the // load. (That element might be accessed by a concurrent call to Remove() // until the load finishes.) if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) == queue_.size()) { return false; } using std::swap; swap(*input, queue_[next_write_index_]); // Increment the value of num_elements_ to account for the inserted element. // Release memory ordering prevents the reads and writes to // queue_[next_write_index_] to be reordered to after the increment. (Once // the increment has finished, Remove() might start accessing that element.) const size_t old_num_elements = std::atomic_fetch_add_explicit( &num_elements_, size_t{1}, std::memory_order_release); ++next_write_index_; if (next_write_index_ == queue_.size()) { next_write_index_ = 0; } RTC_DCHECK_LT(next_write_index_, queue_.size()); RTC_DCHECK_LT(old_num_elements, queue_.size()); return true; } // Removes the frontmost "full" T from the queue by swapping it with // the "empty" T in *output. // Returns true if an item could be removed or false if not (the queue was // empty). When specified, The T given in *output must pass the ItemVerifier() // test and the contents of *output after the call are then also guaranteed to // pass the ItemVerifier() test. ABSL_MUST_USE_RESULT bool Remove(T* output) { RTC_DCHECK(output); RTC_DCHECK(queue_item_verifier_(*output)); // Load the value of num_elements_. Acquire memory ordering prevents reads // and writes to queue_[next_read_index_] to be reordered to before the // load. (That element might be accessed by a concurrent call to Insert() // until the load finishes.) if (std::atomic_load_explicit(&num_elements_, std::memory_order_acquire) == 0) { return false; } using std::swap; swap(*output, queue_[next_read_index_]); // Decrement the value of num_elements_ to account for the removed element. // Release memory ordering prevents the reads and writes to // queue_[next_write_index_] to be reordered to after the decrement. (Once // the decrement has finished, Insert() might start accessing that element.) std::atomic_fetch_sub_explicit(&num_elements_, size_t{1}, std::memory_order_release); ++next_read_index_; if (next_read_index_ == queue_.size()) { next_read_index_ = 0; } RTC_DCHECK_LT(next_read_index_, queue_.size()); return true; } // Returns the current number of elements in the queue. Since elements may be // concurrently added to the queue, the caller must treat this as a lower // bound, not an exact count. // May only be called by the consumer. size_t SizeAtLeast() const { // Acquire memory ordering ensures that we wait for the producer to finish // inserting any element in progress. return std::atomic_load_explicit(&num_elements_, std::memory_order_acquire); } private: // Verify that the queue slots complies with the ItemVerifier test. This // function is not thread-safe and can only be used in the constructors. bool VerifyQueueSlots() { for (const auto& v : queue_) { RTC_DCHECK(queue_item_verifier_(v)); } return true; } // TODO(peah): Change this to use std::function() once we can use C++11 std // lib. QueueItemVerifier queue_item_verifier_; // Only accessed by the single producer. size_t next_write_index_ = 0; // Only accessed by the single consumer. size_t next_read_index_ = 0; // Accessed by both the producer and the consumer and used for synchronization // between them. std::atomic num_elements_{0}; // The elements of the queue are acced by both the producer and the consumer, // mediated by num_elements_. queue_.size() is constant. std::vector queue_; SwapQueue(const SwapQueue&) = delete; SwapQueue& operator=(const SwapQueue&) = delete; }; } // namespace webrtc #endif // RTC_BASE_SWAP_QUEUE_H_