/* * Copyright 2016 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/task_queue_libevent.h" #include #include #include #include #include #include #include #include #include #include #include #include "absl/container/inlined_vector.h" #include "absl/functional/any_invocable.h" #include "absl/strings/string_view.h" #include "api/task_queue/task_queue_base.h" #include "api/units/time_delta.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/platform_thread.h" #include "rtc_base/platform_thread_types.h" #include "rtc_base/synchronization/mutex.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/time_utils.h" #include "third_party/libevent/event.h" namespace webrtc { namespace { constexpr char kQuit = 1; constexpr char kRunTasks = 2; using Priority = TaskQueueFactory::Priority; // This ignores the SIGPIPE signal on the calling thread. // This signal can be fired when trying to write() to a pipe that's being // closed or while closing a pipe that's being written to. // We can run into that situation so we ignore this signal and continue as // normal. // As a side note for this implementation, it would be great if we could safely // restore the sigmask, but unfortunately the operation of restoring it, can // itself actually cause SIGPIPE to be signaled :-| (e.g. on MacOS) // The SIGPIPE signal by default causes the process to be terminated, so we // don't want to risk that. // An alternative to this approach is to ignore the signal for the whole // process: // signal(SIGPIPE, SIG_IGN); void IgnoreSigPipeSignalOnCurrentThread() { sigset_t sigpipe_mask; sigemptyset(&sigpipe_mask); sigaddset(&sigpipe_mask, SIGPIPE); pthread_sigmask(SIG_BLOCK, &sigpipe_mask, nullptr); } bool SetNonBlocking(int fd) { const int flags = fcntl(fd, F_GETFL); RTC_CHECK(flags != -1); return (flags & O_NONBLOCK) || fcntl(fd, F_SETFL, flags | O_NONBLOCK) != -1; } // TODO(tommi): This is a hack to support two versions of libevent that we're // compatible with. The method we really want to call is event_assign(), // since event_set() has been marked as deprecated (and doesn't accept // passing event_base__ as a parameter). However, the version of libevent // that we have in Chromium, doesn't have event_assign(), so we need to call // event_set() there. void EventAssign(struct event* ev, struct event_base* base, int fd, short events, void (*callback)(int, short, void*), void* arg) { #if defined(_EVENT2_EVENT_H_) RTC_CHECK_EQ(0, event_assign(ev, base, fd, events, callback, arg)); #else event_set(ev, fd, events, callback, arg); RTC_CHECK_EQ(0, event_base_set(base, ev)); #endif } rtc::ThreadPriority TaskQueuePriorityToThreadPriority(Priority priority) { switch (priority) { case Priority::HIGH: return rtc::ThreadPriority::kRealtime; case Priority::LOW: return rtc::ThreadPriority::kLow; case Priority::NORMAL: return rtc::ThreadPriority::kNormal; } } class TaskQueueLibevent final : public TaskQueueBase { public: TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority); void Delete() override; protected: void PostTaskImpl(absl::AnyInvocable task, const PostTaskTraits& traits, const Location& location) override; void PostDelayedTaskImpl(absl::AnyInvocable task, TimeDelta delay, const PostDelayedTaskTraits& traits, const Location& location) override; private: struct TimerEvent; void PostDelayedTaskOnTaskQueue(absl::AnyInvocable task, TimeDelta delay); ~TaskQueueLibevent() override = default; static void OnWakeup(int socket, short flags, void* context); // NOLINT static void RunTimer(int fd, short flags, void* context); // NOLINT bool is_active_ = true; int wakeup_pipe_in_ = -1; int wakeup_pipe_out_ = -1; event_base* event_base_; event wakeup_event_; rtc::PlatformThread thread_; Mutex pending_lock_; absl::InlinedVector, 4> pending_ RTC_GUARDED_BY(pending_lock_); // Holds a list of events pending timers for cleanup when the loop exits. std::list pending_timers_; }; struct TaskQueueLibevent::TimerEvent { TimerEvent(TaskQueueLibevent* task_queue, absl::AnyInvocable task) : task_queue(task_queue), task(std::move(task)) {} ~TimerEvent() { event_del(&ev); } event ev; TaskQueueLibevent* task_queue; absl::AnyInvocable task; }; TaskQueueLibevent::TaskQueueLibevent(absl::string_view queue_name, rtc::ThreadPriority priority) : event_base_(event_base_new()) { int fds[2]; RTC_CHECK(pipe(fds) == 0); SetNonBlocking(fds[0]); SetNonBlocking(fds[1]); wakeup_pipe_out_ = fds[0]; wakeup_pipe_in_ = fds[1]; EventAssign(&wakeup_event_, event_base_, wakeup_pipe_out_, EV_READ | EV_PERSIST, OnWakeup, this); event_add(&wakeup_event_, 0); thread_ = rtc::PlatformThread::SpawnJoinable( [this] { { CurrentTaskQueueSetter set_current(this); while (is_active_) event_base_loop(event_base_, 0); // Ensure remaining deleted tasks are destroyed with Current() set up // to this task queue. absl::InlinedVector, 4> pending; MutexLock lock(&pending_lock_); pending_.swap(pending); } for (TimerEvent* timer : pending_timers_) delete timer; #if RTC_DCHECK_IS_ON MutexLock lock(&pending_lock_); RTC_DCHECK(pending_.empty()); #endif }, queue_name, rtc::ThreadAttributes().SetPriority(priority)); } void TaskQueueLibevent::Delete() { RTC_DCHECK(!IsCurrent()); struct timespec ts; char message = kQuit; while (write(wakeup_pipe_in_, &message, sizeof(message)) != sizeof(message)) { // The queue is full, so we have no choice but to wait and retry. RTC_CHECK_EQ(EAGAIN, errno); ts.tv_sec = 0; ts.tv_nsec = 1000000; nanosleep(&ts, nullptr); } thread_.Finalize(); event_del(&wakeup_event_); IgnoreSigPipeSignalOnCurrentThread(); close(wakeup_pipe_in_); close(wakeup_pipe_out_); wakeup_pipe_in_ = -1; wakeup_pipe_out_ = -1; event_base_free(event_base_); delete this; } void TaskQueueLibevent::PostTaskImpl(absl::AnyInvocable task, const PostTaskTraits& traits, const Location& location) { { MutexLock lock(&pending_lock_); bool had_pending_tasks = !pending_.empty(); pending_.push_back(std::move(task)); // Only write to the pipe if there were no pending tasks before this one // since the thread could be sleeping. If there were already pending tasks // then we know there's either a pending write in the pipe or the thread has // not yet processed the pending tasks. In either case, the thread will // eventually wake up and process all pending tasks including this one. if (had_pending_tasks) { return; } } // Note: This behvior outlined above ensures we never fill up the pipe write // buffer since there will only ever be 1 byte pending. char message = kRunTasks; RTC_CHECK_EQ(write(wakeup_pipe_in_, &message, sizeof(message)), sizeof(message)); } void TaskQueueLibevent::PostDelayedTaskOnTaskQueue( absl::AnyInvocable task, TimeDelta delay) { // libevent api is not thread safe by default, thus event_add need to be // called on the `thread_`. RTC_DCHECK(IsCurrent()); TimerEvent* timer = new TimerEvent(this, std::move(task)); EventAssign(&timer->ev, event_base_, -1, 0, &TaskQueueLibevent::RunTimer, timer); pending_timers_.push_back(timer); timeval tv = {.tv_sec = rtc::dchecked_cast(delay.us() / 1'000'000), .tv_usec = rtc::dchecked_cast(delay.us() % 1'000'000)}; event_add(&timer->ev, &tv); } void TaskQueueLibevent::PostDelayedTaskImpl(absl::AnyInvocable task, TimeDelta delay, const PostDelayedTaskTraits& traits, const Location& location) { if (IsCurrent()) { PostDelayedTaskOnTaskQueue(std::move(task), delay); } else { int64_t posted_us = rtc::TimeMicros(); PostTask([posted_us, delay, task = std::move(task), this]() mutable { // Compensate for the time that has passed since the posting. TimeDelta post_time = TimeDelta::Micros(rtc::TimeMicros() - posted_us); PostDelayedTaskOnTaskQueue( std::move(task), std::max(delay - post_time, TimeDelta::Zero())); }); } } // static void TaskQueueLibevent::OnWakeup(int socket, short flags, // NOLINT void* context) { TaskQueueLibevent* me = static_cast(context); RTC_DCHECK(me->wakeup_pipe_out_ == socket); char buf; RTC_CHECK(sizeof(buf) == read(socket, &buf, sizeof(buf))); switch (buf) { case kQuit: me->is_active_ = false; event_base_loopbreak(me->event_base_); break; case kRunTasks: { absl::InlinedVector, 4> tasks; { MutexLock lock(&me->pending_lock_); tasks.swap(me->pending_); } RTC_DCHECK(!tasks.empty()); for (auto& task : tasks) { std::move(task)(); // Prefer to delete the `task` before running the next one. task = nullptr; } break; } default: RTC_DCHECK_NOTREACHED(); break; } } // static void TaskQueueLibevent::RunTimer(int fd, short flags, // NOLINT void* context) { TimerEvent* timer = static_cast(context); std::move(timer->task)(); timer->task_queue->pending_timers_.remove(timer); delete timer; } class TaskQueueLibeventFactory final : public TaskQueueFactory { public: std::unique_ptr CreateTaskQueue( absl::string_view name, Priority priority) const override { return std::unique_ptr( new TaskQueueLibevent(name, TaskQueuePriorityToThreadPriority(priority))); } }; } // namespace std::unique_ptr CreateTaskQueueLibeventFactory() { return std::make_unique(); } } // namespace webrtc