/* * Copyright 2004 The WebRTC Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "rtc_base/virtual_socket_server.h" #include #include #include #include #include #include "absl/algorithm/container.h" #include "api/sequence_checker.h" #include "api/units/time_delta.h" #include "rtc_base/checks.h" #include "rtc_base/event.h" #include "rtc_base/fake_clock.h" #include "rtc_base/logging.h" #include "rtc_base/physical_socket_server.h" #include "rtc_base/socket_address_pair.h" #include "rtc_base/thread.h" #include "rtc_base/time_utils.h" namespace rtc { using ::webrtc::MutexLock; using ::webrtc::TaskQueueBase; using ::webrtc::TimeDelta; #if defined(WEBRTC_WIN) const in_addr kInitialNextIPv4 = {{{0x01, 0, 0, 0}}}; #else // This value is entirely arbitrary, hence the lack of concern about endianness. const in_addr kInitialNextIPv4 = {0x01000000}; #endif // Starts at ::2 so as to not cause confusion with ::1. const in6_addr kInitialNextIPv6 = { {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2}}}; const uint16_t kFirstEphemeralPort = 49152; const uint16_t kLastEphemeralPort = 65535; const uint16_t kEphemeralPortCount = kLastEphemeralPort - kFirstEphemeralPort + 1; const uint32_t kDefaultNetworkCapacity = 64 * 1024; const uint32_t kDefaultTcpBufferSize = 32 * 1024; const uint32_t UDP_HEADER_SIZE = 28; // IP + UDP headers const uint32_t TCP_HEADER_SIZE = 40; // IP + TCP headers const uint32_t TCP_MSS = 1400; // Maximum segment size // Note: The current algorithm doesn't work for sample sizes smaller than this. const int NUM_SAMPLES = 1000; // Packets are passed between sockets as messages. We copy the data just like // the kernel does. class Packet { public: Packet(const char* data, size_t size, const SocketAddress& from) : size_(size), consumed_(0), from_(from) { RTC_DCHECK(nullptr != data); data_ = new char[size_]; memcpy(data_, data, size_); } ~Packet() { delete[] data_; } const char* data() const { return data_ + consumed_; } size_t size() const { return size_ - consumed_; } const SocketAddress& from() const { return from_; } // Remove the first size bytes from the data. void Consume(size_t size) { RTC_DCHECK(size + consumed_ < size_); consumed_ += size; } private: char* data_; size_t size_, consumed_; SocketAddress from_; }; VirtualSocket::VirtualSocket(VirtualSocketServer* server, int family, int type) : server_(server), type_(type), state_(CS_CLOSED), error_(0), network_size_(0), recv_buffer_size_(0), bound_(false), was_any_(false) { RTC_DCHECK((type_ == SOCK_DGRAM) || (type_ == SOCK_STREAM)); server->SignalReadyToSend.connect(this, &VirtualSocket::OnSocketServerReadyToSend); } VirtualSocket::~VirtualSocket() { Close(); } SocketAddress VirtualSocket::GetLocalAddress() const { return local_addr_; } SocketAddress VirtualSocket::GetRemoteAddress() const { return remote_addr_; } void VirtualSocket::SetLocalAddress(const SocketAddress& addr) { local_addr_ = addr; } int VirtualSocket::Bind(const SocketAddress& addr) { if (!local_addr_.IsNil()) { error_ = EINVAL; return -1; } local_addr_ = server_->AssignBindAddress(addr); int result = server_->Bind(this, local_addr_); if (result != 0) { local_addr_.Clear(); error_ = EADDRINUSE; } else { bound_ = true; was_any_ = addr.IsAnyIP(); } return result; } int VirtualSocket::Connect(const SocketAddress& addr) { return InitiateConnect(addr, true); } VirtualSocket::SafetyBlock::SafetyBlock(VirtualSocket* socket) : socket_(*socket) {} VirtualSocket::SafetyBlock::~SafetyBlock() { // Ensure `SetNotAlive` was called and there is nothing left to cleanup. RTC_DCHECK(!alive_); RTC_DCHECK(posted_connects_.empty()); RTC_DCHECK(recv_buffer_.empty()); RTC_DCHECK(!listen_queue_.has_value()); } void VirtualSocket::SafetyBlock::SetNotAlive() { VirtualSocketServer* const server = socket_.server_; const SocketAddress& local_addr = socket_.local_addr_; MutexLock lock(&mutex_); // Cancel pending sockets if (listen_queue_.has_value()) { for (const SocketAddress& remote_addr : *listen_queue_) { server->Disconnect(remote_addr); } listen_queue_ = absl::nullopt; } // Cancel potential connects for (const SocketAddress& remote_addr : posted_connects_) { // Lookup remote side. VirtualSocket* lookup_socket = server->LookupConnection(local_addr, remote_addr); if (lookup_socket) { // Server socket, remote side is a socket retreived by accept. Accepted // sockets are not bound so we will not find it by looking in the // bindings table. server->Disconnect(lookup_socket); server->RemoveConnection(local_addr, remote_addr); } else { server->Disconnect(remote_addr); } } posted_connects_.clear(); recv_buffer_.clear(); alive_ = false; } void VirtualSocket::SafetyBlock::PostSignalReadEvent() { if (pending_read_signal_event_) { // Avoid posting multiple times. return; } pending_read_signal_event_ = true; rtc::scoped_refptr safety(this); socket_.server_->msg_queue_->PostTask( [safety = std::move(safety)] { safety->MaybeSignalReadEvent(); }); } void VirtualSocket::SafetyBlock::MaybeSignalReadEvent() { { MutexLock lock(&mutex_); pending_read_signal_event_ = false; if (!alive_ || recv_buffer_.empty()) { return; } } socket_.SignalReadEvent(&socket_); } int VirtualSocket::Close() { if (!local_addr_.IsNil() && bound_) { // Remove from the binding table. server_->Unbind(local_addr_, this); bound_ = false; } // Disconnect stream sockets if (state_ == CS_CONNECTED && type_ == SOCK_STREAM) { server_->Disconnect(local_addr_, remote_addr_); } safety_->SetNotAlive(); state_ = CS_CLOSED; local_addr_.Clear(); remote_addr_.Clear(); return 0; } int VirtualSocket::Send(const void* pv, size_t cb) { if (CS_CONNECTED != state_) { error_ = ENOTCONN; return -1; } if (SOCK_DGRAM == type_) { return SendUdp(pv, cb, remote_addr_); } else { return SendTcp(pv, cb); } } int VirtualSocket::SendTo(const void* pv, size_t cb, const SocketAddress& addr) { if (SOCK_DGRAM == type_) { return SendUdp(pv, cb, addr); } else { if (CS_CONNECTED != state_) { error_ = ENOTCONN; return -1; } return SendTcp(pv, cb); } } int VirtualSocket::Recv(void* pv, size_t cb, int64_t* timestamp) { SocketAddress addr; return RecvFrom(pv, cb, &addr, timestamp); } int VirtualSocket::RecvFrom(void* pv, size_t cb, SocketAddress* paddr, int64_t* timestamp) { if (timestamp) { *timestamp = -1; } int data_read = safety_->RecvFrom(pv, cb, *paddr); if (data_read < 0) { error_ = EAGAIN; return -1; } if (type_ == SOCK_STREAM) { bool was_full = (recv_buffer_size_ == server_->recv_buffer_capacity()); recv_buffer_size_ -= data_read; if (was_full) { server_->SendTcp(remote_addr_); } } return data_read; } int VirtualSocket::SafetyBlock::RecvFrom(void* buffer, size_t size, SocketAddress& addr) { MutexLock lock(&mutex_); // If we don't have a packet, then either error or wait for one to arrive. if (recv_buffer_.empty()) { return -1; } // Return the packet at the front of the queue. Packet& packet = *recv_buffer_.front(); size_t data_read = std::min(size, packet.size()); memcpy(buffer, packet.data(), data_read); addr = packet.from(); if (data_read < packet.size()) { packet.Consume(data_read); } else { recv_buffer_.pop_front(); } // To behave like a real socket, SignalReadEvent should fire if there's still // data buffered. if (!recv_buffer_.empty()) { PostSignalReadEvent(); } return data_read; } int VirtualSocket::Listen(int backlog) { RTC_DCHECK(SOCK_STREAM == type_); RTC_DCHECK(CS_CLOSED == state_); if (local_addr_.IsNil()) { error_ = EINVAL; return -1; } safety_->Listen(); state_ = CS_CONNECTING; return 0; } void VirtualSocket::SafetyBlock::Listen() { MutexLock lock(&mutex_); RTC_DCHECK(!listen_queue_.has_value()); listen_queue_.emplace(); } VirtualSocket* VirtualSocket::Accept(SocketAddress* paddr) { SafetyBlock::AcceptResult result = safety_->Accept(); if (result.error != 0) { error_ = result.error; return nullptr; } if (paddr) { *paddr = result.remote_addr; } return result.socket.release(); } VirtualSocket::SafetyBlock::AcceptResult VirtualSocket::SafetyBlock::Accept() { AcceptResult result; MutexLock lock(&mutex_); RTC_DCHECK(alive_); if (!listen_queue_.has_value()) { result.error = EINVAL; return result; } while (!listen_queue_->empty()) { auto socket = std::make_unique(socket_.server_, AF_INET, socket_.type_); // Set the new local address to the same as this server socket. socket->SetLocalAddress(socket_.local_addr_); // Sockets made from a socket that 'was Any' need to inherit that. socket->set_was_any(socket_.was_any()); SocketAddress remote_addr = listen_queue_->front(); listen_queue_->pop_front(); if (socket->InitiateConnect(remote_addr, false) != 0) { continue; } socket->CompleteConnect(remote_addr); result.socket = std::move(socket); result.remote_addr = remote_addr; return result; } result.error = EWOULDBLOCK; return result; } int VirtualSocket::GetError() const { return error_; } void VirtualSocket::SetError(int error) { error_ = error; } Socket::ConnState VirtualSocket::GetState() const { return state_; } int VirtualSocket::GetOption(Option opt, int* value) { OptionsMap::const_iterator it = options_map_.find(opt); if (it == options_map_.end()) { return -1; } *value = it->second; return 0; // 0 is success to emulate getsockopt() } int VirtualSocket::SetOption(Option opt, int value) { options_map_[opt] = value; return 0; // 0 is success to emulate setsockopt() } void VirtualSocket::PostPacket(TimeDelta delay, std::unique_ptr packet) { rtc::scoped_refptr safety = safety_; VirtualSocket* socket = this; server_->msg_queue_->PostDelayedTask( [safety = std::move(safety), socket, packet = std::move(packet)]() mutable { if (safety->AddPacket(std::move(packet))) { socket->SignalReadEvent(socket); } }, delay); } bool VirtualSocket::SafetyBlock::AddPacket(std::unique_ptr packet) { MutexLock lock(&mutex_); if (alive_) { recv_buffer_.push_back(std::move(packet)); } return alive_; } void VirtualSocket::PostConnect(TimeDelta delay, const SocketAddress& remote_addr) { safety_->PostConnect(delay, remote_addr); } void VirtualSocket::SafetyBlock::PostConnect(TimeDelta delay, const SocketAddress& remote_addr) { rtc::scoped_refptr safety(this); MutexLock lock(&mutex_); RTC_DCHECK(alive_); // Save addresses of the pending connects to allow propertly disconnect them // if socket closes before delayed task below runs. // `posted_connects_` is an std::list, thus its iterators are valid while the // element is in the list. It can be removed either in the `Connect` just // below or by calling SetNotAlive function, thus inside `Connect` `it` should // be valid when alive_ == true. auto it = posted_connects_.insert(posted_connects_.end(), remote_addr); auto task = [safety = std::move(safety), it] { switch (safety->Connect(it)) { case Signal::kNone: break; case Signal::kReadEvent: safety->socket_.SignalReadEvent(&safety->socket_); break; case Signal::kConnectEvent: safety->socket_.SignalConnectEvent(&safety->socket_); break; } }; socket_.server_->msg_queue_->PostDelayedTask(std::move(task), delay); } VirtualSocket::SafetyBlock::Signal VirtualSocket::SafetyBlock::Connect( VirtualSocket::SafetyBlock::PostedConnects::iterator remote_addr_it) { MutexLock lock(&mutex_); if (!alive_) { return Signal::kNone; } RTC_DCHECK(!posted_connects_.empty()); SocketAddress remote_addr = *remote_addr_it; posted_connects_.erase(remote_addr_it); if (listen_queue_.has_value()) { listen_queue_->push_back(remote_addr); return Signal::kReadEvent; } if (socket_.type_ == SOCK_STREAM && socket_.state_ == CS_CONNECTING) { socket_.CompleteConnect(remote_addr); return Signal::kConnectEvent; } RTC_LOG(LS_VERBOSE) << "Socket at " << socket_.local_addr_.ToString() << " is not listening"; socket_.server_->Disconnect(remote_addr); return Signal::kNone; } bool VirtualSocket::SafetyBlock::IsAlive() { MutexLock lock(&mutex_); return alive_; } void VirtualSocket::PostDisconnect(TimeDelta delay) { // Posted task may outlive this. Use different name for `this` inside the task // to avoid accidental unsafe `this->safety_` instead of safe `safety` VirtualSocket* socket = this; rtc::scoped_refptr safety = safety_; auto task = [safety = std::move(safety), socket] { if (!safety->IsAlive()) { return; } RTC_DCHECK_EQ(socket->type_, SOCK_STREAM); if (socket->state_ == CS_CLOSED) { return; } int error_to_signal = (socket->state_ == CS_CONNECTING) ? ECONNREFUSED : 0; socket->state_ = CS_CLOSED; socket->remote_addr_.Clear(); socket->SignalCloseEvent(socket, error_to_signal); }; server_->msg_queue_->PostDelayedTask(std::move(task), delay); } int VirtualSocket::InitiateConnect(const SocketAddress& addr, bool use_delay) { if (!remote_addr_.IsNil()) { error_ = (CS_CONNECTED == state_) ? EISCONN : EINPROGRESS; return -1; } if (local_addr_.IsNil()) { // If there's no local address set, grab a random one in the correct AF. int result = 0; if (addr.ipaddr().family() == AF_INET) { result = Bind(SocketAddress("0.0.0.0", 0)); } else if (addr.ipaddr().family() == AF_INET6) { result = Bind(SocketAddress("::", 0)); } if (result != 0) { return result; } } if (type_ == SOCK_DGRAM) { remote_addr_ = addr; state_ = CS_CONNECTED; } else { int result = server_->Connect(this, addr, use_delay); if (result != 0) { error_ = EHOSTUNREACH; return -1; } state_ = CS_CONNECTING; } return 0; } void VirtualSocket::CompleteConnect(const SocketAddress& addr) { RTC_DCHECK(CS_CONNECTING == state_); remote_addr_ = addr; state_ = CS_CONNECTED; server_->AddConnection(remote_addr_, local_addr_, this); } int VirtualSocket::SendUdp(const void* pv, size_t cb, const SocketAddress& addr) { // If we have not been assigned a local port, then get one. if (local_addr_.IsNil()) { local_addr_ = server_->AssignBindAddress( EmptySocketAddressWithFamily(addr.ipaddr().family())); int result = server_->Bind(this, local_addr_); if (result != 0) { local_addr_.Clear(); error_ = EADDRINUSE; return result; } } // Send the data in a message to the appropriate socket. return server_->SendUdp(this, static_cast(pv), cb, addr); } int VirtualSocket::SendTcp(const void* pv, size_t cb) { size_t capacity = server_->send_buffer_capacity() - send_buffer_.size(); if (0 == capacity) { ready_to_send_ = false; error_ = EWOULDBLOCK; return -1; } size_t consumed = std::min(cb, capacity); const char* cpv = static_cast(pv); send_buffer_.insert(send_buffer_.end(), cpv, cpv + consumed); server_->SendTcp(this); return static_cast(consumed); } void VirtualSocket::OnSocketServerReadyToSend() { if (ready_to_send_) { // This socket didn't encounter EWOULDBLOCK, so there's nothing to do. return; } if (type_ == SOCK_DGRAM) { ready_to_send_ = true; SignalWriteEvent(this); } else { RTC_DCHECK(type_ == SOCK_STREAM); // This will attempt to empty the full send buffer, and will fire // SignalWriteEvent if successful. server_->SendTcp(this); } } void VirtualSocket::SetToBlocked() { ready_to_send_ = false; error_ = EWOULDBLOCK; } void VirtualSocket::UpdateRecv(size_t data_size) { recv_buffer_size_ += data_size; } void VirtualSocket::UpdateSend(size_t data_size) { size_t new_buffer_size = send_buffer_.size() - data_size; // Avoid undefined access beyond the last element of the vector. // This only happens when new_buffer_size is 0. if (data_size < send_buffer_.size()) { // memmove is required for potentially overlapping source/destination. memmove(&send_buffer_[0], &send_buffer_[data_size], new_buffer_size); } send_buffer_.resize(new_buffer_size); } void VirtualSocket::MaybeSignalWriteEvent(size_t capacity) { if (!ready_to_send_ && (send_buffer_.size() < capacity)) { ready_to_send_ = true; SignalWriteEvent(this); } } uint32_t VirtualSocket::AddPacket(int64_t cur_time, size_t packet_size) { network_size_ += packet_size; uint32_t send_delay = server_->SendDelay(static_cast(network_size_)); NetworkEntry entry; entry.size = packet_size; entry.done_time = cur_time + send_delay; network_.push_back(entry); return send_delay; } int64_t VirtualSocket::UpdateOrderedDelivery(int64_t ts) { // Ensure that new packets arrive after previous ones ts = std::max(ts, last_delivery_time_); // A socket should not have both ordered and unordered delivery, so its last // delivery time only needs to be updated when it has ordered delivery. last_delivery_time_ = ts; return ts; } size_t VirtualSocket::PurgeNetworkPackets(int64_t cur_time) { while (!network_.empty() && (network_.front().done_time <= cur_time)) { RTC_DCHECK(network_size_ >= network_.front().size); network_size_ -= network_.front().size; network_.pop_front(); } return network_size_; } VirtualSocketServer::VirtualSocketServer() : VirtualSocketServer(nullptr) {} VirtualSocketServer::VirtualSocketServer(ThreadProcessingFakeClock* fake_clock) : fake_clock_(fake_clock), msg_queue_(nullptr), stop_on_idle_(false), next_ipv4_(kInitialNextIPv4), next_ipv6_(kInitialNextIPv6), next_port_(kFirstEphemeralPort), bindings_(new AddressMap()), connections_(new ConnectionMap()), bandwidth_(0), network_capacity_(kDefaultNetworkCapacity), send_buffer_capacity_(kDefaultTcpBufferSize), recv_buffer_capacity_(kDefaultTcpBufferSize), delay_mean_(0), delay_stddev_(0), delay_samples_(NUM_SAMPLES), drop_prob_(0.0) { UpdateDelayDistribution(); } VirtualSocketServer::~VirtualSocketServer() { delete bindings_; delete connections_; } IPAddress VirtualSocketServer::GetNextIP(int family) { if (family == AF_INET) { IPAddress next_ip(next_ipv4_); next_ipv4_.s_addr = HostToNetwork32(NetworkToHost32(next_ipv4_.s_addr) + 1); return next_ip; } else if (family == AF_INET6) { IPAddress next_ip(next_ipv6_); uint32_t* as_ints = reinterpret_cast(&next_ipv6_.s6_addr); as_ints[3] += 1; return next_ip; } return IPAddress(); } uint16_t VirtualSocketServer::GetNextPort() { uint16_t port = next_port_; if (next_port_ < kLastEphemeralPort) { ++next_port_; } else { next_port_ = kFirstEphemeralPort; } return port; } void VirtualSocketServer::SetSendingBlocked(bool blocked) { { webrtc::MutexLock lock(&mutex_); if (blocked == sending_blocked_) { // Unchanged; nothing to do. return; } sending_blocked_ = blocked; } if (!blocked) { // Sending was blocked, but is now unblocked. This signal gives sockets a // chance to fire SignalWriteEvent, and for TCP, send buffered data. SignalReadyToSend(); } } VirtualSocket* VirtualSocketServer::CreateSocket(int family, int type) { return new VirtualSocket(this, family, type); } void VirtualSocketServer::SetMessageQueue(Thread* msg_queue) { msg_queue_ = msg_queue; } bool VirtualSocketServer::Wait(webrtc::TimeDelta max_wait_duration, bool process_io) { RTC_DCHECK_RUN_ON(msg_queue_); if (stop_on_idle_ && Thread::Current()->empty()) { return false; } // Note: we don't need to do anything with `process_io` since we don't have // any real I/O. Received packets come in the form of queued messages, so // Thread will ensure WakeUp is called if another thread sends a // packet. wakeup_.Wait(max_wait_duration); return true; } void VirtualSocketServer::WakeUp() { wakeup_.Set(); } void VirtualSocketServer::SetAlternativeLocalAddress( const rtc::IPAddress& address, const rtc::IPAddress& alternative) { alternative_address_mapping_[address] = alternative; } bool VirtualSocketServer::ProcessMessagesUntilIdle() { RTC_DCHECK_RUN_ON(msg_queue_); stop_on_idle_ = true; while (!msg_queue_->empty()) { if (fake_clock_) { // If using a fake clock, advance it in millisecond increments until the // queue is empty. fake_clock_->AdvanceTime(webrtc::TimeDelta::Millis(1)); } else { // Otherwise, run a normal message loop. msg_queue_->ProcessMessages(Thread::kForever); } } stop_on_idle_ = false; return !msg_queue_->IsQuitting(); } void VirtualSocketServer::SetNextPortForTesting(uint16_t port) { next_port_ = port; } bool VirtualSocketServer::CloseTcpConnections( const SocketAddress& addr_local, const SocketAddress& addr_remote) { VirtualSocket* socket = LookupConnection(addr_local, addr_remote); if (!socket) { return false; } // Signal the close event on the local connection first. socket->SignalCloseEvent(socket, 0); // Trigger the remote connection's close event. socket->Close(); return true; } int VirtualSocketServer::Bind(VirtualSocket* socket, const SocketAddress& addr) { RTC_DCHECK(nullptr != socket); // Address must be completely specified at this point RTC_DCHECK(!IPIsUnspec(addr.ipaddr())); RTC_DCHECK(addr.port() != 0); // Normalize the address (turns v6-mapped addresses into v4-addresses). SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); AddressMap::value_type entry(normalized, socket); return bindings_->insert(entry).second ? 0 : -1; } SocketAddress VirtualSocketServer::AssignBindAddress( const SocketAddress& app_addr) { RTC_DCHECK(!IPIsUnspec(app_addr.ipaddr())); // Normalize the IP. SocketAddress addr; addr.SetIP(app_addr.ipaddr().Normalized()); // If the IP appears in `alternative_address_mapping_`, meaning the test has // configured sockets bound to this IP to actually use another IP, replace // the IP here. auto alternative = alternative_address_mapping_.find(addr.ipaddr()); if (alternative != alternative_address_mapping_.end()) { addr.SetIP(alternative->second); } if (app_addr.port() != 0) { addr.SetPort(app_addr.port()); } else { // Assign a port. for (int i = 0; i < kEphemeralPortCount; ++i) { addr.SetPort(GetNextPort()); if (bindings_->find(addr) == bindings_->end()) { break; } } } return addr; } VirtualSocket* VirtualSocketServer::LookupBinding(const SocketAddress& addr) { SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); AddressMap::iterator it = bindings_->find(normalized); if (it != bindings_->end()) { return it->second; } IPAddress default_ip = GetDefaultSourceAddress(addr.ipaddr().family()); if (!IPIsUnspec(default_ip) && addr.ipaddr() == default_ip) { // If we can't find a binding for the packet which is sent to the interface // corresponding to the default route, it should match a binding with the // correct port to the any address. SocketAddress sock_addr = EmptySocketAddressWithFamily(addr.ipaddr().family()); sock_addr.SetPort(addr.port()); return LookupBinding(sock_addr); } return nullptr; } int VirtualSocketServer::Unbind(const SocketAddress& addr, VirtualSocket* socket) { SocketAddress normalized(addr.ipaddr().Normalized(), addr.port()); RTC_DCHECK((*bindings_)[normalized] == socket); bindings_->erase(bindings_->find(normalized)); return 0; } void VirtualSocketServer::AddConnection(const SocketAddress& local, const SocketAddress& remote, VirtualSocket* remote_socket) { // Add this socket pair to our routing table. This will allow // multiple clients to connect to the same server address. SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); SocketAddressPair address_pair(local_normalized, remote_normalized); connections_->insert(std::pair( address_pair, remote_socket)); } VirtualSocket* VirtualSocketServer::LookupConnection( const SocketAddress& local, const SocketAddress& remote) { SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); SocketAddressPair address_pair(local_normalized, remote_normalized); ConnectionMap::iterator it = connections_->find(address_pair); return (connections_->end() != it) ? it->second : nullptr; } void VirtualSocketServer::RemoveConnection(const SocketAddress& local, const SocketAddress& remote) { SocketAddress local_normalized(local.ipaddr().Normalized(), local.port()); SocketAddress remote_normalized(remote.ipaddr().Normalized(), remote.port()); SocketAddressPair address_pair(local_normalized, remote_normalized); connections_->erase(address_pair); } static double Random() { return static_cast(rand()) / RAND_MAX; } int VirtualSocketServer::Connect(VirtualSocket* socket, const SocketAddress& remote_addr, bool use_delay) { RTC_DCHECK(msg_queue_); TimeDelta delay = TimeDelta::Millis(use_delay ? GetTransitDelay(socket) : 0); VirtualSocket* remote = LookupBinding(remote_addr); if (!CanInteractWith(socket, remote)) { RTC_LOG(LS_INFO) << "Address family mismatch between " << socket->GetLocalAddress().ToString() << " and " << remote_addr.ToString(); return -1; } if (remote != nullptr) { remote->PostConnect(delay, socket->GetLocalAddress()); } else { RTC_LOG(LS_INFO) << "No one listening at " << remote_addr.ToString(); socket->PostDisconnect(delay); } return 0; } bool VirtualSocketServer::Disconnect(VirtualSocket* socket) { if (!socket || !msg_queue_) return false; // If we simulate packets being delayed, we should simulate the // equivalent of a FIN being delayed as well. socket->PostDisconnect(TimeDelta::Millis(GetTransitDelay(socket))); return true; } bool VirtualSocketServer::Disconnect(const SocketAddress& addr) { return Disconnect(LookupBinding(addr)); } bool VirtualSocketServer::Disconnect(const SocketAddress& local_addr, const SocketAddress& remote_addr) { // Disconnect remote socket, check if it is a child of a server socket. VirtualSocket* socket = LookupConnection(local_addr, remote_addr); if (!socket) { // Not a server socket child, then see if it is bound. // TODO(tbd): If this is indeed a server socket that has no // children this will cause the server socket to be // closed. This might lead to unexpected results, how to fix this? socket = LookupBinding(remote_addr); } Disconnect(socket); // Remove mapping for both directions. RemoveConnection(remote_addr, local_addr); RemoveConnection(local_addr, remote_addr); return socket != nullptr; } int VirtualSocketServer::SendUdp(VirtualSocket* socket, const char* data, size_t data_size, const SocketAddress& remote_addr) { { webrtc::MutexLock lock(&mutex_); ++sent_packets_; if (sending_blocked_) { socket->SetToBlocked(); return -1; } // See if we want to drop this packet. if (data_size > max_udp_payload_) { RTC_LOG(LS_VERBOSE) << "Dropping too large UDP payload of size " << data_size << ", UDP payload limit is " << max_udp_payload_; // Return as if send was successful; packet disappears. return data_size; } if (Random() < drop_prob_) { RTC_LOG(LS_VERBOSE) << "Dropping packet: bad luck"; return static_cast(data_size); } } VirtualSocket* recipient = LookupBinding(remote_addr); if (!recipient) { // Make a fake recipient for address family checking. std::unique_ptr dummy_socket( CreateSocket(AF_INET, SOCK_DGRAM)); dummy_socket->SetLocalAddress(remote_addr); if (!CanInteractWith(socket, dummy_socket.get())) { RTC_LOG(LS_VERBOSE) << "Incompatible address families: " << socket->GetLocalAddress().ToString() << " and " << remote_addr.ToString(); return -1; } RTC_LOG(LS_VERBOSE) << "No one listening at " << remote_addr.ToString(); return static_cast(data_size); } if (!CanInteractWith(socket, recipient)) { RTC_LOG(LS_VERBOSE) << "Incompatible address families: " << socket->GetLocalAddress().ToString() << " and " << remote_addr.ToString(); return -1; } { int64_t cur_time = TimeMillis(); size_t network_size = socket->PurgeNetworkPackets(cur_time); // Determine whether we have enough bandwidth to accept this packet. To do // this, we need to update the send queue. Once we know it's current size, // we know whether we can fit this packet. // // NOTE: There are better algorithms for maintaining such a queue (such as // "Derivative Random Drop"); however, this algorithm is a more accurate // simulation of what a normal network would do. { webrtc::MutexLock lock(&mutex_); size_t packet_size = data_size + UDP_HEADER_SIZE; if (network_size + packet_size > network_capacity_) { RTC_LOG(LS_VERBOSE) << "Dropping packet: network capacity exceeded"; return static_cast(data_size); } } AddPacketToNetwork(socket, recipient, cur_time, data, data_size, UDP_HEADER_SIZE, false); return static_cast(data_size); } } void VirtualSocketServer::SendTcp(VirtualSocket* socket) { { webrtc::MutexLock lock(&mutex_); ++sent_packets_; if (sending_blocked_) { // Eventually the socket's buffer will fill and VirtualSocket::SendTcp // will set EWOULDBLOCK. return; } } // TCP can't send more data than will fill up the receiver's buffer. // We track the data that is in the buffer plus data in flight using the // recipient's recv_buffer_size_. Anything beyond that must be stored in the // sender's buffer. We will trigger the buffered data to be sent when data // is read from the recv_buffer. // Lookup the local/remote pair in the connections table. VirtualSocket* recipient = LookupConnection(socket->GetLocalAddress(), socket->GetRemoteAddress()); if (!recipient) { RTC_LOG(LS_VERBOSE) << "Sending data to no one."; return; } int64_t cur_time = TimeMillis(); socket->PurgeNetworkPackets(cur_time); while (true) { size_t available = recv_buffer_capacity() - recipient->recv_buffer_size(); size_t max_data_size = std::min(available, TCP_MSS - TCP_HEADER_SIZE); size_t data_size = std::min(socket->send_buffer_size(), max_data_size); if (0 == data_size) break; AddPacketToNetwork(socket, recipient, cur_time, socket->send_buffer_data(), data_size, TCP_HEADER_SIZE, true); recipient->UpdateRecv(data_size); socket->UpdateSend(data_size); } socket->MaybeSignalWriteEvent(send_buffer_capacity()); } void VirtualSocketServer::SendTcp(const SocketAddress& addr) { VirtualSocket* sender = LookupBinding(addr); RTC_DCHECK(nullptr != sender); SendTcp(sender); } void VirtualSocketServer::AddPacketToNetwork(VirtualSocket* sender, VirtualSocket* recipient, int64_t cur_time, const char* data, size_t data_size, size_t header_size, bool ordered) { RTC_DCHECK(msg_queue_); uint32_t send_delay = sender->AddPacket(cur_time, data_size + header_size); // Find the delay for crossing the many virtual hops of the network. uint32_t transit_delay = GetTransitDelay(sender); // When the incoming packet is from a binding of the any address, translate it // to the default route here such that the recipient will see the default // route. SocketAddress sender_addr = sender->GetLocalAddress(); IPAddress default_ip = GetDefaultSourceAddress(sender_addr.ipaddr().family()); if (sender_addr.IsAnyIP() && !IPIsUnspec(default_ip)) { sender_addr.SetIP(default_ip); } int64_t ts = cur_time + send_delay + transit_delay; if (ordered) { ts = sender->UpdateOrderedDelivery(ts); } recipient->PostPacket(TimeDelta::Millis(ts - cur_time), std::make_unique(data, data_size, sender_addr)); } uint32_t VirtualSocketServer::SendDelay(uint32_t size) { webrtc::MutexLock lock(&mutex_); if (bandwidth_ == 0) return 0; else return 1000 * size / bandwidth_; } #if 0 void PrintFunction(std::vector >* f) { return; double sum = 0; for (uint32_t i = 0; i < f->size(); ++i) { std::cout << (*f)[i].first << '\t' << (*f)[i].second << std::endl; sum += (*f)[i].second; } if (!f->empty()) { const double mean = sum / f->size(); double sum_sq_dev = 0; for (uint32_t i = 0; i < f->size(); ++i) { double dev = (*f)[i].second - mean; sum_sq_dev += dev * dev; } std::cout << "Mean = " << mean << " StdDev = " << sqrt(sum_sq_dev / f->size()) << std::endl; } } #endif // void VirtualSocketServer::UpdateDelayDistribution() { webrtc::MutexLock lock(&mutex_); delay_dist_ = CreateDistribution(delay_mean_, delay_stddev_, delay_samples_); } static double PI = 4 * atan(1.0); static double Normal(double x, double mean, double stddev) { double a = (x - mean) * (x - mean) / (2 * stddev * stddev); return exp(-a) / (stddev * sqrt(2 * PI)); } #if 0 // static unused gives a warning static double Pareto(double x, double min, double k) { if (x < min) return 0; else return k * std::pow(min, k) / std::pow(x, k+1); } #endif std::unique_ptr VirtualSocketServer::CreateDistribution(uint32_t mean, uint32_t stddev, uint32_t samples) { auto f = std::make_unique(); if (0 == stddev) { f->push_back(Point(mean, 1.0)); } else { double start = 0; if (mean >= 4 * static_cast(stddev)) start = mean - 4 * static_cast(stddev); double end = mean + 4 * static_cast(stddev); for (uint32_t i = 0; i < samples; i++) { double x = start + (end - start) * i / (samples - 1); double y = Normal(x, mean, stddev); f->push_back(Point(x, y)); } } return Resample(Invert(Accumulate(std::move(f))), 0, 1, samples); } uint32_t VirtualSocketServer::GetTransitDelay(Socket* socket) { // Use the delay based on the address if it is set. auto iter = delay_by_ip_.find(socket->GetLocalAddress().ipaddr()); if (iter != delay_by_ip_.end()) { return static_cast(iter->second); } // Otherwise, use the delay from the distribution distribution. size_t index = rand() % delay_dist_->size(); double delay = (*delay_dist_)[index].second; // RTC_LOG_F(LS_INFO) << "random[" << index << "] = " << delay; return static_cast(delay); } struct FunctionDomainCmp { bool operator()(const VirtualSocketServer::Point& p1, const VirtualSocketServer::Point& p2) { return p1.first < p2.first; } bool operator()(double v1, const VirtualSocketServer::Point& p2) { return v1 < p2.first; } bool operator()(const VirtualSocketServer::Point& p1, double v2) { return p1.first < v2; } }; std::unique_ptr VirtualSocketServer::Accumulate( std::unique_ptr f) { RTC_DCHECK(f->size() >= 1); double v = 0; for (Function::size_type i = 0; i < f->size() - 1; ++i) { double dx = (*f)[i + 1].first - (*f)[i].first; double avgy = ((*f)[i + 1].second + (*f)[i].second) / 2; (*f)[i].second = v; v = v + dx * avgy; } (*f)[f->size() - 1].second = v; return f; } std::unique_ptr VirtualSocketServer::Invert( std::unique_ptr f) { for (Function::size_type i = 0; i < f->size(); ++i) std::swap((*f)[i].first, (*f)[i].second); absl::c_sort(*f, FunctionDomainCmp()); return f; } std::unique_ptr VirtualSocketServer::Resample( std::unique_ptr f, double x1, double x2, uint32_t samples) { auto g = std::make_unique(); for (size_t i = 0; i < samples; i++) { double x = x1 + (x2 - x1) * i / (samples - 1); double y = Evaluate(f.get(), x); g->push_back(Point(x, y)); } return g; } double VirtualSocketServer::Evaluate(const Function* f, double x) { Function::const_iterator iter = absl::c_lower_bound(*f, x, FunctionDomainCmp()); if (iter == f->begin()) { return (*f)[0].second; } else if (iter == f->end()) { RTC_DCHECK(f->size() >= 1); return (*f)[f->size() - 1].second; } else if (iter->first == x) { return iter->second; } else { double x1 = (iter - 1)->first; double y1 = (iter - 1)->second; double x2 = iter->first; double y2 = iter->second; return y1 + (y2 - y1) * (x - x1) / (x2 - x1); } } bool VirtualSocketServer::CanInteractWith(VirtualSocket* local, VirtualSocket* remote) { if (!local || !remote) { return false; } IPAddress local_ip = local->GetLocalAddress().ipaddr(); IPAddress remote_ip = remote->GetLocalAddress().ipaddr(); IPAddress local_normalized = local_ip.Normalized(); IPAddress remote_normalized = remote_ip.Normalized(); // Check if the addresses are the same family after Normalization (turns // mapped IPv6 address into IPv4 addresses). // This will stop unmapped V6 addresses from talking to mapped V6 addresses. if (local_normalized.family() == remote_normalized.family()) { return true; } // If ip1 is IPv4 and ip2 is :: and ip2 is not IPV6_V6ONLY. int remote_v6_only = 0; remote->GetOption(Socket::OPT_IPV6_V6ONLY, &remote_v6_only); if (local_ip.family() == AF_INET && !remote_v6_only && IPIsAny(remote_ip)) { return true; } // Same check, backwards. int local_v6_only = 0; local->GetOption(Socket::OPT_IPV6_V6ONLY, &local_v6_only); if (remote_ip.family() == AF_INET && !local_v6_only && IPIsAny(local_ip)) { return true; } // Check to see if either socket was explicitly bound to IPv6-any. // These sockets can talk with anyone. if (local_ip.family() == AF_INET6 && local->was_any()) { return true; } if (remote_ip.family() == AF_INET6 && remote->was_any()) { return true; } return false; } IPAddress VirtualSocketServer::GetDefaultSourceAddress(int family) { if (family == AF_INET) { return default_source_address_v4_; } if (family == AF_INET6) { return default_source_address_v6_; } return IPAddress(); } void VirtualSocketServer::SetDefaultSourceAddress(const IPAddress& from_addr) { RTC_DCHECK(!IPIsAny(from_addr)); if (from_addr.family() == AF_INET) { default_source_address_v4_ = from_addr; } else if (from_addr.family() == AF_INET6) { default_source_address_v6_ = from_addr; } } void VirtualSocketServer::set_bandwidth(uint32_t bandwidth) { webrtc::MutexLock lock(&mutex_); bandwidth_ = bandwidth; } void VirtualSocketServer::set_network_capacity(uint32_t capacity) { webrtc::MutexLock lock(&mutex_); network_capacity_ = capacity; } uint32_t VirtualSocketServer::send_buffer_capacity() const { webrtc::MutexLock lock(&mutex_); return send_buffer_capacity_; } void VirtualSocketServer::set_send_buffer_capacity(uint32_t capacity) { webrtc::MutexLock lock(&mutex_); send_buffer_capacity_ = capacity; } uint32_t VirtualSocketServer::recv_buffer_capacity() const { webrtc::MutexLock lock(&mutex_); return recv_buffer_capacity_; } void VirtualSocketServer::set_recv_buffer_capacity(uint32_t capacity) { webrtc::MutexLock lock(&mutex_); recv_buffer_capacity_ = capacity; } void VirtualSocketServer::set_delay_mean(uint32_t delay_mean) { webrtc::MutexLock lock(&mutex_); delay_mean_ = delay_mean; } void VirtualSocketServer::set_delay_stddev(uint32_t delay_stddev) { webrtc::MutexLock lock(&mutex_); delay_stddev_ = delay_stddev; } void VirtualSocketServer::set_delay_samples(uint32_t delay_samples) { webrtc::MutexLock lock(&mutex_); delay_samples_ = delay_samples; } void VirtualSocketServer::set_drop_probability(double drop_prob) { RTC_DCHECK_GE(drop_prob, 0.0); RTC_DCHECK_LE(drop_prob, 1.0); webrtc::MutexLock lock(&mutex_); drop_prob_ = drop_prob; } void VirtualSocketServer::set_max_udp_payload(size_t payload_size) { webrtc::MutexLock lock(&mutex_); max_udp_payload_ = payload_size; } uint32_t VirtualSocketServer::sent_packets() const { webrtc::MutexLock lock(&mutex_); return sent_packets_; } } // namespace rtc