/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "system_wrappers/include/rtp_to_ntp_estimator.h" #include #include #include #include "api/array_view.h" #include "rtc_base/checks.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" namespace webrtc { namespace { // Maximum number of RTCP SR reports to use to map between RTP and NTP. constexpr size_t kNumRtcpReportsToUse = 20; // Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big // enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around // half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of // wrap-around period it is impossible to unwrap RTP timestamps correctly. constexpr uint64_t kMaxAllowedRtcpNtpInterval = uint64_t{60 * 60} << 32; } // namespace void RtpToNtpEstimator::UpdateParameters() { size_t n = measurements_.size(); if (n < 2) return; // Run linear regression: // Given x[] and y[] writes out such k and b that line y=k*x+b approximates // given points in the best way (Least Squares Method). auto x = [](const RtcpMeasurement& m) { return static_cast(m.unwrapped_rtp_timestamp); }; auto y = [](const RtcpMeasurement& m) { return static_cast(static_cast(m.ntp_time)); }; double avg_x = 0; double avg_y = 0; for (const RtcpMeasurement& m : measurements_) { avg_x += x(m); avg_y += y(m); } avg_x /= n; avg_y /= n; double variance_x = 0; double covariance_xy = 0; for (const RtcpMeasurement& m : measurements_) { double normalized_x = x(m) - avg_x; double normalized_y = y(m) - avg_y; variance_x += normalized_x * normalized_x; covariance_xy += normalized_x * normalized_y; } if (std::fabs(variance_x) < 1e-8) return; double k = covariance_xy / variance_x; double b = avg_y - k * avg_x; params_ = {{.slope = k, .offset = b}}; } RtpToNtpEstimator::UpdateResult RtpToNtpEstimator::UpdateMeasurements( NtpTime ntp, uint32_t rtp_timestamp) { int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); RtcpMeasurement new_measurement = { .ntp_time = ntp, .unwrapped_rtp_timestamp = unwrapped_rtp_timestamp}; for (const RtcpMeasurement& measurement : measurements_) { // Use || since two equal timestamps will result in zero frequency. if (measurement.ntp_time == ntp || measurement.unwrapped_rtp_timestamp == unwrapped_rtp_timestamp) { return kSameMeasurement; } } if (!new_measurement.ntp_time.Valid()) return kInvalidMeasurement; uint64_t ntp_new = static_cast(new_measurement.ntp_time); bool invalid_sample = false; if (!measurements_.empty()) { int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; uint64_t old_ntp = static_cast(measurements_.front().ntp_time); if (ntp_new <= old_ntp || ntp_new > old_ntp + kMaxAllowedRtcpNtpInterval) { invalid_sample = true; } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { RTC_LOG(LS_WARNING) << "Newer RTCP SR report with older RTP timestamp, dropping"; invalid_sample = true; } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { // Sanity check. No jumps too far into the future in rtp. invalid_sample = true; } } if (invalid_sample) { ++consecutive_invalid_samples_; if (consecutive_invalid_samples_ < kMaxInvalidSamples) { return kInvalidMeasurement; } RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " "clearing measurements."; measurements_.clear(); params_ = absl::nullopt; } consecutive_invalid_samples_ = 0; // Insert new RTCP SR report. if (measurements_.size() == kNumRtcpReportsToUse) measurements_.pop_back(); measurements_.push_front(new_measurement); // List updated, calculate new parameters. UpdateParameters(); return kNewMeasurement; } NtpTime RtpToNtpEstimator::Estimate(uint32_t rtp_timestamp) const { if (!params_) return NtpTime(); double estimated = static_cast(unwrapper_.Unwrap(rtp_timestamp)) * params_->slope + params_->offset + 0.5f; return NtpTime(rtc::saturated_cast(estimated)); } double RtpToNtpEstimator::EstimatedFrequencyKhz() const { if (!params_.has_value()) { return 0.0; } static constexpr double kNtpUnitPerMs = 4.294967296E6; // 2^32 / 1000. return kNtpUnitPerMs / params_->slope; } } // namespace webrtc