/* * Copyright 2018 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_send_stream_impl.h" #include #include #include #include #include #include #include #include #include "absl/algorithm/container.h" #include "absl/types/optional.h" #include "api/adaptation/resource.h" #include "api/call/bitrate_allocation.h" #include "api/crypto/crypto_options.h" #include "api/fec_controller.h" #include "api/field_trials_view.h" #include "api/metronome/metronome.h" #include "api/rtp_parameters.h" #include "api/rtp_sender_interface.h" #include "api/scoped_refptr.h" #include "api/sequence_checker.h" #include "api/task_queue/pending_task_safety_flag.h" #include "api/task_queue/task_queue_base.h" #include "api/task_queue/task_queue_factory.h" #include "api/units/data_rate.h" #include "api/units/time_delta.h" #include "api/video/encoded_image.h" #include "api/video/video_bitrate_allocation.h" #include "api/video/video_codec_constants.h" #include "api/video/video_codec_type.h" #include "api/video/video_frame.h" #include "api/video/video_frame_type.h" #include "api/video/video_layers_allocation.h" #include "api/video/video_source_interface.h" #include "api/video/video_stream_encoder_settings.h" #include "api/video_codecs/video_codec.h" #include "api/video_codecs/video_encoder.h" #include "api/video_codecs/video_encoder_factory.h" #include "call/bitrate_allocator.h" #include "call/rtp_config.h" #include "call/rtp_transport_controller_send_interface.h" #include "call/video_send_stream.h" #include "modules/pacing/pacing_controller.h" #include "modules/rtp_rtcp/include/rtp_header_extension_map.h" #include "modules/rtp_rtcp/include/rtp_rtcp_defines.h" #include "modules/rtp_rtcp/source/rtp_header_extension_size.h" #include "modules/rtp_rtcp/source/rtp_sender.h" #include "modules/video_coding/include/video_codec_interface.h" #include "rtc_base/checks.h" #include "rtc_base/experiments/alr_experiment.h" #include "rtc_base/experiments/field_trial_parser.h" #include "rtc_base/experiments/min_video_bitrate_experiment.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/numerics/safe_conversions.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/task_utils/repeating_task.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/clock.h" #include "video/adaptation/overuse_frame_detector.h" #include "video/config/video_encoder_config.h" #include "video/encoder_rtcp_feedback.h" #include "video/frame_cadence_adapter.h" #include "video/send_delay_stats.h" #include "video/send_statistics_proxy.h" #include "video/video_stream_encoder.h" #include "video/video_stream_encoder_interface.h" namespace webrtc { namespace internal { namespace { // Max positive size difference to treat allocations as "similar". static constexpr int kMaxVbaSizeDifferencePercent = 10; // Max time we will throttle similar video bitrate allocations. static constexpr int64_t kMaxVbaThrottleTimeMs = 500; constexpr TimeDelta kEncoderTimeOut = TimeDelta::Seconds(2); constexpr double kVideoHysteresis = 1.2; constexpr double kScreenshareHysteresis = 1.35; constexpr int kMinDefaultAv1BitrateBps = 15000; // This value acts as an absolute minimum AV1 bitrate limit. // When send-side BWE is used a stricter 1.1x pacing factor is used, rather than // the 2.5x which is used with receive-side BWE. Provides a more careful // bandwidth rampup with less risk of overshoots causing adverse effects like // packet loss. Not used for receive side BWE, since there we lack the probing // feature and so may result in too slow initial rampup. static constexpr double kStrictPacingMultiplier = 1.1; bool TransportSeqNumExtensionConfigured(const VideoSendStream::Config& config) { const std::vector& extensions = config.rtp.extensions; return absl::c_any_of(extensions, [](const RtpExtension& ext) { return ext.uri == RtpExtension::kTransportSequenceNumberUri; }); } // Calculate max padding bitrate for a multi layer codec. int CalculateMaxPadBitrateBps(const std::vector& streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps, bool pad_to_min_bitrate, bool alr_probing) { int pad_up_to_bitrate_bps = 0; RTC_DCHECK(!is_svc || streams.size() <= 1) << "Only one stream is allowed in " "SVC mode."; // Filter out only the active streams; std::vector active_streams; for (const VideoStream& stream : streams) { if (stream.active) active_streams.emplace_back(stream); } if (active_streams.size() > 1 || (!active_streams.empty() && is_svc)) { // Simulcast or SVC is used. // if SVC is used, stream bitrates should already encode svc bitrates: // min_bitrate = min bitrate of a lowest svc layer. // target_bitrate = sum of target bitrates of lower layers + min bitrate // of the last one (as used in the calculations below). // max_bitrate = sum of all active layers' max_bitrate. if (alr_probing) { // With alr probing, just pad to the min bitrate of the lowest stream, // probing will handle the rest of the rampup. pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } else { // Without alr probing, pad up to start bitrate of the // highest active stream. const double hysteresis_factor = content_type == VideoEncoderConfig::ContentType::kScreen ? kScreenshareHysteresis : kVideoHysteresis; if (is_svc) { // For SVC, since there is only one "stream", the padding bitrate // needed to enable the top spatial layer is stored in the // `target_bitrate_bps` field. // TODO(sprang): This behavior needs to die. pad_up_to_bitrate_bps = static_cast( hysteresis_factor * active_streams[0].target_bitrate_bps + 0.5); } else { const size_t top_active_stream_idx = active_streams.size() - 1; pad_up_to_bitrate_bps = std::min( static_cast( hysteresis_factor * active_streams[top_active_stream_idx].min_bitrate_bps + 0.5), active_streams[top_active_stream_idx].target_bitrate_bps); // Add target_bitrate_bps of the lower active streams. for (size_t i = 0; i < top_active_stream_idx; ++i) { pad_up_to_bitrate_bps += active_streams[i].target_bitrate_bps; } } } } else if (!active_streams.empty() && pad_to_min_bitrate) { pad_up_to_bitrate_bps = active_streams[0].min_bitrate_bps; } pad_up_to_bitrate_bps = std::max(pad_up_to_bitrate_bps, min_transmit_bitrate_bps); return pad_up_to_bitrate_bps; } absl::optional GetAlrSettings( const FieldTrialsView& field_trials, VideoEncoderConfig::ContentType content_type) { if (content_type == VideoEncoderConfig::ContentType::kScreen) { return AlrExperimentSettings::CreateFromFieldTrial( field_trials, AlrExperimentSettings::kScreenshareProbingBweExperimentName); } return AlrExperimentSettings::CreateFromFieldTrial( field_trials, AlrExperimentSettings::kStrictPacingAndProbingExperimentName); } bool SameStreamsEnabled(const VideoBitrateAllocation& lhs, const VideoBitrateAllocation& rhs) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) { if (lhs.HasBitrate(si, ti) != rhs.HasBitrate(si, ti)) { return false; } } } return true; } // Returns an optional that has value iff TransportSeqNumExtensionConfigured // is `true` for the given video send stream config. absl::optional GetConfiguredPacingFactor( const VideoSendStream::Config& config, VideoEncoderConfig::ContentType content_type, const PacingConfig& default_pacing_config, const FieldTrialsView& field_trials) { if (!TransportSeqNumExtensionConfigured(config)) return absl::nullopt; absl::optional alr_settings = GetAlrSettings(field_trials, content_type); if (alr_settings) return alr_settings->pacing_factor; RateControlSettings rate_control_settings = RateControlSettings::ParseFromKeyValueConfig(&field_trials); return rate_control_settings.GetPacingFactor().value_or( default_pacing_config.pacing_factor); } int GetEncoderPriorityBitrate(std::string codec_name, const FieldTrialsView& field_trials) { int priority_bitrate = 0; if (PayloadStringToCodecType(codec_name) == VideoCodecType::kVideoCodecAV1) { webrtc::FieldTrialParameter av1_priority_bitrate("bitrate", 0); webrtc::ParseFieldTrial( {&av1_priority_bitrate}, field_trials.Lookup("WebRTC-AV1-OverridePriorityBitrate")); priority_bitrate = av1_priority_bitrate; } return priority_bitrate; } uint32_t GetInitialEncoderMaxBitrate(int initial_encoder_max_bitrate) { if (initial_encoder_max_bitrate > 0) return rtc::dchecked_cast(initial_encoder_max_bitrate); // TODO(srte): Make sure max bitrate is not set to negative values. We don't // have any way to handle unset values in downstream code, such as the // bitrate allocator. Previously -1 was implicitly casted to UINT32_MAX, a // behaviour that is not safe. Converting to 10 Mbps should be safe for // reasonable use cases as it allows adding the max of multiple streams // without wrappping around. const int kFallbackMaxBitrateBps = 10000000; RTC_DLOG(LS_ERROR) << "ERROR: Initial encoder max bitrate = " << initial_encoder_max_bitrate << " which is <= 0!"; RTC_DLOG(LS_INFO) << "Using default encoder max bitrate = 10 Mbps"; return kFallbackMaxBitrateBps; } int GetDefaultMinVideoBitrateBps(VideoCodecType codec_type) { if (codec_type == VideoCodecType::kVideoCodecAV1) { return kMinDefaultAv1BitrateBps; } return kDefaultMinVideoBitrateBps; } size_t CalculateMaxHeaderSize(const RtpConfig& config) { size_t header_size = kRtpHeaderSize; size_t extensions_size = 0; size_t fec_extensions_size = 0; if (!config.extensions.empty()) { RtpHeaderExtensionMap extensions_map(config.extensions); extensions_size = RtpHeaderExtensionSize(RTPSender::VideoExtensionSizes(), extensions_map); fec_extensions_size = RtpHeaderExtensionSize(RTPSender::FecExtensionSizes(), extensions_map); } header_size += extensions_size; if (config.flexfec.payload_type >= 0) { // All FEC extensions again plus maximum FlexFec overhead. header_size += fec_extensions_size + 32; } else { if (config.ulpfec.ulpfec_payload_type >= 0) { // Header with all the FEC extensions will be repeated plus maximum // UlpFec overhead. header_size += fec_extensions_size + 18; } if (config.ulpfec.red_payload_type >= 0) { header_size += 1; // RED header. } } // Additional room for Rtx. if (config.rtx.payload_type >= 0) header_size += kRtxHeaderSize; return header_size; } VideoStreamEncoder::BitrateAllocationCallbackType GetBitrateAllocationCallbackType(const VideoSendStream::Config& config, const FieldTrialsView& field_trials) { if (webrtc::RtpExtension::FindHeaderExtensionByUri( config.rtp.extensions, webrtc::RtpExtension::kVideoLayersAllocationUri, config.crypto_options.srtp.enable_encrypted_rtp_header_extensions ? RtpExtension::Filter::kPreferEncryptedExtension : RtpExtension::Filter::kDiscardEncryptedExtension)) { return VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoLayersAllocation; } if (field_trials.IsEnabled("WebRTC-Target-Bitrate-Rtcp")) { return VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocation; } return VideoStreamEncoder::BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing; } RtpSenderFrameEncryptionConfig CreateFrameEncryptionConfig( const VideoSendStream::Config* config) { RtpSenderFrameEncryptionConfig frame_encryption_config; frame_encryption_config.frame_encryptor = config->frame_encryptor.get(); frame_encryption_config.crypto_options = config->crypto_options; return frame_encryption_config; } RtpSenderObservers CreateObservers(RtcpRttStats* call_stats, EncoderRtcpFeedback* encoder_feedback, SendStatisticsProxy* stats_proxy, SendPacketObserver* send_packet_observer) { RtpSenderObservers observers; observers.rtcp_rtt_stats = call_stats; observers.intra_frame_callback = encoder_feedback; observers.rtcp_loss_notification_observer = encoder_feedback; observers.report_block_data_observer = stats_proxy; observers.rtp_stats = stats_proxy; observers.bitrate_observer = stats_proxy; observers.frame_count_observer = stats_proxy; observers.rtcp_type_observer = stats_proxy; observers.send_packet_observer = send_packet_observer; return observers; } std::unique_ptr CreateVideoStreamEncoder( Clock* clock, int num_cpu_cores, TaskQueueFactory* task_queue_factory, SendStatisticsProxy* stats_proxy, const VideoStreamEncoderSettings& encoder_settings, VideoStreamEncoder::BitrateAllocationCallbackType bitrate_allocation_callback_type, const FieldTrialsView& field_trials, Metronome* metronome, webrtc::VideoEncoderFactory::EncoderSelectorInterface* encoder_selector) { std::unique_ptr encoder_queue = task_queue_factory->CreateTaskQueue("EncoderQueue", TaskQueueFactory::Priority::NORMAL); TaskQueueBase* encoder_queue_ptr = encoder_queue.get(); return std::make_unique( clock, num_cpu_cores, stats_proxy, encoder_settings, std::make_unique(stats_proxy), FrameCadenceAdapterInterface::Create( clock, encoder_queue_ptr, metronome, /*worker_queue=*/TaskQueueBase::Current(), field_trials), std::move(encoder_queue), bitrate_allocation_callback_type, field_trials, encoder_selector); } bool HasActiveEncodings(const VideoEncoderConfig& config) { for (const VideoStream& stream : config.simulcast_layers) { if (stream.active) { return true; } } return false; } } // namespace PacingConfig::PacingConfig(const FieldTrialsView& field_trials) : pacing_factor("factor", kStrictPacingMultiplier), max_pacing_delay("max_delay", PacingController::kMaxExpectedQueueLength) { ParseFieldTrial({&pacing_factor, &max_pacing_delay}, field_trials.Lookup("WebRTC-Video-Pacing")); } PacingConfig::PacingConfig(const PacingConfig&) = default; PacingConfig::~PacingConfig() = default; VideoSendStreamImpl::VideoSendStreamImpl( Clock* clock, int num_cpu_cores, TaskQueueFactory* task_queue_factory, RtcpRttStats* call_stats, RtpTransportControllerSendInterface* transport, Metronome* metronome, BitrateAllocatorInterface* bitrate_allocator, SendDelayStats* send_delay_stats, RtcEventLog* event_log, VideoSendStream::Config config, VideoEncoderConfig encoder_config, const std::map& suspended_ssrcs, const std::map& suspended_payload_states, std::unique_ptr fec_controller, const FieldTrialsView& field_trials, std::unique_ptr video_stream_encoder_for_test) : transport_(transport), stats_proxy_(clock, config, encoder_config.content_type, field_trials), send_packet_observer_(&stats_proxy_, send_delay_stats), config_(std::move(config)), content_type_(encoder_config.content_type), video_stream_encoder_( video_stream_encoder_for_test ? std::move(video_stream_encoder_for_test) : CreateVideoStreamEncoder( clock, num_cpu_cores, task_queue_factory, &stats_proxy_, config_.encoder_settings, GetBitrateAllocationCallbackType(config_, field_trials), field_trials, metronome, config_.encoder_selector)), encoder_feedback_( clock, config_.rtp.ssrcs, video_stream_encoder_.get(), [this](uint32_t ssrc, const std::vector& seq_nums) { return rtp_video_sender_->GetSentRtpPacketInfos(ssrc, seq_nums); }), rtp_video_sender_(transport->CreateRtpVideoSender( suspended_ssrcs, suspended_payload_states, config_.rtp, config_.rtcp_report_interval_ms, config_.send_transport, CreateObservers(call_stats, &encoder_feedback_, &stats_proxy_, &send_packet_observer_), event_log, std::move(fec_controller), CreateFrameEncryptionConfig(&config_), config_.frame_transformer)), clock_(clock), has_alr_probing_( config_.periodic_alr_bandwidth_probing || GetAlrSettings(field_trials, encoder_config.content_type)), pacing_config_(PacingConfig(field_trials)), worker_queue_(TaskQueueBase::Current()), timed_out_(false), bitrate_allocator_(bitrate_allocator), has_active_encodings_(HasActiveEncodings(encoder_config)), disable_padding_(true), max_padding_bitrate_(0), encoder_min_bitrate_bps_(0), encoder_max_bitrate_bps_( GetInitialEncoderMaxBitrate(encoder_config.max_bitrate_bps)), encoder_target_rate_bps_(0), encoder_bitrate_priority_(encoder_config.bitrate_priority), encoder_av1_priority_bitrate_override_bps_( GetEncoderPriorityBitrate(config_.rtp.payload_name, field_trials)), configured_pacing_factor_(GetConfiguredPacingFactor(config_, content_type_, pacing_config_, field_trials)) { RTC_DCHECK_GE(config_.rtp.payload_type, 0); RTC_DCHECK_LE(config_.rtp.payload_type, 127); RTC_DCHECK(!config_.rtp.ssrcs.empty()); RTC_DCHECK(transport_); RTC_DCHECK_NE(encoder_max_bitrate_bps_, 0); RTC_LOG(LS_INFO) << "VideoSendStreamImpl: " << config_.ToString(); RTC_CHECK(AlrExperimentSettings::MaxOneFieldTrialEnabled(field_trials)); absl::optional enable_alr_bw_probing; // If send-side BWE is enabled, check if we should apply updated probing and // pacing settings. if (configured_pacing_factor_) { absl::optional alr_settings = GetAlrSettings(field_trials, content_type_); int queue_time_limit_ms; if (alr_settings) { enable_alr_bw_probing = true; queue_time_limit_ms = alr_settings->max_paced_queue_time; } else { RateControlSettings rate_control_settings = RateControlSettings::ParseFromKeyValueConfig(&field_trials); enable_alr_bw_probing = rate_control_settings.UseAlrProbing(); queue_time_limit_ms = pacing_config_.max_pacing_delay.Get().ms(); } transport_->SetQueueTimeLimit(queue_time_limit_ms); } if (config_.periodic_alr_bandwidth_probing) { enable_alr_bw_probing = config_.periodic_alr_bandwidth_probing; } if (enable_alr_bw_probing) { transport->EnablePeriodicAlrProbing(*enable_alr_bw_probing); } if (configured_pacing_factor_) transport_->SetPacingFactor(*configured_pacing_factor_); // Only request rotation at the source when we positively know that the remote // side doesn't support the rotation extension. This allows us to prepare the // encoder in the expectation that rotation is supported - which is the common // case. bool rotation_applied = absl::c_none_of( config_.rtp.extensions, [](const RtpExtension& extension) { return extension.uri == RtpExtension::kVideoRotationUri; }); video_stream_encoder_->SetSink(this, rotation_applied); video_stream_encoder_->SetStartBitrate( bitrate_allocator_->GetStartBitrate(this)); video_stream_encoder_->SetFecControllerOverride(rtp_video_sender_); ReconfigureVideoEncoder(std::move(encoder_config)); } VideoSendStreamImpl::~VideoSendStreamImpl() { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_LOG(LS_INFO) << "~VideoSendStreamImpl: " << config_.ToString(); RTC_DCHECK(!started()); RTC_DCHECK(!IsRunning()); transport_->DestroyRtpVideoSender(rtp_video_sender_); } void VideoSendStreamImpl::AddAdaptationResource( rtc::scoped_refptr resource) { RTC_DCHECK_RUN_ON(&thread_checker_); video_stream_encoder_->AddAdaptationResource(resource); } std::vector> VideoSendStreamImpl::GetAdaptationResources() { RTC_DCHECK_RUN_ON(&thread_checker_); return video_stream_encoder_->GetAdaptationResources(); } void VideoSendStreamImpl::SetSource( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { RTC_DCHECK_RUN_ON(&thread_checker_); video_stream_encoder_->SetSource(source, degradation_preference); } void VideoSendStreamImpl::ReconfigureVideoEncoder(VideoEncoderConfig config) { ReconfigureVideoEncoder(std::move(config), nullptr); } void VideoSendStreamImpl::ReconfigureVideoEncoder( VideoEncoderConfig config, SetParametersCallback callback) { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_DCHECK_EQ(content_type_, config.content_type); RTC_LOG(LS_VERBOSE) << "Encoder config: " << config.ToString() << " VideoSendStream config: " << config_.ToString(); has_active_encodings_ = HasActiveEncodings(config); if (has_active_encodings_ && rtp_video_sender_->IsActive() && !IsRunning()) { StartupVideoSendStream(); } else if (!has_active_encodings_ && IsRunning()) { StopVideoSendStream(); } video_stream_encoder_->ConfigureEncoder( std::move(config), config_.rtp.max_packet_size - CalculateMaxHeaderSize(config_.rtp), std::move(callback)); } VideoSendStream::Stats VideoSendStreamImpl::GetStats() { RTC_DCHECK_RUN_ON(&thread_checker_); return stats_proxy_.GetStats(); } absl::optional VideoSendStreamImpl::GetPacingFactorOverride() const { return configured_pacing_factor_; } void VideoSendStreamImpl::StopPermanentlyAndGetRtpStates( VideoSendStreamImpl::RtpStateMap* rtp_state_map, VideoSendStreamImpl::RtpPayloadStateMap* payload_state_map) { RTC_DCHECK_RUN_ON(&thread_checker_); video_stream_encoder_->Stop(); running_ = false; // Always run these cleanup steps regardless of whether running_ was set // or not. This will unregister callbacks before destruction. // See `VideoSendStreamImpl::StopVideoSendStream` for more. Stop(); *rtp_state_map = GetRtpStates(); *payload_state_map = GetRtpPayloadStates(); } void VideoSendStreamImpl::GenerateKeyFrame( const std::vector& rids) { RTC_DCHECK_RUN_ON(&thread_checker_); // Map rids to layers. If rids is empty, generate a keyframe for all layers. std::vector next_frames(config_.rtp.ssrcs.size(), VideoFrameType::kVideoFrameKey); if (!config_.rtp.rids.empty() && !rids.empty()) { std::fill(next_frames.begin(), next_frames.end(), VideoFrameType::kVideoFrameDelta); for (const auto& rid : rids) { for (size_t i = 0; i < config_.rtp.rids.size(); i++) { if (config_.rtp.rids[i] == rid) { next_frames[i] = VideoFrameType::kVideoFrameKey; break; } } } } if (video_stream_encoder_) { video_stream_encoder_->SendKeyFrame(next_frames); } } void VideoSendStreamImpl::DeliverRtcp(const uint8_t* packet, size_t length) { RTC_DCHECK_RUN_ON(&thread_checker_); rtp_video_sender_->DeliverRtcp(packet, length); } bool VideoSendStreamImpl::started() { RTC_DCHECK_RUN_ON(&thread_checker_); return rtp_video_sender_->IsActive(); } void VideoSendStreamImpl::Start() { RTC_DCHECK_RUN_ON(&thread_checker_); // This sender is allowed to send RTP packets. Start monitoring and allocating // a rate if there is also active encodings. (has_active_encodings_). rtp_video_sender_->SetSending(true); if (!IsRunning() && has_active_encodings_) { StartupVideoSendStream(); } } bool VideoSendStreamImpl::IsRunning() const { RTC_DCHECK_RUN_ON(&thread_checker_); return check_encoder_activity_task_.Running(); } void VideoSendStreamImpl::StartupVideoSendStream() { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_DCHECK(rtp_video_sender_->IsActive()); RTC_DCHECK(has_active_encodings_); bitrate_allocator_->AddObserver(this, GetAllocationConfig()); // Start monitoring encoder activity. { RTC_DCHECK(!check_encoder_activity_task_.Running()); activity_ = false; timed_out_ = false; check_encoder_activity_task_ = RepeatingTaskHandle::DelayedStart( worker_queue_, kEncoderTimeOut, [this] { RTC_DCHECK_RUN_ON(&thread_checker_); if (!activity_) { if (!timed_out_) { SignalEncoderTimedOut(); } timed_out_ = true; disable_padding_ = true; } else if (timed_out_) { SignalEncoderActive(); timed_out_ = false; } activity_ = false; return kEncoderTimeOut; }); } video_stream_encoder_->SendKeyFrame(); } void VideoSendStreamImpl::Stop() { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_LOG(LS_INFO) << "VideoSendStreamImpl::Stop"; if (!rtp_video_sender_->IsActive()) return; TRACE_EVENT_INSTANT0("webrtc", "VideoSendStream::Stop"); rtp_video_sender_->SetSending(false); if (IsRunning()) { StopVideoSendStream(); } } void VideoSendStreamImpl::StopVideoSendStream() { RTC_DCHECK_RUN_ON(&thread_checker_); bitrate_allocator_->RemoveObserver(this); check_encoder_activity_task_.Stop(); video_stream_encoder_->OnBitrateUpdated(DataRate::Zero(), DataRate::Zero(), DataRate::Zero(), 0, 0, 0); stats_proxy_.OnSetEncoderTargetRate(0); } void VideoSendStreamImpl::SignalEncoderTimedOut() { RTC_DCHECK_RUN_ON(&thread_checker_); // If the encoder has not produced anything the last kEncoderTimeOut and it // is supposed to, deregister as BitrateAllocatorObserver. This can happen // if a camera stops producing frames. if (encoder_target_rate_bps_ > 0) { RTC_LOG(LS_INFO) << "SignalEncoderTimedOut, Encoder timed out."; bitrate_allocator_->RemoveObserver(this); } } void VideoSendStreamImpl::OnBitrateAllocationUpdated( const VideoBitrateAllocation& allocation) { // OnBitrateAllocationUpdated is invoked from the encoder task queue or // the worker_queue_. auto task = [this, allocation] { RTC_DCHECK_RUN_ON(&thread_checker_); if (encoder_target_rate_bps_ == 0) { return; } int64_t now_ms = clock_->TimeInMilliseconds(); if (video_bitrate_allocation_context_) { // If new allocation is within kMaxVbaSizeDifferencePercent larger // than the previously sent allocation and the same streams are still // enabled, it is considered "similar". We do not want send similar // allocations more once per kMaxVbaThrottleTimeMs. const VideoBitrateAllocation& last = video_bitrate_allocation_context_->last_sent_allocation; const bool is_similar = allocation.get_sum_bps() >= last.get_sum_bps() && allocation.get_sum_bps() < (last.get_sum_bps() * (100 + kMaxVbaSizeDifferencePercent)) / 100 && SameStreamsEnabled(allocation, last); if (is_similar && (now_ms - video_bitrate_allocation_context_->last_send_time_ms) < kMaxVbaThrottleTimeMs) { // This allocation is too similar, cache it and return. video_bitrate_allocation_context_->throttled_allocation = allocation; return; } } else { video_bitrate_allocation_context_.emplace(); } video_bitrate_allocation_context_->last_sent_allocation = allocation; video_bitrate_allocation_context_->throttled_allocation.reset(); video_bitrate_allocation_context_->last_send_time_ms = now_ms; // Send bitrate allocation metadata only if encoder is not paused. rtp_video_sender_->OnBitrateAllocationUpdated(allocation); }; if (!worker_queue_->IsCurrent()) { worker_queue_->PostTask( SafeTask(worker_queue_safety_.flag(), std::move(task))); } else { task(); } } void VideoSendStreamImpl::OnVideoLayersAllocationUpdated( VideoLayersAllocation allocation) { // OnVideoLayersAllocationUpdated is handled on the encoder task queue in // order to not race with OnEncodedImage callbacks. rtp_video_sender_->OnVideoLayersAllocationUpdated(allocation); } void VideoSendStreamImpl::SignalEncoderActive() { RTC_DCHECK_RUN_ON(&thread_checker_); if (IsRunning()) { RTC_LOG(LS_INFO) << "SignalEncoderActive, Encoder is active."; bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } } MediaStreamAllocationConfig VideoSendStreamImpl::GetAllocationConfig() const { return MediaStreamAllocationConfig{ static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_, static_cast(disable_padding_ ? 0 : max_padding_bitrate_), encoder_av1_priority_bitrate_override_bps_, !config_.suspend_below_min_bitrate, encoder_bitrate_priority_}; } void VideoSendStreamImpl::OnEncoderConfigurationChanged( std::vector streams, bool is_svc, VideoEncoderConfig::ContentType content_type, int min_transmit_bitrate_bps) { // Currently called on the encoder TQ RTC_DCHECK(!worker_queue_->IsCurrent()); auto closure = [this, streams = std::move(streams), is_svc, content_type, min_transmit_bitrate_bps]() mutable { RTC_DCHECK_GE(config_.rtp.ssrcs.size(), streams.size()); TRACE_EVENT0("webrtc", "VideoSendStream::OnEncoderConfigurationChanged"); RTC_DCHECK_RUN_ON(&thread_checker_); const VideoCodecType codec_type = PayloadStringToCodecType(config_.rtp.payload_name); const absl::optional experimental_min_bitrate = GetExperimentalMinVideoBitrate(codec_type); encoder_min_bitrate_bps_ = experimental_min_bitrate ? experimental_min_bitrate->bps() : std::max(streams[0].min_bitrate_bps, GetDefaultMinVideoBitrateBps(codec_type)); encoder_max_bitrate_bps_ = 0; double stream_bitrate_priority_sum = 0; for (const auto& stream : streams) { // We don't want to allocate more bitrate than needed to inactive streams. if (stream.active) { encoder_max_bitrate_bps_ += stream.max_bitrate_bps; } if (stream.bitrate_priority) { RTC_DCHECK_GT(*stream.bitrate_priority, 0); stream_bitrate_priority_sum += *stream.bitrate_priority; } } RTC_DCHECK_GT(stream_bitrate_priority_sum, 0); encoder_bitrate_priority_ = stream_bitrate_priority_sum; encoder_max_bitrate_bps_ = std::max(static_cast(encoder_min_bitrate_bps_), encoder_max_bitrate_bps_); // TODO(bugs.webrtc.org/10266): Query the VideoBitrateAllocator instead. max_padding_bitrate_ = CalculateMaxPadBitrateBps( streams, is_svc, content_type, min_transmit_bitrate_bps, config_.suspend_below_min_bitrate, has_alr_probing_); // Clear stats for disabled layers. for (size_t i = streams.size(); i < config_.rtp.ssrcs.size(); ++i) { stats_proxy_.OnInactiveSsrc(config_.rtp.ssrcs[i]); } const size_t num_temporal_layers = streams.back().num_temporal_layers.value_or(1); rtp_video_sender_->SetEncodingData(streams[0].width, streams[0].height, num_temporal_layers); if (IsRunning()) { // The send stream is started already. Update the allocator with new // bitrate limits. bitrate_allocator_->AddObserver(this, GetAllocationConfig()); } }; worker_queue_->PostTask( SafeTask(worker_queue_safety_.flag(), std::move(closure))); } EncodedImageCallback::Result VideoSendStreamImpl::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) { // Encoded is called on whatever thread the real encoder implementation run // on. In the case of hardware encoders, there might be several encoders // running in parallel on different threads. // Indicate that there still is activity going on. activity_ = true; RTC_DCHECK(!worker_queue_->IsCurrent()); auto task_to_run_on_worker = [this]() { RTC_DCHECK_RUN_ON(&thread_checker_); if (disable_padding_) { disable_padding_ = false; // To ensure that padding bitrate is propagated to the bitrate allocator. SignalEncoderActive(); } // Check if there's a throttled VideoBitrateAllocation that we should try // sending. auto& context = video_bitrate_allocation_context_; if (context && context->throttled_allocation) { OnBitrateAllocationUpdated(*context->throttled_allocation); } }; worker_queue_->PostTask( SafeTask(worker_queue_safety_.flag(), std::move(task_to_run_on_worker))); return rtp_video_sender_->OnEncodedImage(encoded_image, codec_specific_info); } void VideoSendStreamImpl::OnDroppedFrame( EncodedImageCallback::DropReason reason) { activity_ = true; } std::map VideoSendStreamImpl::GetRtpStates() const { return rtp_video_sender_->GetRtpStates(); } std::map VideoSendStreamImpl::GetRtpPayloadStates() const { return rtp_video_sender_->GetRtpPayloadStates(); } uint32_t VideoSendStreamImpl::OnBitrateUpdated(BitrateAllocationUpdate update) { RTC_DCHECK_RUN_ON(&thread_checker_); RTC_DCHECK(rtp_video_sender_->IsActive()) << "VideoSendStream::Start has not been called."; // When the BWE algorithm doesn't pass a stable estimate, we'll use the // unstable one instead. if (update.stable_target_bitrate.IsZero()) { update.stable_target_bitrate = update.target_bitrate; } rtp_video_sender_->OnBitrateUpdated(update, stats_proxy_.GetSendFrameRate()); encoder_target_rate_bps_ = rtp_video_sender_->GetPayloadBitrateBps(); const uint32_t protection_bitrate_bps = rtp_video_sender_->GetProtectionBitrateBps(); DataRate link_allocation = DataRate::Zero(); if (encoder_target_rate_bps_ > protection_bitrate_bps) { link_allocation = DataRate::BitsPerSec(encoder_target_rate_bps_ - protection_bitrate_bps); } DataRate overhead = update.target_bitrate - DataRate::BitsPerSec(encoder_target_rate_bps_); DataRate encoder_stable_target_rate = update.stable_target_bitrate; if (encoder_stable_target_rate > overhead) { encoder_stable_target_rate = encoder_stable_target_rate - overhead; } else { encoder_stable_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); } encoder_target_rate_bps_ = std::min(encoder_max_bitrate_bps_, encoder_target_rate_bps_); encoder_stable_target_rate = std::min(DataRate::BitsPerSec(encoder_max_bitrate_bps_), encoder_stable_target_rate); DataRate encoder_target_rate = DataRate::BitsPerSec(encoder_target_rate_bps_); link_allocation = std::max(encoder_target_rate, link_allocation); video_stream_encoder_->OnBitrateUpdated( encoder_target_rate, encoder_stable_target_rate, link_allocation, rtc::dchecked_cast(update.packet_loss_ratio * 256), update.round_trip_time.ms(), update.cwnd_reduce_ratio); stats_proxy_.OnSetEncoderTargetRate(encoder_target_rate_bps_); return protection_bitrate_bps; } } // namespace internal } // namespace webrtc