/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "video/video_stream_encoder.h" #include #include #include #include #include #include #include "absl/algorithm/container.h" #include "absl/cleanup/cleanup.h" #include "absl/types/optional.h" #include "api/field_trials_view.h" #include "api/sequence_checker.h" #include "api/task_queue/task_queue_base.h" #include "api/video/encoded_image.h" #include "api/video/i420_buffer.h" #include "api/video/render_resolution.h" #include "api/video/video_adaptation_reason.h" #include "api/video/video_bitrate_allocator_factory.h" #include "api/video/video_codec_constants.h" #include "api/video/video_layers_allocation.h" #include "api/video_codecs/sdp_video_format.h" #include "api/video_codecs/video_encoder.h" #include "call/adaptation/resource_adaptation_processor.h" #include "call/adaptation/video_source_restrictions.h" #include "call/adaptation/video_stream_adapter.h" #include "media/base/media_channel.h" #include "modules/video_coding/include/video_codec_initializer.h" #include "modules/video_coding/svc/scalability_mode_util.h" #include "modules/video_coding/svc/svc_rate_allocator.h" #include "modules/video_coding/utility/vp8_constants.h" #include "rtc_base/arraysize.h" #include "rtc_base/checks.h" #include "rtc_base/event.h" #include "rtc_base/experiments/encoder_info_settings.h" #include "rtc_base/experiments/rate_control_settings.h" #include "rtc_base/logging.h" #include "rtc_base/strings/string_builder.h" #include "rtc_base/system/no_unique_address.h" #include "rtc_base/thread_annotations.h" #include "rtc_base/trace_event.h" #include "system_wrappers/include/metrics.h" #include "video/adaptation/video_stream_encoder_resource_manager.h" #include "video/alignment_adjuster.h" #include "video/config/encoder_stream_factory.h" #include "video/frame_cadence_adapter.h" #include "video/frame_dumping_encoder.h" namespace webrtc { namespace { // Time interval for logging frame counts. const int64_t kFrameLogIntervalMs = 60000; // Time to keep a single cached pending frame in paused state. const int64_t kPendingFrameTimeoutMs = 1000; constexpr char kFrameDropperFieldTrial[] = "WebRTC-FrameDropper"; // TODO(bugs.webrtc.org/13572): Remove this kill switch after deploying the // feature. constexpr char kSwitchEncoderOnInitializationFailuresFieldTrial[] = "WebRTC-SwitchEncoderOnInitializationFailures"; const size_t kDefaultPayloadSize = 1440; const int64_t kParameterUpdateIntervalMs = 1000; // Animation is capped to 720p. constexpr int kMaxAnimationPixels = 1280 * 720; constexpr int kDefaultMinScreenSharebps = 1200000; int GetNumSpatialLayers(const VideoCodec& codec) { if (codec.codecType == kVideoCodecVP9) { return codec.VP9().numberOfSpatialLayers; } else if (codec.codecType == kVideoCodecAV1 && codec.GetScalabilityMode().has_value()) { return ScalabilityModeToNumSpatialLayers(*(codec.GetScalabilityMode())); } else { return 0; } } absl::optional MaybeConvertDropReason( VideoStreamEncoderObserver::DropReason reason) { switch (reason) { case VideoStreamEncoderObserver::DropReason::kMediaOptimization: return EncodedImageCallback::DropReason::kDroppedByMediaOptimizations; case VideoStreamEncoderObserver::DropReason::kEncoder: return EncodedImageCallback::DropReason::kDroppedByEncoder; default: return absl::nullopt; } } bool RequiresEncoderReset(const VideoCodec& prev_send_codec, const VideoCodec& new_send_codec, bool was_encode_called_since_last_initialization) { // Does not check max/minBitrate or maxFramerate. if (new_send_codec.codecType != prev_send_codec.codecType || new_send_codec.width != prev_send_codec.width || new_send_codec.height != prev_send_codec.height || new_send_codec.qpMax != prev_send_codec.qpMax || new_send_codec.numberOfSimulcastStreams != prev_send_codec.numberOfSimulcastStreams || new_send_codec.mode != prev_send_codec.mode || new_send_codec.GetFrameDropEnabled() != prev_send_codec.GetFrameDropEnabled()) { return true; } if (!was_encode_called_since_last_initialization && (new_send_codec.startBitrate != prev_send_codec.startBitrate)) { // If start bitrate has changed reconfigure encoder only if encoding had not // yet started. return true; } switch (new_send_codec.codecType) { case kVideoCodecVP8: if (new_send_codec.VP8() != prev_send_codec.VP8()) { return true; } break; case kVideoCodecVP9: if (new_send_codec.VP9() != prev_send_codec.VP9()) { return true; } break; case kVideoCodecH264: if (new_send_codec.H264() != prev_send_codec.H264()) { return true; } break; case kVideoCodecH265: // TODO(bugs.webrtc.org/13485): Implement new send codec H265 [[fallthrough]]; default: break; } for (unsigned char i = 0; i < new_send_codec.numberOfSimulcastStreams; ++i) { if (!new_send_codec.simulcastStream[i].active) { // No need to reset when stream is inactive. continue; } if (!prev_send_codec.simulcastStream[i].active || new_send_codec.simulcastStream[i].width != prev_send_codec.simulcastStream[i].width || new_send_codec.simulcastStream[i].height != prev_send_codec.simulcastStream[i].height || new_send_codec.simulcastStream[i].numberOfTemporalLayers != prev_send_codec.simulcastStream[i].numberOfTemporalLayers || new_send_codec.simulcastStream[i].qpMax != prev_send_codec.simulcastStream[i].qpMax) { return true; } } if (new_send_codec.codecType == kVideoCodecVP9) { size_t num_spatial_layers = new_send_codec.VP9().numberOfSpatialLayers; for (unsigned char i = 0; i < num_spatial_layers; ++i) { if (!new_send_codec.spatialLayers[i].active) { // No need to reset when layer is inactive. continue; } if (new_send_codec.spatialLayers[i].width != prev_send_codec.spatialLayers[i].width || new_send_codec.spatialLayers[i].height != prev_send_codec.spatialLayers[i].height || new_send_codec.spatialLayers[i].numberOfTemporalLayers != prev_send_codec.spatialLayers[i].numberOfTemporalLayers || new_send_codec.spatialLayers[i].qpMax != prev_send_codec.spatialLayers[i].qpMax || !prev_send_codec.spatialLayers[i].active) { return true; } } } if (new_send_codec.GetScalabilityMode() != prev_send_codec.GetScalabilityMode()) { return true; } return false; } // Limit allocation across TLs in bitrate allocation according to number of TLs // in EncoderInfo. VideoBitrateAllocation UpdateAllocationFromEncoderInfo( const VideoBitrateAllocation& allocation, const VideoEncoder::EncoderInfo& encoder_info) { if (allocation.get_sum_bps() == 0) { return allocation; } VideoBitrateAllocation new_allocation; for (int si = 0; si < kMaxSpatialLayers; ++si) { if (encoder_info.fps_allocation[si].size() == 1 && allocation.IsSpatialLayerUsed(si)) { // One TL is signalled to be used by the encoder. Do not distribute // bitrate allocation across TLs (use sum at ti:0). new_allocation.SetBitrate(si, 0, allocation.GetSpatialLayerSum(si)); } else { for (int ti = 0; ti < kMaxTemporalStreams; ++ti) { if (allocation.HasBitrate(si, ti)) new_allocation.SetBitrate(si, ti, allocation.GetBitrate(si, ti)); } } } new_allocation.set_bw_limited(allocation.is_bw_limited()); return new_allocation; } // Converts a VideoBitrateAllocation that contains allocated bitrate per layer, // and an EncoderInfo that contains information about the actual encoder // structure used by a codec. Stream structures can be Ksvc, Full SVC, Simulcast // etc. VideoLayersAllocation CreateVideoLayersAllocation( const VideoCodec& encoder_config, const VideoEncoder::RateControlParameters& current_rate, const VideoEncoder::EncoderInfo& encoder_info) { const VideoBitrateAllocation& target_bitrate = current_rate.target_bitrate; VideoLayersAllocation layers_allocation; if (target_bitrate.get_sum_bps() == 0) { return layers_allocation; } if (encoder_config.numberOfSimulcastStreams > 1) { layers_allocation.resolution_and_frame_rate_is_valid = true; for (int si = 0; si < encoder_config.numberOfSimulcastStreams; ++si) { if (!target_bitrate.IsSpatialLayerUsed(si) || target_bitrate.GetSpatialLayerSum(si) == 0) { continue; } layers_allocation.active_spatial_layers.emplace_back(); VideoLayersAllocation::SpatialLayer& spatial_layer = layers_allocation.active_spatial_layers.back(); spatial_layer.width = encoder_config.simulcastStream[si].width; spatial_layer.height = encoder_config.simulcastStream[si].height; spatial_layer.rtp_stream_index = si; spatial_layer.spatial_id = 0; auto frame_rate_fraction = VideoEncoder::EncoderInfo::kMaxFramerateFraction; if (encoder_info.fps_allocation[si].size() == 1) { // One TL is signalled to be used by the encoder. Do not distribute // bitrate allocation across TLs (use sum at tl:0). spatial_layer.target_bitrate_per_temporal_layer.push_back( DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si))); frame_rate_fraction = encoder_info.fps_allocation[si][0]; } else { // Temporal layers are supported. uint32_t temporal_layer_bitrate_bps = 0; for (size_t ti = 0; ti < encoder_config.simulcastStream[si].numberOfTemporalLayers; ++ti) { if (!target_bitrate.HasBitrate(si, ti)) { break; } if (ti < encoder_info.fps_allocation[si].size()) { // Use frame rate of the top used temporal layer. frame_rate_fraction = encoder_info.fps_allocation[si][ti]; } temporal_layer_bitrate_bps += target_bitrate.GetBitrate(si, ti); spatial_layer.target_bitrate_per_temporal_layer.push_back( DataRate::BitsPerSec(temporal_layer_bitrate_bps)); } } // Encoder may drop frames internally if `maxFramerate` is set. spatial_layer.frame_rate_fps = std::min( encoder_config.simulcastStream[si].maxFramerate, rtc::saturated_cast( (current_rate.framerate_fps * frame_rate_fraction) / VideoEncoder::EncoderInfo::kMaxFramerateFraction)); } } else if (encoder_config.numberOfSimulcastStreams == 1) { // TODO(bugs.webrtc.org/12000): Implement support for AV1 with // scalability. const bool higher_spatial_depend_on_lower = encoder_config.codecType == kVideoCodecVP9 && encoder_config.VP9().interLayerPred == InterLayerPredMode::kOn; layers_allocation.resolution_and_frame_rate_is_valid = true; std::vector aggregated_spatial_bitrate( webrtc::kMaxTemporalStreams, DataRate::Zero()); for (int si = 0; si < webrtc::kMaxSpatialLayers; ++si) { layers_allocation.resolution_and_frame_rate_is_valid = true; if (!target_bitrate.IsSpatialLayerUsed(si) || target_bitrate.GetSpatialLayerSum(si) == 0) { break; } layers_allocation.active_spatial_layers.emplace_back(); VideoLayersAllocation::SpatialLayer& spatial_layer = layers_allocation.active_spatial_layers.back(); spatial_layer.width = encoder_config.spatialLayers[si].width; spatial_layer.height = encoder_config.spatialLayers[si].height; spatial_layer.rtp_stream_index = 0; spatial_layer.spatial_id = si; auto frame_rate_fraction = VideoEncoder::EncoderInfo::kMaxFramerateFraction; if (encoder_info.fps_allocation[si].size() == 1) { // One TL is signalled to be used by the encoder. Do not distribute // bitrate allocation across TLs (use sum at tl:0). DataRate aggregated_temporal_bitrate = DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si)); aggregated_spatial_bitrate[0] += aggregated_temporal_bitrate; if (higher_spatial_depend_on_lower) { spatial_layer.target_bitrate_per_temporal_layer.push_back( aggregated_spatial_bitrate[0]); } else { spatial_layer.target_bitrate_per_temporal_layer.push_back( aggregated_temporal_bitrate); } frame_rate_fraction = encoder_info.fps_allocation[si][0]; } else { // Temporal layers are supported. DataRate aggregated_temporal_bitrate = DataRate::Zero(); for (size_t ti = 0; ti < encoder_config.spatialLayers[si].numberOfTemporalLayers; ++ti) { if (!target_bitrate.HasBitrate(si, ti)) { break; } if (ti < encoder_info.fps_allocation[si].size()) { // Use frame rate of the top used temporal layer. frame_rate_fraction = encoder_info.fps_allocation[si][ti]; } aggregated_temporal_bitrate += DataRate::BitsPerSec(target_bitrate.GetBitrate(si, ti)); if (higher_spatial_depend_on_lower) { spatial_layer.target_bitrate_per_temporal_layer.push_back( aggregated_temporal_bitrate + aggregated_spatial_bitrate[ti]); aggregated_spatial_bitrate[ti] += aggregated_temporal_bitrate; } else { spatial_layer.target_bitrate_per_temporal_layer.push_back( aggregated_temporal_bitrate); } } } // Encoder may drop frames internally if `maxFramerate` is set. spatial_layer.frame_rate_fps = std::min( encoder_config.spatialLayers[si].maxFramerate, rtc::saturated_cast( (current_rate.framerate_fps * frame_rate_fraction) / VideoEncoder::EncoderInfo::kMaxFramerateFraction)); } } return layers_allocation; } VideoEncoder::EncoderInfo GetEncoderInfoWithBitrateLimitUpdate( const VideoEncoder::EncoderInfo& info, const VideoEncoderConfig& encoder_config, bool default_limits_allowed) { if (!default_limits_allowed || !info.resolution_bitrate_limits.empty() || encoder_config.simulcast_layers.size() <= 1) { return info; } // Bitrate limits are not configured and more than one layer is used, use // the default limits (bitrate limits are not used for simulcast). VideoEncoder::EncoderInfo new_info = info; new_info.resolution_bitrate_limits = EncoderInfoSettings::GetDefaultSinglecastBitrateLimits( encoder_config.codec_type); return new_info; } int NumActiveStreams(const std::vector& streams) { int num_active = 0; for (const auto& stream : streams) { if (stream.active) ++num_active; } return num_active; } void ApplySpatialLayerBitrateLimits( const VideoEncoder::EncoderInfo& encoder_info, const VideoEncoderConfig& encoder_config, VideoCodec* codec) { if (!(GetNumSpatialLayers(*codec) > 0)) { // ApplySpatialLayerBitrateLimits() supports VP9 and AV1 (the latter with // scalability mode set) only. return; } if (VideoStreamEncoderResourceManager::IsSimulcastOrMultipleSpatialLayers( encoder_config, *codec) || encoder_config.simulcast_layers.size() <= 1) { // Resolution bitrate limits usage is restricted to singlecast. return; } // Get bitrate limits for active stream. absl::optional pixels = VideoStreamAdapter::GetSingleActiveLayerPixels(*codec); if (!pixels.has_value()) { return; } absl::optional bitrate_limits = encoder_info.GetEncoderBitrateLimitsForResolution(*pixels); if (!bitrate_limits.has_value()) { return; } // Index for the active stream. absl::optional index; for (size_t i = 0; i < encoder_config.simulcast_layers.size(); ++i) { if (encoder_config.simulcast_layers[i].active) index = i; } if (!index.has_value()) { return; } int min_bitrate_bps; if (encoder_config.simulcast_layers[*index].min_bitrate_bps <= 0) { min_bitrate_bps = bitrate_limits->min_bitrate_bps; } else { min_bitrate_bps = std::max(bitrate_limits->min_bitrate_bps, encoder_config.simulcast_layers[*index].min_bitrate_bps); } int max_bitrate_bps; if (encoder_config.simulcast_layers[*index].max_bitrate_bps <= 0) { max_bitrate_bps = bitrate_limits->max_bitrate_bps; } else { max_bitrate_bps = std::min(bitrate_limits->max_bitrate_bps, encoder_config.simulcast_layers[*index].max_bitrate_bps); } if (min_bitrate_bps >= max_bitrate_bps) { RTC_LOG(LS_WARNING) << "Bitrate limits not used, min_bitrate_bps " << min_bitrate_bps << " >= max_bitrate_bps " << max_bitrate_bps; return; } for (int i = 0; i < GetNumSpatialLayers(*codec); ++i) { if (codec->spatialLayers[i].active) { codec->spatialLayers[i].minBitrate = min_bitrate_bps / 1000; codec->spatialLayers[i].maxBitrate = max_bitrate_bps / 1000; codec->spatialLayers[i].targetBitrate = std::min(codec->spatialLayers[i].targetBitrate, codec->spatialLayers[i].maxBitrate); break; } } } void ApplyEncoderBitrateLimitsIfSingleActiveStream( const VideoEncoder::EncoderInfo& encoder_info, const std::vector& encoder_config_layers, std::vector* streams) { // Apply limits if simulcast with one active stream (expect lowest). bool single_active_stream = streams->size() > 1 && NumActiveStreams(*streams) == 1 && !streams->front().active && NumActiveStreams(encoder_config_layers) == 1; if (!single_active_stream) { return; } // Index for the active stream. size_t index = 0; for (size_t i = 0; i < encoder_config_layers.size(); ++i) { if (encoder_config_layers[i].active) index = i; } if (streams->size() < (index + 1) || !(*streams)[index].active) { return; } // Get bitrate limits for active stream. absl::optional encoder_bitrate_limits = encoder_info.GetEncoderBitrateLimitsForResolution( (*streams)[index].width * (*streams)[index].height); if (!encoder_bitrate_limits) { return; } // If bitrate limits are set by RtpEncodingParameters, use intersection. int min_bitrate_bps; if (encoder_config_layers[index].min_bitrate_bps <= 0) { min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps; } else { min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps, (*streams)[index].min_bitrate_bps); } int max_bitrate_bps; if (encoder_config_layers[index].max_bitrate_bps <= 0) { max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps; } else { max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps, (*streams)[index].max_bitrate_bps); } if (min_bitrate_bps >= max_bitrate_bps) { RTC_LOG(LS_WARNING) << "Encoder bitrate limits" << " (min=" << encoder_bitrate_limits->min_bitrate_bps << ", max=" << encoder_bitrate_limits->max_bitrate_bps << ") do not intersect with stream limits" << " (min=" << (*streams)[index].min_bitrate_bps << ", max=" << (*streams)[index].max_bitrate_bps << "). Encoder bitrate limits not used."; return; } (*streams)[index].min_bitrate_bps = min_bitrate_bps; (*streams)[index].max_bitrate_bps = max_bitrate_bps; (*streams)[index].target_bitrate_bps = std::min((*streams)[index].target_bitrate_bps, encoder_bitrate_limits->max_bitrate_bps); } absl::optional ParseVp9LowTierCoreCountThreshold( const FieldTrialsView& trials) { FieldTrialFlag disable_low_tier("Disabled"); FieldTrialParameter max_core_count("max_core_count", 2); ParseFieldTrial({&disable_low_tier, &max_core_count}, trials.Lookup("WebRTC-VP9-LowTierOptimizations")); if (disable_low_tier.Get()) { return absl::nullopt; } return max_core_count.Get(); } absl::optional ParseEncoderThreadLimit(const FieldTrialsView& trials) { FieldTrialOptional encoder_thread_limit("encoder_thread_limit"); ParseFieldTrial({&encoder_thread_limit}, trials.Lookup("WebRTC-VideoEncoderSettings")); return encoder_thread_limit.GetOptional(); } absl::optional MergeRestrictions( const std::vector>& list) { absl::optional return_value; for (const auto& res : list) { if (!res) { continue; } if (!return_value) { return_value = *res; continue; } return_value->UpdateMin(*res); } return return_value; } } // namespace VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings() : rate_control(), encoder_target(DataRate::Zero()), stable_encoder_target(DataRate::Zero()) {} VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings( const VideoBitrateAllocation& bitrate, double framerate_fps, DataRate bandwidth_allocation, DataRate encoder_target, DataRate stable_encoder_target) : rate_control(bitrate, framerate_fps, bandwidth_allocation), encoder_target(encoder_target), stable_encoder_target(stable_encoder_target) {} bool VideoStreamEncoder::EncoderRateSettings::operator==( const EncoderRateSettings& rhs) const { return rate_control == rhs.rate_control && encoder_target == rhs.encoder_target && stable_encoder_target == rhs.stable_encoder_target; } bool VideoStreamEncoder::EncoderRateSettings::operator!=( const EncoderRateSettings& rhs) const { return !(*this == rhs); } class VideoStreamEncoder::DegradationPreferenceManager : public DegradationPreferenceProvider { public: explicit DegradationPreferenceManager( VideoStreamAdapter* video_stream_adapter) : degradation_preference_(DegradationPreference::DISABLED), is_screenshare_(false), effective_degradation_preference_(DegradationPreference::DISABLED), video_stream_adapter_(video_stream_adapter) { RTC_DCHECK(video_stream_adapter_); sequence_checker_.Detach(); } ~DegradationPreferenceManager() override = default; DegradationPreference degradation_preference() const override { RTC_DCHECK_RUN_ON(&sequence_checker_); return effective_degradation_preference_; } void SetDegradationPreference(DegradationPreference degradation_preference) { RTC_DCHECK_RUN_ON(&sequence_checker_); degradation_preference_ = degradation_preference; MaybeUpdateEffectiveDegradationPreference(); } void SetIsScreenshare(bool is_screenshare) { RTC_DCHECK_RUN_ON(&sequence_checker_); is_screenshare_ = is_screenshare; MaybeUpdateEffectiveDegradationPreference(); } private: void MaybeUpdateEffectiveDegradationPreference() RTC_RUN_ON(&sequence_checker_) { DegradationPreference effective_degradation_preference = (is_screenshare_ && degradation_preference_ == DegradationPreference::BALANCED) ? DegradationPreference::MAINTAIN_RESOLUTION : degradation_preference_; if (effective_degradation_preference != effective_degradation_preference_) { effective_degradation_preference_ = effective_degradation_preference; video_stream_adapter_->SetDegradationPreference( effective_degradation_preference); } } RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_; DegradationPreference degradation_preference_ RTC_GUARDED_BY(&sequence_checker_); bool is_screenshare_ RTC_GUARDED_BY(&sequence_checker_); DegradationPreference effective_degradation_preference_ RTC_GUARDED_BY(&sequence_checker_); VideoStreamAdapter* video_stream_adapter_ RTC_GUARDED_BY(&sequence_checker_); }; VideoStreamEncoder::VideoStreamEncoder( Clock* clock, uint32_t number_of_cores, VideoStreamEncoderObserver* encoder_stats_observer, const VideoStreamEncoderSettings& settings, std::unique_ptr overuse_detector, std::unique_ptr frame_cadence_adapter, std::unique_ptr encoder_queue, BitrateAllocationCallbackType allocation_cb_type, const FieldTrialsView& field_trials, webrtc::VideoEncoderFactory::EncoderSelectorInterface* encoder_selector) : field_trials_(field_trials), worker_queue_(TaskQueueBase::Current()), number_of_cores_(number_of_cores), settings_(settings), allocation_cb_type_(allocation_cb_type), rate_control_settings_( RateControlSettings::ParseFromKeyValueConfig(&field_trials)), encoder_selector_from_constructor_(encoder_selector), encoder_selector_from_factory_( encoder_selector_from_constructor_ ? nullptr : settings.encoder_factory->GetEncoderSelector()), encoder_selector_(encoder_selector_from_constructor_ ? encoder_selector_from_constructor_ : encoder_selector_from_factory_.get()), encoder_stats_observer_(encoder_stats_observer), frame_cadence_adapter_(std::move(frame_cadence_adapter)), clock_(clock), delta_ntp_internal_ms_(clock_->CurrentNtpInMilliseconds() - clock_->TimeInMilliseconds()), last_frame_log_ms_(clock_->TimeInMilliseconds()), next_frame_types_(1, VideoFrameType::kVideoFrameDelta), automatic_animation_detection_experiment_( ParseAutomatincAnimationDetectionFieldTrial()), input_state_provider_(encoder_stats_observer), video_stream_adapter_( std::make_unique(&input_state_provider_, encoder_stats_observer, field_trials)), degradation_preference_manager_( std::make_unique( video_stream_adapter_.get())), stream_resource_manager_(&input_state_provider_, encoder_stats_observer, clock_, settings_.experiment_cpu_load_estimator, std::move(overuse_detector), degradation_preference_manager_.get(), field_trials), video_source_sink_controller_(/*sink=*/frame_cadence_adapter_.get(), /*source=*/nullptr), default_limits_allowed_( !field_trials.IsEnabled("WebRTC-DefaultBitrateLimitsKillSwitch")), qp_parsing_allowed_( !field_trials.IsEnabled("WebRTC-QpParsingKillSwitch")), switch_encoder_on_init_failures_(!field_trials.IsDisabled( kSwitchEncoderOnInitializationFailuresFieldTrial)), vp9_low_tier_core_threshold_( ParseVp9LowTierCoreCountThreshold(field_trials)), experimental_encoder_thread_limit_(ParseEncoderThreadLimit(field_trials)), encoder_queue_(std::move(encoder_queue)) { TRACE_EVENT0("webrtc", "VideoStreamEncoder::VideoStreamEncoder"); RTC_DCHECK_RUN_ON(worker_queue_); RTC_DCHECK(encoder_stats_observer); RTC_DCHECK_GE(number_of_cores, 1); frame_cadence_adapter_->Initialize(&cadence_callback_); stream_resource_manager_.Initialize(encoder_queue_.get()); encoder_queue_->PostTask([this] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); resource_adaptation_processor_ = std::make_unique( video_stream_adapter_.get()); stream_resource_manager_.SetAdaptationProcessor( resource_adaptation_processor_.get(), video_stream_adapter_.get()); resource_adaptation_processor_->AddResourceLimitationsListener( &stream_resource_manager_); video_stream_adapter_->AddRestrictionsListener(&stream_resource_manager_); video_stream_adapter_->AddRestrictionsListener(this); stream_resource_manager_.MaybeInitializePixelLimitResource(); // Add the stream resource manager's resources to the processor. adaptation_constraints_ = stream_resource_manager_.AdaptationConstraints(); for (auto* constraint : adaptation_constraints_) { video_stream_adapter_->AddAdaptationConstraint(constraint); } }); } VideoStreamEncoder::~VideoStreamEncoder() { RTC_DCHECK_RUN_ON(worker_queue_); RTC_DCHECK(!video_source_sink_controller_.HasSource()) << "Must call ::Stop() before destruction."; // The queue must be destroyed before its pointer is invalidated to avoid race // between destructor and running task that check if function is called on the // encoder_queue_. // std::unique_ptr destructor does the same two operations in reverse order as // it doesn't expect member would be used after its destruction has started. encoder_queue_.get_deleter()(encoder_queue_.get()); encoder_queue_.release(); } void VideoStreamEncoder::Stop() { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.SetSource(nullptr); rtc::Event shutdown_event; absl::Cleanup shutdown = [&shutdown_event] { shutdown_event.Set(); }; encoder_queue_->PostTask([this, shutdown = std::move(shutdown)] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); if (resource_adaptation_processor_) { stream_resource_manager_.StopManagedResources(); for (auto* constraint : adaptation_constraints_) { video_stream_adapter_->RemoveAdaptationConstraint(constraint); } for (auto& resource : additional_resources_) { stream_resource_manager_.RemoveResource(resource); } additional_resources_.clear(); video_stream_adapter_->RemoveRestrictionsListener(this); video_stream_adapter_->RemoveRestrictionsListener( &stream_resource_manager_); resource_adaptation_processor_->RemoveResourceLimitationsListener( &stream_resource_manager_); stream_resource_manager_.SetAdaptationProcessor(nullptr, nullptr); resource_adaptation_processor_.reset(); } rate_allocator_ = nullptr; ReleaseEncoder(); encoder_ = nullptr; frame_cadence_adapter_ = nullptr; }); shutdown_event.Wait(rtc::Event::kForever); } void VideoStreamEncoder::SetFecControllerOverride( FecControllerOverride* fec_controller_override) { encoder_queue_->PostTask([this, fec_controller_override] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_DCHECK(!fec_controller_override_); fec_controller_override_ = fec_controller_override; if (encoder_) { encoder_->SetFecControllerOverride(fec_controller_override_); } }); } void VideoStreamEncoder::AddAdaptationResource( rtc::scoped_refptr resource) { RTC_DCHECK_RUN_ON(worker_queue_); TRACE_EVENT0("webrtc", "VideoStreamEncoder::AddAdaptationResource"); // Map any externally added resources as kCpu for the sake of stats reporting. // TODO(hbos): Make the manager map any unknown resources to kCpu and get rid // of this MapResourceToReason() call. TRACE_EVENT_ASYNC_BEGIN0( "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this); encoder_queue_->PostTask([this, resource = std::move(resource)] { TRACE_EVENT_ASYNC_END0( "webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this); RTC_DCHECK_RUN_ON(encoder_queue_.get()); additional_resources_.push_back(resource); stream_resource_manager_.AddResource(resource, VideoAdaptationReason::kCpu); }); } std::vector> VideoStreamEncoder::GetAdaptationResources() { RTC_DCHECK_RUN_ON(worker_queue_); // In practice, this method is only called by tests to verify operations that // run on the encoder queue. So rather than force PostTask() operations to // be accompanied by an event and a `Wait()`, we'll use PostTask + Wait() // here. rtc::Event event; std::vector> resources; encoder_queue_->PostTask([&] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); resources = resource_adaptation_processor_->GetResources(); event.Set(); }); event.Wait(rtc::Event::kForever); return resources; } void VideoStreamEncoder::SetSource( rtc::VideoSourceInterface* source, const DegradationPreference& degradation_preference) { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.SetSource(source); input_state_provider_.OnHasInputChanged(source); // This may trigger reconfiguring the QualityScaler on the encoder queue. encoder_queue_->PostTask([this, degradation_preference] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); degradation_preference_manager_->SetDegradationPreference( degradation_preference); stream_resource_manager_.SetDegradationPreferences(degradation_preference); if (encoder_) { stream_resource_manager_.ConfigureQualityScaler( encoder_->GetEncoderInfo()); stream_resource_manager_.ConfigureBandwidthQualityScaler( encoder_->GetEncoderInfo()); } }); } void VideoStreamEncoder::SetSink(EncoderSink* sink, bool rotation_applied) { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.SetRotationApplied(rotation_applied); video_source_sink_controller_.PushSourceSinkSettings(); encoder_queue_->PostTask([this, sink] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); sink_ = sink; }); } void VideoStreamEncoder::SetStartBitrate(int start_bitrate_bps) { encoder_queue_->PostTask([this, start_bitrate_bps] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_LOG(LS_INFO) << "SetStartBitrate " << start_bitrate_bps; encoder_target_bitrate_bps_ = start_bitrate_bps != 0 ? absl::optional(start_bitrate_bps) : absl::nullopt; stream_resource_manager_.SetStartBitrate( DataRate::BitsPerSec(start_bitrate_bps)); }); } void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config, size_t max_data_payload_length) { ConfigureEncoder(std::move(config), max_data_payload_length, nullptr); } void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config, size_t max_data_payload_length, SetParametersCallback callback) { RTC_DCHECK_RUN_ON(worker_queue_); encoder_queue_->PostTask([this, config = std::move(config), max_data_payload_length, callback = std::move(callback)]() mutable { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_DCHECK(sink_); RTC_LOG(LS_INFO) << "ConfigureEncoder requested."; // Set up the frame cadence adapter according to if we're going to do // screencast. The final number of spatial layers is based on info // in `send_codec_`, which is computed based on incoming frame // dimensions which can only be determined later. // // Note: zero-hertz mode isn't enabled by this alone. Constraints also // have to be set up with min_fps = 0 and max_fps > 0. if (config.content_type == VideoEncoderConfig::ContentType::kScreen) { frame_cadence_adapter_->SetZeroHertzModeEnabled( FrameCadenceAdapterInterface::ZeroHertzModeParams{}); } else { frame_cadence_adapter_->SetZeroHertzModeEnabled(absl::nullopt); } pending_encoder_creation_ = (!encoder_ || encoder_config_.video_format != config.video_format || max_data_payload_length_ != max_data_payload_length); encoder_config_ = std::move(config); max_data_payload_length_ = max_data_payload_length; pending_encoder_reconfiguration_ = true; // Reconfigure the encoder now if the frame resolution is known. // Otherwise, the reconfiguration is deferred until the next frame to // minimize the number of reconfigurations. The codec configuration // depends on incoming video frame size. if (last_frame_info_) { if (callback) { encoder_configuration_callbacks_.push_back(std::move(callback)); } ReconfigureEncoder(); } else { webrtc::InvokeSetParametersCallback(callback, webrtc::RTCError::OK()); } }); } // We should reduce the number of 'full' ReconfigureEncoder(). If only need // subset of it at runtime, consider handle it in // VideoStreamEncoder::EncodeVideoFrame() when encoder_info_ != info. void VideoStreamEncoder::ReconfigureEncoder() { // Running on the encoder queue. RTC_DCHECK(pending_encoder_reconfiguration_); bool encoder_reset_required = false; if (pending_encoder_creation_) { // Destroy existing encoder instance before creating a new one. Otherwise // attempt to create another instance will fail if encoder factory // supports only single instance of encoder of given type. encoder_.reset(); encoder_ = MaybeCreateFrameDumpingEncoderWrapper( settings_.encoder_factory->CreateVideoEncoder( encoder_config_.video_format), field_trials_); if (!encoder_) { RTC_LOG(LS_ERROR) << "CreateVideoEncoder failed, failing encoder format: " << encoder_config_.video_format.ToString(); RequestEncoderSwitch(); return; } if (encoder_selector_) { encoder_selector_->OnCurrentEncoder(encoder_config_.video_format); } encoder_->SetFecControllerOverride(fec_controller_override_); encoder_reset_required = true; } // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory // Possibly adjusts scale_resolution_down_by in `encoder_config_` to limit the // alignment value. AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors( encoder_->GetEncoderInfo(), &encoder_config_, absl::nullopt); std::vector streams; if (encoder_config_.video_stream_factory) { // Note: only tests set their own EncoderStreamFactory... streams = encoder_config_.video_stream_factory->CreateEncoderStreams( last_frame_info_->width, last_frame_info_->height, encoder_config_); } else { rtc::scoped_refptr factory = rtc::make_ref_counted( encoder_config_.video_format.name, encoder_config_.max_qp, encoder_config_.content_type == webrtc::VideoEncoderConfig::ContentType::kScreen, encoder_config_.legacy_conference_mode, encoder_->GetEncoderInfo(), MergeRestrictions({latest_restrictions_, animate_restrictions_}), &field_trials_); streams = factory->CreateEncoderStreams( last_frame_info_->width, last_frame_info_->height, encoder_config_); } // TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory // Get alignment when actual number of layers are known. int alignment = AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors( encoder_->GetEncoderInfo(), &encoder_config_, streams.size()); // Check that the higher layers do not try to set number of temporal layers // to less than 1. // TODO(brandtr): Get rid of the wrapping optional as it serves no purpose // at this layer. #if RTC_DCHECK_IS_ON for (const auto& stream : streams) { RTC_DCHECK_GE(stream.num_temporal_layers.value_or(1), 1); } #endif // TODO(ilnik): If configured resolution is significantly less than provided, // e.g. because there are not enough SSRCs for all simulcast streams, // signal new resolutions via SinkWants to video source. // Stream dimensions may be not equal to given because of a simulcast // restrictions. auto highest_stream = absl::c_max_element( streams, [](const webrtc::VideoStream& a, const webrtc::VideoStream& b) { return std::tie(a.width, a.height) < std::tie(b.width, b.height); }); int highest_stream_width = static_cast(highest_stream->width); int highest_stream_height = static_cast(highest_stream->height); // Dimension may be reduced to be, e.g. divisible by 4. RTC_CHECK_GE(last_frame_info_->width, highest_stream_width); RTC_CHECK_GE(last_frame_info_->height, highest_stream_height); crop_width_ = last_frame_info_->width - highest_stream_width; crop_height_ = last_frame_info_->height - highest_stream_height; if (!encoder_->GetEncoderInfo().is_qp_trusted.value_or(true)) { // when qp is not trusted, we priorities to using the // |resolution_bitrate_limits| provided by the decoder. const std::vector& bitrate_limits = encoder_->GetEncoderInfo().resolution_bitrate_limits.empty() ? EncoderInfoSettings:: GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted() : encoder_->GetEncoderInfo().resolution_bitrate_limits; // For BandwidthQualityScaler, its implement based on a certain pixel_count // correspond a certain bps interval. In fact, WebRTC default max_bps is // 2500Kbps when width * height > 960 * 540. For example, we assume: // 1.the camera support 1080p. // 2.ResolutionBitrateLimits set 720p bps interval is [1500Kbps,2000Kbps]. // 3.ResolutionBitrateLimits set 1080p bps interval is [2000Kbps,2500Kbps]. // We will never be stable at 720p due to actual encoding bps of 720p and // 1080p are both 2500Kbps. So it is necessary to do a linear interpolation // to get a certain bitrate for certain pixel_count. It also doesn't work // for 960*540 and 640*520, we will nerver be stable at 640*520 due to their // |target_bitrate_bps| are both 2000Kbps. absl::optional qp_untrusted_bitrate_limit = EncoderInfoSettings:: GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted( last_frame_info_->width * last_frame_info_->height, bitrate_limits); if (qp_untrusted_bitrate_limit) { // bandwidth_quality_scaler is only used for singlecast. if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) { VideoStream& stream = streams.back(); stream.max_bitrate_bps = std::min(stream.max_bitrate_bps, qp_untrusted_bitrate_limit->max_bitrate_bps); stream.min_bitrate_bps = std::min(stream.max_bitrate_bps, qp_untrusted_bitrate_limit->min_bitrate_bps); // If it is screen share mode, the minimum value of max_bitrate should // be greater than/equal to 1200kbps. if (encoder_config_.content_type == VideoEncoderConfig::ContentType::kScreen) { stream.max_bitrate_bps = std::max(stream.max_bitrate_bps, kDefaultMinScreenSharebps); } stream.target_bitrate_bps = stream.max_bitrate_bps; } } } else { absl::optional encoder_bitrate_limits = encoder_->GetEncoderInfo().GetEncoderBitrateLimitsForResolution( last_frame_info_->width * last_frame_info_->height); if (encoder_bitrate_limits) { if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) { // Bitrate limits can be set by app (in SDP or RtpEncodingParameters) // or/and can be provided by encoder. In presence of both set of // limits, the final set is derived as their intersection. int min_bitrate_bps; if (encoder_config_.simulcast_layers[0].min_bitrate_bps <= 0) { min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps; } else { min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps, streams.back().min_bitrate_bps); } int max_bitrate_bps; // The API max bitrate comes from both `encoder_config_.max_bitrate_bps` // and `encoder_config_.simulcast_layers[0].max_bitrate_bps`. absl::optional api_max_bitrate_bps; if (encoder_config_.simulcast_layers[0].max_bitrate_bps > 0) { api_max_bitrate_bps = encoder_config_.simulcast_layers[0].max_bitrate_bps; } if (encoder_config_.max_bitrate_bps > 0) { api_max_bitrate_bps = api_max_bitrate_bps.has_value() ? std::min(encoder_config_.max_bitrate_bps, *api_max_bitrate_bps) : encoder_config_.max_bitrate_bps; } if (!api_max_bitrate_bps.has_value()) { max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps; } else { max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps, streams.back().max_bitrate_bps); } if (min_bitrate_bps < max_bitrate_bps) { streams.back().min_bitrate_bps = min_bitrate_bps; streams.back().max_bitrate_bps = max_bitrate_bps; streams.back().target_bitrate_bps = std::min(streams.back().target_bitrate_bps, encoder_bitrate_limits->max_bitrate_bps); } else { RTC_LOG(LS_WARNING) << "Bitrate limits provided by encoder" << " (min=" << encoder_bitrate_limits->min_bitrate_bps << ", max=" << encoder_bitrate_limits->max_bitrate_bps << ") do not intersect with limits set by app" << " (min=" << streams.back().min_bitrate_bps << ", max=" << api_max_bitrate_bps.value_or(-1) << "). The app bitrate limits will be used."; } } } } ApplyEncoderBitrateLimitsIfSingleActiveStream( GetEncoderInfoWithBitrateLimitUpdate( encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_), encoder_config_.simulcast_layers, &streams); VideoCodec codec; if (!VideoCodecInitializer::SetupCodec(encoder_config_, streams, &codec)) { RTC_LOG(LS_ERROR) << "Failed to create encoder configuration."; } if (encoder_config_.codec_type == kVideoCodecVP9 || encoder_config_.codec_type == kVideoCodecAV1) { // Spatial layers configuration might impose some parity restrictions, // thus some cropping might be needed. crop_width_ = last_frame_info_->width - codec.width; crop_height_ = last_frame_info_->height - codec.height; ApplySpatialLayerBitrateLimits( GetEncoderInfoWithBitrateLimitUpdate(encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_), encoder_config_, &codec); } char log_stream_buf[4 * 1024]; rtc::SimpleStringBuilder log_stream(log_stream_buf); log_stream << "ReconfigureEncoder:\n"; log_stream << "Simulcast streams:\n"; for (size_t i = 0; i < codec.numberOfSimulcastStreams; ++i) { log_stream << i << ": " << codec.simulcastStream[i].width << "x" << codec.simulcastStream[i].height << " min_kbps: " << codec.simulcastStream[i].minBitrate << " target_kbps: " << codec.simulcastStream[i].targetBitrate << " max_kbps: " << codec.simulcastStream[i].maxBitrate << " max_fps: " << codec.simulcastStream[i].maxFramerate << " max_qp: " << codec.simulcastStream[i].qpMax << " num_tl: " << codec.simulcastStream[i].numberOfTemporalLayers << " active: " << (codec.simulcastStream[i].active ? "true" : "false") << "\n"; } if (encoder_config_.codec_type == kVideoCodecVP9 || encoder_config_.codec_type == kVideoCodecAV1) { log_stream << "Spatial layers:\n"; for (int i = 0; i < GetNumSpatialLayers(codec); ++i) { log_stream << i << ": " << codec.spatialLayers[i].width << "x" << codec.spatialLayers[i].height << " min_kbps: " << codec.spatialLayers[i].minBitrate << " target_kbps: " << codec.spatialLayers[i].targetBitrate << " max_kbps: " << codec.spatialLayers[i].maxBitrate << " max_fps: " << codec.spatialLayers[i].maxFramerate << " max_qp: " << codec.spatialLayers[i].qpMax << " num_tl: " << codec.spatialLayers[i].numberOfTemporalLayers << " active: " << (codec.spatialLayers[i].active ? "true" : "false") << "\n"; } } RTC_LOG(LS_INFO) << log_stream.str(); codec.startBitrate = std::max(encoder_target_bitrate_bps_.value_or(0) / 1000, codec.minBitrate); codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate); codec.expect_encode_from_texture = last_frame_info_->is_texture; // Make sure the start bit rate is sane... RTC_DCHECK_LE(codec.startBitrate, 1000000); max_framerate_ = codec.maxFramerate; // Inform source about max configured framerate, // requested_resolution and which layers are active. int max_framerate = 0; // Is any layer active. bool active = false; // The max requested_resolution. absl::optional requested_resolution; for (const auto& stream : streams) { max_framerate = std::max(stream.max_framerate, max_framerate); active |= stream.active; // Note: we propagate the highest requested_resolution regardless // if layer is active or not. if (stream.requested_resolution) { if (!requested_resolution) { requested_resolution.emplace(stream.requested_resolution->width, stream.requested_resolution->height); } else { requested_resolution.emplace( std::max(stream.requested_resolution->width, requested_resolution->width), std::max(stream.requested_resolution->height, requested_resolution->height)); } } } // The resolutions that we're actually encoding with. std::vector encoder_resolutions; // TODO(hbos): For the case of SVC, also make use of `codec.spatialLayers`. // For now, SVC layers are handled by the VP9 encoder. for (const auto& simulcastStream : codec.simulcastStream) { if (!simulcastStream.active) continue; encoder_resolutions.emplace_back(simulcastStream.width, simulcastStream.height); } worker_queue_->PostTask(SafeTask( task_safety_.flag(), [this, max_framerate, alignment, encoder_resolutions = std::move(encoder_resolutions), requested_resolution = std::move(requested_resolution), active]() { RTC_DCHECK_RUN_ON(worker_queue_); if (max_framerate != video_source_sink_controller_.frame_rate_upper_limit() || alignment != video_source_sink_controller_.resolution_alignment() || encoder_resolutions != video_source_sink_controller_.resolutions() || (video_source_sink_controller_.requested_resolution() != requested_resolution) || (video_source_sink_controller_.active() != active)) { video_source_sink_controller_.SetFrameRateUpperLimit(max_framerate); video_source_sink_controller_.SetResolutionAlignment(alignment); video_source_sink_controller_.SetResolutions( std::move(encoder_resolutions)); video_source_sink_controller_.SetRequestedResolution( requested_resolution); video_source_sink_controller_.SetActive(active); video_source_sink_controller_.PushSourceSinkSettings(); } })); rate_allocator_ = settings_.bitrate_allocator_factory->CreateVideoBitrateAllocator(codec); rate_allocator_->SetLegacyConferenceMode( encoder_config_.legacy_conference_mode); // Reset (release existing encoder) if one exists and anything except // start bitrate or max framerate has changed. if (!encoder_reset_required) { encoder_reset_required = RequiresEncoderReset( send_codec_, codec, was_encode_called_since_last_initialization_); } if (codec.codecType == VideoCodecType::kVideoCodecVP9 && number_of_cores_ <= vp9_low_tier_core_threshold_.value_or(0)) { codec.SetVideoEncoderComplexity(VideoCodecComplexity::kComplexityLow); } send_codec_ = codec; // Keep the same encoder, as long as the video_format is unchanged. // Encoder creation block is split in two since EncoderInfo needed to start // CPU adaptation with the correct settings should be polled after // encoder_->InitEncode(). if (encoder_reset_required) { ReleaseEncoder(); const size_t max_data_payload_length = max_data_payload_length_ > 0 ? max_data_payload_length_ : kDefaultPayloadSize; VideoEncoder::Settings settings = VideoEncoder::Settings( settings_.capabilities, number_of_cores_, max_data_payload_length); settings.encoder_thread_limit = experimental_encoder_thread_limit_; int error = encoder_->InitEncode(&send_codec_, settings); if (error != 0) { RTC_LOG(LS_ERROR) << "Failed to initialize the encoder associated with " "codec type: " << CodecTypeToPayloadString(send_codec_.codecType) << " (" << send_codec_.codecType << "). Error: " << error; ReleaseEncoder(); } else { encoder_initialized_ = true; encoder_->RegisterEncodeCompleteCallback(this); frame_encode_metadata_writer_.OnEncoderInit(send_codec_); next_frame_types_.clear(); next_frame_types_.resize( std::max(static_cast(codec.numberOfSimulcastStreams), 1), VideoFrameType::kVideoFrameKey); } frame_encode_metadata_writer_.Reset(); last_encode_info_ms_ = absl::nullopt; was_encode_called_since_last_initialization_ = false; } // Inform dependents of updated encoder settings. OnEncoderSettingsChanged(); if (encoder_initialized_) { RTC_LOG(LS_VERBOSE) << " max bitrate " << codec.maxBitrate << " start bitrate " << codec.startBitrate << " max frame rate " << codec.maxFramerate << " max payload size " << max_data_payload_length_; } else { RTC_LOG(LS_ERROR) << "Failed to configure encoder."; rate_allocator_ = nullptr; } if (pending_encoder_creation_) { stream_resource_manager_.ConfigureEncodeUsageResource(); pending_encoder_creation_ = false; } int num_layers; if (codec.codecType == kVideoCodecVP8) { num_layers = codec.VP8()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecVP9) { num_layers = codec.VP9()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecAV1 && codec.GetScalabilityMode().has_value()) { num_layers = ScalabilityModeToNumTemporalLayers(*(codec.GetScalabilityMode())); } else if (codec.codecType == kVideoCodecH264) { num_layers = codec.H264()->numberOfTemporalLayers; } else if (codec.codecType == kVideoCodecGeneric && codec.numberOfSimulcastStreams > 0) { // This is mainly for unit testing, disabling frame dropping. // TODO(sprang): Add a better way to disable frame dropping. num_layers = codec.simulcastStream[0].numberOfTemporalLayers; } else { // TODO(bugs.webrtc.org/13485): Implement H265 temporal layer num_layers = 1; } frame_dropper_.Reset(); frame_dropper_.SetRates(codec.startBitrate, max_framerate_); // Force-disable frame dropper if either: // * We have screensharing with layers. // * "WebRTC-FrameDropper" field trial is "Disabled". force_disable_frame_dropper_ = field_trials_.IsDisabled(kFrameDropperFieldTrial) || (num_layers > 1 && codec.mode == VideoCodecMode::kScreensharing); const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); if (rate_control_settings_.UseEncoderBitrateAdjuster()) { bitrate_adjuster_ = std::make_unique(codec, field_trials_); bitrate_adjuster_->OnEncoderInfo(info); } if (rate_allocator_ && last_encoder_rate_settings_) { // We have a new rate allocator instance and already configured target // bitrate. Update the rate allocation and notify observers. // We must invalidate the last_encoder_rate_settings_ to ensure // the changes get propagated to all listeners. EncoderRateSettings rate_settings = *last_encoder_rate_settings_; last_encoder_rate_settings_.reset(); rate_settings.rate_control.framerate_fps = GetInputFramerateFps(); SetEncoderRates(UpdateBitrateAllocation(rate_settings)); } encoder_stats_observer_->OnEncoderReconfigured(encoder_config_, streams); pending_encoder_reconfiguration_ = false; bool is_svc = false; bool single_stream_or_non_first_inactive = true; for (size_t i = 1; i < encoder_config_.simulcast_layers.size(); ++i) { if (encoder_config_.simulcast_layers[i].active) { single_stream_or_non_first_inactive = false; break; } } // Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9 // and AV1 and leave only one stream containing all necessary information. if ((encoder_config_.codec_type == kVideoCodecVP9 || encoder_config_.codec_type == kVideoCodecAV1) && single_stream_or_non_first_inactive) { // Lower max bitrate to the level codec actually can produce. streams[0].max_bitrate_bps = std::min(streams[0].max_bitrate_bps, SvcRateAllocator::GetMaxBitrate(codec).bps()); streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000; // target_bitrate_bps specifies the maximum padding bitrate. streams[0].target_bitrate_bps = SvcRateAllocator::GetPaddingBitrate(codec).bps(); streams[0].width = streams.back().width; streams[0].height = streams.back().height; is_svc = GetNumSpatialLayers(codec) > 1; streams.resize(1); } sink_->OnEncoderConfigurationChanged( std::move(streams), is_svc, encoder_config_.content_type, encoder_config_.min_transmit_bitrate_bps); stream_resource_manager_.ConfigureQualityScaler(info); stream_resource_manager_.ConfigureBandwidthQualityScaler(info); webrtc::RTCError encoder_configuration_result = webrtc::RTCError::OK(); if (!encoder_initialized_) { RTC_LOG(LS_WARNING) << "Failed to initialize " << CodecTypeToPayloadString(codec.codecType) << " encoder." << "switch_encoder_on_init_failures: " << switch_encoder_on_init_failures_; if (switch_encoder_on_init_failures_) { RequestEncoderSwitch(); } else { encoder_configuration_result = webrtc::RTCError(RTCErrorType::UNSUPPORTED_OPERATION); } } if (!encoder_configuration_callbacks_.empty()) { for (auto& callback : encoder_configuration_callbacks_) { webrtc::InvokeSetParametersCallback(callback, encoder_configuration_result); } encoder_configuration_callbacks_.clear(); } } void VideoStreamEncoder::RequestEncoderSwitch() { bool is_encoder_switching_supported = settings_.encoder_switch_request_callback != nullptr; bool is_encoder_selector_available = encoder_selector_ != nullptr; RTC_LOG(LS_INFO) << "RequestEncoderSwitch." << " is_encoder_selector_available: " << is_encoder_selector_available << " is_encoder_switching_supported: " << is_encoder_switching_supported; if (!is_encoder_switching_supported) { return; } // If encoder selector is available, switch to the encoder it prefers. // Otherwise try switching to VP8 (default WebRTC codec). absl::optional preferred_fallback_encoder; if (is_encoder_selector_available) { preferred_fallback_encoder = encoder_selector_->OnEncoderBroken(); } if (!preferred_fallback_encoder) { preferred_fallback_encoder = SdpVideoFormat(CodecTypeToPayloadString(kVideoCodecVP8)); } settings_.encoder_switch_request_callback->RequestEncoderSwitch( *preferred_fallback_encoder, /*allow_default_fallback=*/true); } void VideoStreamEncoder::OnEncoderSettingsChanged() { EncoderSettings encoder_settings( GetEncoderInfoWithBitrateLimitUpdate( encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_), encoder_config_.Copy(), send_codec_); stream_resource_manager_.SetEncoderSettings(encoder_settings); input_state_provider_.OnEncoderSettingsChanged(encoder_settings); bool is_screenshare = encoder_settings.encoder_config().content_type == VideoEncoderConfig::ContentType::kScreen; degradation_preference_manager_->SetIsScreenshare(is_screenshare); if (is_screenshare) { frame_cadence_adapter_->SetZeroHertzModeEnabled( FrameCadenceAdapterInterface::ZeroHertzModeParams{ send_codec_.numberOfSimulcastStreams}); } } void VideoStreamEncoder::OnFrame(Timestamp post_time, bool queue_overload, const VideoFrame& video_frame) { RTC_DCHECK_RUN_ON(encoder_queue_.get()); VideoFrame incoming_frame = video_frame; // In some cases, e.g., when the frame from decoder is fed to encoder, // the timestamp may be set to the future. As the encoding pipeline assumes // capture time to be less than present time, we should reset the capture // timestamps here. Otherwise there may be issues with RTP send stream. if (incoming_frame.timestamp_us() > post_time.us()) incoming_frame.set_timestamp_us(post_time.us()); // Capture time may come from clock with an offset and drift from clock_. int64_t capture_ntp_time_ms; if (video_frame.ntp_time_ms() > 0) { capture_ntp_time_ms = video_frame.ntp_time_ms(); } else if (video_frame.render_time_ms() != 0) { capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_; } else { capture_ntp_time_ms = post_time.ms() + delta_ntp_internal_ms_; } incoming_frame.set_ntp_time_ms(capture_ntp_time_ms); // Convert NTP time, in ms, to RTP timestamp. const int kMsToRtpTimestamp = 90; incoming_frame.set_timestamp( kMsToRtpTimestamp * static_cast(incoming_frame.ntp_time_ms())); // Identifier should remain the same for newly produced incoming frame and the // received |video_frame|. incoming_frame.set_capture_time_identifier( video_frame.capture_time_identifier()); if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) { // We don't allow the same capture time for two frames, drop this one. RTC_LOG(LS_WARNING) << "Same/old NTP timestamp (" << incoming_frame.ntp_time_ms() << " <= " << last_captured_timestamp_ << ") for incoming frame. Dropping."; ProcessDroppedFrame(incoming_frame, VideoStreamEncoderObserver::DropReason::kBadTimestamp); return; } bool log_stats = false; if (post_time.ms() - last_frame_log_ms_ > kFrameLogIntervalMs) { last_frame_log_ms_ = post_time.ms(); log_stats = true; } last_captured_timestamp_ = incoming_frame.ntp_time_ms(); encoder_stats_observer_->OnIncomingFrame(incoming_frame.width(), incoming_frame.height()); ++captured_frame_count_; CheckForAnimatedContent(incoming_frame, post_time.us()); bool cwnd_frame_drop = cwnd_frame_drop_interval_ && (cwnd_frame_counter_++ % cwnd_frame_drop_interval_.value() == 0); if (!queue_overload && !cwnd_frame_drop) { MaybeEncodeVideoFrame(incoming_frame, post_time.us()); } else { if (cwnd_frame_drop) { // Frame drop by congestion window pushback. Do not encode this // frame. ++dropped_frame_cwnd_pushback_count_; } else { // There is a newer frame in flight. Do not encode this frame. RTC_LOG(LS_VERBOSE) << "Incoming frame dropped due to that the encoder is blocked."; ++dropped_frame_encoder_block_count_; } ProcessDroppedFrame( incoming_frame, cwnd_frame_drop ? VideoStreamEncoderObserver::DropReason::kCongestionWindow : VideoStreamEncoderObserver::DropReason::kEncoderQueue); } if (log_stats) { RTC_LOG(LS_INFO) << "Number of frames: captured " << captured_frame_count_ << ", dropped (due to congestion window pushback) " << dropped_frame_cwnd_pushback_count_ << ", dropped (due to encoder blocked) " << dropped_frame_encoder_block_count_ << ", interval_ms " << kFrameLogIntervalMs; captured_frame_count_ = 0; dropped_frame_cwnd_pushback_count_ = 0; dropped_frame_encoder_block_count_ = 0; } } void VideoStreamEncoder::OnDiscardedFrame() { encoder_stats_observer_->OnFrameDropped( VideoStreamEncoderObserver::DropReason::kSource); } bool VideoStreamEncoder::EncoderPaused() const { RTC_DCHECK_RUN_ON(encoder_queue_.get()); // Pause video if paused by caller or as long as the network is down or the // pacer queue has grown too large in buffered mode. // If the pacer queue has grown too large or the network is down, // `last_encoder_rate_settings_->encoder_target` will be 0. return !last_encoder_rate_settings_ || last_encoder_rate_settings_->encoder_target == DataRate::Zero(); } void VideoStreamEncoder::TraceFrameDropStart() { RTC_DCHECK_RUN_ON(encoder_queue_.get()); // Start trace event only on the first frame after encoder is paused. if (!encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = true; } void VideoStreamEncoder::TraceFrameDropEnd() { RTC_DCHECK_RUN_ON(encoder_queue_.get()); // End trace event on first frame after encoder resumes, if frame was dropped. if (encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = false; } VideoStreamEncoder::EncoderRateSettings VideoStreamEncoder::UpdateBitrateAllocation( const EncoderRateSettings& rate_settings) { VideoBitrateAllocation new_allocation; // Only call allocators if bitrate > 0 (ie, not suspended), otherwise they // might cap the bitrate to the min bitrate configured. if (rate_allocator_ && rate_settings.encoder_target > DataRate::Zero()) { new_allocation = rate_allocator_->Allocate(VideoBitrateAllocationParameters( rate_settings.encoder_target, rate_settings.stable_encoder_target, rate_settings.rate_control.framerate_fps)); } EncoderRateSettings new_rate_settings = rate_settings; new_rate_settings.rate_control.target_bitrate = new_allocation; new_rate_settings.rate_control.bitrate = new_allocation; // VideoBitrateAllocator subclasses may allocate a bitrate higher than the // target in order to sustain the min bitrate of the video codec. In this // case, make sure the bandwidth allocation is at least equal the allocation // as that is part of the document contract for that field. new_rate_settings.rate_control.bandwidth_allocation = std::max(new_rate_settings.rate_control.bandwidth_allocation, DataRate::BitsPerSec( new_rate_settings.rate_control.bitrate.get_sum_bps())); if (bitrate_adjuster_) { VideoBitrateAllocation adjusted_allocation = bitrate_adjuster_->AdjustRateAllocation(new_rate_settings.rate_control); RTC_LOG(LS_VERBOSE) << "Adjusting allocation, fps = " << rate_settings.rate_control.framerate_fps << ", from " << new_allocation.ToString() << ", to " << adjusted_allocation.ToString(); new_rate_settings.rate_control.bitrate = adjusted_allocation; } return new_rate_settings; } uint32_t VideoStreamEncoder::GetInputFramerateFps() { const uint32_t default_fps = max_framerate_ != -1 ? max_framerate_ : 30; // This method may be called after we cleared out the frame_cadence_adapter_ // reference in Stop(). In such a situation it's probably not important with a // decent estimate. absl::optional input_fps = frame_cadence_adapter_ ? frame_cadence_adapter_->GetInputFrameRateFps() : absl::nullopt; if (!input_fps || *input_fps == 0) { return default_fps; } return *input_fps; } void VideoStreamEncoder::SetEncoderRates( const EncoderRateSettings& rate_settings) { RTC_DCHECK_GT(rate_settings.rate_control.framerate_fps, 0.0); bool rate_control_changed = (!last_encoder_rate_settings_.has_value() || last_encoder_rate_settings_->rate_control != rate_settings.rate_control); // For layer allocation signal we care only about the target bitrate (not the // adjusted one) and the target fps. bool layer_allocation_changed = !last_encoder_rate_settings_.has_value() || last_encoder_rate_settings_->rate_control.target_bitrate != rate_settings.rate_control.target_bitrate || last_encoder_rate_settings_->rate_control.framerate_fps != rate_settings.rate_control.framerate_fps; if (last_encoder_rate_settings_ != rate_settings) { last_encoder_rate_settings_ = rate_settings; } if (!encoder_) return; // Make the cadence adapter know if streams were disabled. for (int spatial_index = 0; spatial_index != send_codec_.numberOfSimulcastStreams; ++spatial_index) { frame_cadence_adapter_->UpdateLayerStatus( spatial_index, /*enabled=*/rate_settings.rate_control.target_bitrate .GetSpatialLayerSum(spatial_index) > 0); } // `bitrate_allocation` is 0 it means that the network is down or the send // pacer is full. We currently don't pass this on to the encoder since it is // unclear how current encoder implementations behave when given a zero target // bitrate. // TODO(perkj): Make sure all known encoder implementations handle zero // target bitrate and remove this check. if (rate_settings.rate_control.bitrate.get_sum_bps() == 0) return; if (rate_control_changed) { encoder_->SetRates(rate_settings.rate_control); encoder_stats_observer_->OnBitrateAllocationUpdated( send_codec_, rate_settings.rate_control.bitrate); frame_encode_metadata_writer_.OnSetRates( rate_settings.rate_control.bitrate, static_cast(rate_settings.rate_control.framerate_fps + 0.5)); stream_resource_manager_.SetEncoderRates(rate_settings.rate_control); if (layer_allocation_changed && allocation_cb_type_ == BitrateAllocationCallbackType::kVideoLayersAllocation) { sink_->OnVideoLayersAllocationUpdated(CreateVideoLayersAllocation( send_codec_, rate_settings.rate_control, encoder_->GetEncoderInfo())); } } if ((allocation_cb_type_ == BitrateAllocationCallbackType::kVideoBitrateAllocation) || (encoder_config_.content_type == VideoEncoderConfig::ContentType::kScreen && allocation_cb_type_ == BitrateAllocationCallbackType:: kVideoBitrateAllocationWhenScreenSharing)) { sink_->OnBitrateAllocationUpdated( // Update allocation according to info from encoder. An encoder may // choose to not use all layers due to for example HW. UpdateAllocationFromEncoderInfo( rate_settings.rate_control.target_bitrate, encoder_->GetEncoderInfo())); } } void VideoStreamEncoder::MaybeEncodeVideoFrame(const VideoFrame& video_frame, int64_t time_when_posted_us) { RTC_DCHECK_RUN_ON(encoder_queue_.get()); input_state_provider_.OnFrameSizeObserved(video_frame.size()); if (!last_frame_info_ || video_frame.width() != last_frame_info_->width || video_frame.height() != last_frame_info_->height || video_frame.is_texture() != last_frame_info_->is_texture) { if ((!last_frame_info_ || video_frame.width() != last_frame_info_->width || video_frame.height() != last_frame_info_->height) && settings_.encoder_switch_request_callback && encoder_selector_) { if (auto encoder = encoder_selector_->OnResolutionChange( {video_frame.width(), video_frame.height()})) { settings_.encoder_switch_request_callback->RequestEncoderSwitch( *encoder, /*allow_default_fallback=*/false); } } pending_encoder_reconfiguration_ = true; last_frame_info_ = VideoFrameInfo(video_frame.width(), video_frame.height(), video_frame.is_texture()); RTC_LOG(LS_INFO) << "Video frame parameters changed: dimensions=" << last_frame_info_->width << "x" << last_frame_info_->height << ", texture=" << last_frame_info_->is_texture << "."; // Force full frame update, since resolution has changed. accumulated_update_rect_ = VideoFrame::UpdateRect{0, 0, video_frame.width(), video_frame.height()}; } // We have to create the encoder before the frame drop logic, // because the latter depends on encoder_->GetScalingSettings. // According to the testcase // InitialFrameDropOffWhenEncoderDisabledScaling, the return value // from GetScalingSettings should enable or disable the frame drop. // Update input frame rate before we start using it. If we update it after // any potential frame drop we are going to artificially increase frame sizes. // Poll the rate before updating, otherwise we risk the rate being estimated // a little too high at the start of the call when then window is small. uint32_t framerate_fps = GetInputFramerateFps(); frame_cadence_adapter_->UpdateFrameRate(); int64_t now_ms = clock_->TimeInMilliseconds(); if (pending_encoder_reconfiguration_) { ReconfigureEncoder(); last_parameters_update_ms_.emplace(now_ms); } else if (!last_parameters_update_ms_ || now_ms - *last_parameters_update_ms_ >= kParameterUpdateIntervalMs) { if (last_encoder_rate_settings_) { // Clone rate settings before update, so that SetEncoderRates() will // actually detect the change between the input and // `last_encoder_rate_setings_`, triggering the call to SetRate() on the // encoder. EncoderRateSettings new_rate_settings = *last_encoder_rate_settings_; new_rate_settings.rate_control.framerate_fps = static_cast(framerate_fps); SetEncoderRates(UpdateBitrateAllocation(new_rate_settings)); } last_parameters_update_ms_.emplace(now_ms); } // Because pending frame will be dropped in any case, we need to // remember its updated region. if (pending_frame_) { ProcessDroppedFrame(*pending_frame_, VideoStreamEncoderObserver::DropReason::kEncoderQueue); } if (DropDueToSize(video_frame.size())) { RTC_LOG(LS_INFO) << "Dropping frame. Too large for target bitrate."; stream_resource_manager_.OnFrameDroppedDueToSize(); // Storing references to a native buffer risks blocking frame capture. if (video_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) { pending_frame_ = video_frame; pending_frame_post_time_us_ = time_when_posted_us; } else { // Ensure that any previously stored frame is dropped. pending_frame_.reset(); ProcessDroppedFrame( video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue); } return; } stream_resource_manager_.OnMaybeEncodeFrame(); if (EncoderPaused()) { // Storing references to a native buffer risks blocking frame capture. if (video_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative) { if (pending_frame_) TraceFrameDropStart(); pending_frame_ = video_frame; pending_frame_post_time_us_ = time_when_posted_us; } else { // Ensure that any previously stored frame is dropped. pending_frame_.reset(); TraceFrameDropStart(); ProcessDroppedFrame( video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue); } return; } pending_frame_.reset(); frame_dropper_.Leak(framerate_fps); // Frame dropping is enabled iff frame dropping is not force-disabled, and // rate controller is not trusted. const bool frame_dropping_enabled = !force_disable_frame_dropper_ && !encoder_info_.has_trusted_rate_controller; frame_dropper_.Enable(frame_dropping_enabled); if (frame_dropping_enabled && frame_dropper_.DropFrame()) { RTC_LOG(LS_VERBOSE) << "Drop Frame: " "target bitrate " << (last_encoder_rate_settings_ ? last_encoder_rate_settings_->encoder_target.bps() : 0) << ", input frame rate " << framerate_fps; ProcessDroppedFrame( video_frame, VideoStreamEncoderObserver::DropReason::kMediaOptimization); return; } EncodeVideoFrame(video_frame, time_when_posted_us); } void VideoStreamEncoder::EncodeVideoFrame(const VideoFrame& video_frame, int64_t time_when_posted_us) { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_LOG(LS_VERBOSE) << __func__ << " posted " << time_when_posted_us << " ntp time " << video_frame.ntp_time_ms(); // If the encoder fail we can't continue to encode frames. When this happens // the WebrtcVideoSender is notified and the whole VideoSendStream is // recreated. if (encoder_failed_ || !encoder_initialized_) return; // It's possible that EncodeVideoFrame can be called after we've completed // a Stop() operation. Check if the encoder_ is set before continuing. // See: bugs.webrtc.org/12857 if (!encoder_) return; TraceFrameDropEnd(); // Encoder metadata needs to be updated before encode complete callback. const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo(); if (info.implementation_name != encoder_info_.implementation_name || info.is_hardware_accelerated != encoder_info_.is_hardware_accelerated) { encoder_stats_observer_->OnEncoderImplementationChanged({ .name = info.implementation_name, .is_hardware_accelerated = info.is_hardware_accelerated, }); if (bitrate_adjuster_) { // Encoder implementation changed, reset overshoot detector states. bitrate_adjuster_->Reset(); } } if (encoder_info_ != info) { OnEncoderSettingsChanged(); stream_resource_manager_.ConfigureEncodeUsageResource(); // Re-configure scalers when encoder info changed. Consider two cases: // 1. When the status of the scaler changes from enabled to disabled, if we // don't do this CL, scaler will adapt up/down to trigger an unnecessary // full ReconfigureEncoder() when the scaler should be banned. // 2. When the status of the scaler changes from disabled to enabled, if we // don't do this CL, scaler will not work until some code trigger // ReconfigureEncoder(). In extreme cases, the scaler doesn't even work for // a long time when we expect that the scaler should work. stream_resource_manager_.ConfigureQualityScaler(info); stream_resource_manager_.ConfigureBandwidthQualityScaler(info); RTC_LOG(LS_INFO) << "Encoder info changed to " << info.ToString(); } if (bitrate_adjuster_) { for (size_t si = 0; si < kMaxSpatialLayers; ++si) { if (info.fps_allocation[si] != encoder_info_.fps_allocation[si]) { bitrate_adjuster_->OnEncoderInfo(info); break; } } } encoder_info_ = info; last_encode_info_ms_ = clock_->TimeInMilliseconds(); VideoFrame out_frame(video_frame); // Crop or scale the frame if needed. Dimension may be reduced to fit encoder // requirements, e.g. some encoders may require them to be divisible by 4. if ((crop_width_ > 0 || crop_height_ > 0) && (out_frame.video_frame_buffer()->type() != VideoFrameBuffer::Type::kNative || !info.supports_native_handle)) { int cropped_width = video_frame.width() - crop_width_; int cropped_height = video_frame.height() - crop_height_; rtc::scoped_refptr cropped_buffer; // TODO(ilnik): Remove scaling if cropping is too big, as it should never // happen after SinkWants signaled correctly from ReconfigureEncoder. VideoFrame::UpdateRect update_rect = video_frame.update_rect(); if (crop_width_ < 4 && crop_height_ < 4) { // The difference is small, crop without scaling. cropped_buffer = video_frame.video_frame_buffer()->CropAndScale( crop_width_ / 2, crop_height_ / 2, cropped_width, cropped_height, cropped_width, cropped_height); update_rect.offset_x -= crop_width_ / 2; update_rect.offset_y -= crop_height_ / 2; update_rect.Intersect( VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}); } else { // The difference is large, scale it. cropped_buffer = video_frame.video_frame_buffer()->Scale(cropped_width, cropped_height); if (!update_rect.IsEmpty()) { // Since we can't reason about pixels after scaling, we invalidate whole // picture, if anything changed. update_rect = VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height}; } } if (!cropped_buffer) { RTC_LOG(LS_ERROR) << "Cropping and scaling frame failed, dropping frame."; return; } out_frame.set_video_frame_buffer(cropped_buffer); out_frame.set_update_rect(update_rect); out_frame.set_ntp_time_ms(video_frame.ntp_time_ms()); out_frame.set_capture_time_identifier( video_frame.capture_time_identifier()); // Since accumulated_update_rect_ is constructed before cropping, // we can't trust it. If any changes were pending, we invalidate whole // frame here. if (!accumulated_update_rect_.IsEmpty()) { accumulated_update_rect_ = VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}; accumulated_update_rect_is_valid_ = false; } } if (!accumulated_update_rect_is_valid_) { out_frame.clear_update_rect(); } else if (!accumulated_update_rect_.IsEmpty() && out_frame.has_update_rect()) { accumulated_update_rect_.Union(out_frame.update_rect()); accumulated_update_rect_.Intersect( VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()}); out_frame.set_update_rect(accumulated_update_rect_); accumulated_update_rect_.MakeEmptyUpdate(); } accumulated_update_rect_is_valid_ = true; TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame.render_time_ms(), "Encode"); stream_resource_manager_.OnEncodeStarted(out_frame, time_when_posted_us); // The encoder should get the size that it expects. RTC_DCHECK(send_codec_.width <= out_frame.width() && send_codec_.height <= out_frame.height()) << "Encoder configured to " << send_codec_.width << "x" << send_codec_.height << " received a too small frame " << out_frame.width() << "x" << out_frame.height(); TRACE_EVENT1("webrtc", "VCMGenericEncoder::Encode", "timestamp", out_frame.timestamp()); frame_encode_metadata_writer_.OnEncodeStarted(out_frame); const int32_t encode_status = encoder_->Encode(out_frame, &next_frame_types_); was_encode_called_since_last_initialization_ = true; if (encode_status < 0) { RTC_LOG(LS_ERROR) << "Encoder failed, failing encoder format: " << encoder_config_.video_format.ToString(); RequestEncoderSwitch(); return; } for (auto& it : next_frame_types_) { it = VideoFrameType::kVideoFrameDelta; } } void VideoStreamEncoder::RequestRefreshFrame() { worker_queue_->PostTask(SafeTask(task_safety_.flag(), [this] { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.RequestRefreshFrame(); })); } void VideoStreamEncoder::SendKeyFrame( const std::vector& layers) { if (!encoder_queue_->IsCurrent()) { encoder_queue_->PostTask([this, layers] { SendKeyFrame(layers); }); return; } RTC_DCHECK_RUN_ON(encoder_queue_.get()); TRACE_EVENT0("webrtc", "OnKeyFrameRequest"); RTC_DCHECK(!next_frame_types_.empty()); if (frame_cadence_adapter_) frame_cadence_adapter_->ProcessKeyFrameRequest(); if (!encoder_) { RTC_DLOG(LS_INFO) << __func__ << " no encoder."; return; // Shutting down, or not configured yet. } if (!layers.empty()) { RTC_DCHECK_EQ(layers.size(), next_frame_types_.size()); for (size_t i = 0; i < layers.size() && i < next_frame_types_.size(); i++) { next_frame_types_[i] = layers[i]; } } else { std::fill(next_frame_types_.begin(), next_frame_types_.end(), VideoFrameType::kVideoFrameKey); } } void VideoStreamEncoder::OnLossNotification( const VideoEncoder::LossNotification& loss_notification) { if (!encoder_queue_->IsCurrent()) { encoder_queue_->PostTask( [this, loss_notification] { OnLossNotification(loss_notification); }); return; } RTC_DCHECK_RUN_ON(encoder_queue_.get()); if (encoder_) { encoder_->OnLossNotification(loss_notification); } } EncodedImage VideoStreamEncoder::AugmentEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) { EncodedImage image_copy(encoded_image); // We could either have simulcast layers or spatial layers. // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of // simulcast and SVC we'll also need to consider the case where we have both // simulcast and spatial indices. int stream_idx = encoded_image.SpatialIndex().value_or( encoded_image.SimulcastIndex().value_or(0)); frame_encode_metadata_writer_.FillTimingInfo(stream_idx, &image_copy); frame_encode_metadata_writer_.UpdateBitstream(codec_specific_info, &image_copy); VideoCodecType codec_type = codec_specific_info ? codec_specific_info->codecType : VideoCodecType::kVideoCodecGeneric; if (image_copy.qp_ < 0 && qp_parsing_allowed_) { // Parse encoded frame QP if that was not provided by encoder. image_copy.qp_ = qp_parser_ .Parse(codec_type, stream_idx, image_copy.data(), image_copy.size()) .value_or(-1); } RTC_LOG(LS_VERBOSE) << __func__ << " ntp time " << encoded_image.NtpTimeMs() << " stream_idx " << stream_idx << " qp " << image_copy.qp_; image_copy.SetAtTargetQuality(codec_type == kVideoCodecVP8 && image_copy.qp_ <= kVp8SteadyStateQpThreshold); return image_copy; } EncodedImageCallback::Result VideoStreamEncoder::OnEncodedImage( const EncodedImage& encoded_image, const CodecSpecificInfo* codec_specific_info) { TRACE_EVENT_INSTANT1("webrtc", "VCMEncodedFrameCallback::Encoded", "timestamp", encoded_image.RtpTimestamp()); const size_t simulcast_index = encoded_image.SimulcastIndex().value_or(0); const VideoCodecType codec_type = codec_specific_info ? codec_specific_info->codecType : VideoCodecType::kVideoCodecGeneric; EncodedImage image_copy = AugmentEncodedImage(encoded_image, codec_specific_info); // Post a task because `send_codec_` requires `encoder_queue_` lock and we // need to update on quality convergence. unsigned int image_width = image_copy._encodedWidth; unsigned int image_height = image_copy._encodedHeight; encoder_queue_->PostTask([this, codec_type, image_width, image_height, simulcast_index, at_target_quality = image_copy.IsAtTargetQuality()] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); // Let the frame cadence adapter know about quality convergence. if (frame_cadence_adapter_) frame_cadence_adapter_->UpdateLayerQualityConvergence(simulcast_index, at_target_quality); // Currently, the internal quality scaler is used for VP9 instead of the // webrtc qp scaler (in the no-svc case or if only a single spatial layer is // encoded). It has to be explicitly detected and reported to adaptation // metrics. if (codec_type == VideoCodecType::kVideoCodecVP9 && send_codec_.VP9()->automaticResizeOn) { unsigned int expected_width = send_codec_.width; unsigned int expected_height = send_codec_.height; int num_active_layers = 0; for (int i = 0; i < send_codec_.VP9()->numberOfSpatialLayers; ++i) { if (send_codec_.spatialLayers[i].active) { ++num_active_layers; expected_width = send_codec_.spatialLayers[i].width; expected_height = send_codec_.spatialLayers[i].height; } } RTC_DCHECK_LE(num_active_layers, 1) << "VP9 quality scaling is enabled for " "SVC with several active layers."; encoder_stats_observer_->OnEncoderInternalScalerUpdate( image_width < expected_width || image_height < expected_height); } }); // Encoded is called on whatever thread the real encoder implementation run // on. In the case of hardware encoders, there might be several encoders // running in parallel on different threads. encoder_stats_observer_->OnSendEncodedImage(image_copy, codec_specific_info); EncodedImageCallback::Result result = sink_->OnEncodedImage(image_copy, codec_specific_info); // We are only interested in propagating the meta-data about the image, not // encoded data itself, to the post encode function. Since we cannot be sure // the pointer will still be valid when run on the task queue, set it to null. DataSize frame_size = DataSize::Bytes(image_copy.size()); image_copy.ClearEncodedData(); int temporal_index = 0; if (codec_specific_info) { if (codec_specific_info->codecType == kVideoCodecVP9) { temporal_index = codec_specific_info->codecSpecific.VP9.temporal_idx; } else if (codec_specific_info->codecType == kVideoCodecVP8) { temporal_index = codec_specific_info->codecSpecific.VP8.temporalIdx; } } if (temporal_index == kNoTemporalIdx) { temporal_index = 0; } RunPostEncode(image_copy, clock_->CurrentTime().us(), temporal_index, frame_size); if (result.error == Result::OK) { // In case of an internal encoder running on a separate thread, the // decision to drop a frame might be a frame late and signaled via // atomic flag. This is because we can't easily wait for the worker thread // without risking deadlocks, eg during shutdown when the worker thread // might be waiting for the internal encoder threads to stop. if (pending_frame_drops_.load() > 0) { int pending_drops = pending_frame_drops_.fetch_sub(1); RTC_DCHECK_GT(pending_drops, 0); result.drop_next_frame = true; } } return result; } void VideoStreamEncoder::OnDroppedFrame(DropReason reason) { sink_->OnDroppedFrame(reason); encoder_queue_->PostTask([this, reason] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); stream_resource_manager_.OnFrameDropped(reason); }); } DataRate VideoStreamEncoder::UpdateTargetBitrate(DataRate target_bitrate, double cwnd_reduce_ratio) { RTC_DCHECK_RUN_ON(encoder_queue_.get()); DataRate updated_target_bitrate = target_bitrate; // Drop frames when congestion window pushback ratio is larger than 1 // percent and target bitrate is larger than codec min bitrate. // When target_bitrate is 0 means codec is paused, skip frame dropping. if (cwnd_reduce_ratio > 0.01 && target_bitrate.bps() > 0 && target_bitrate.bps() > send_codec_.minBitrate * 1000) { int reduce_bitrate_bps = std::min( static_cast(target_bitrate.bps() * cwnd_reduce_ratio), static_cast(target_bitrate.bps() - send_codec_.minBitrate * 1000)); if (reduce_bitrate_bps > 0) { // At maximum the congestion window can drop 1/2 frames. cwnd_frame_drop_interval_ = std::max( 2, static_cast(target_bitrate.bps() / reduce_bitrate_bps)); // Reduce target bitrate accordingly. updated_target_bitrate = target_bitrate - (target_bitrate / cwnd_frame_drop_interval_.value()); return updated_target_bitrate; } } cwnd_frame_drop_interval_.reset(); return updated_target_bitrate; } void VideoStreamEncoder::OnBitrateUpdated(DataRate target_bitrate, DataRate stable_target_bitrate, DataRate link_allocation, uint8_t fraction_lost, int64_t round_trip_time_ms, double cwnd_reduce_ratio) { RTC_DCHECK_GE(link_allocation, target_bitrate); if (!encoder_queue_->IsCurrent()) { encoder_queue_->PostTask([this, target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms, cwnd_reduce_ratio] { DataRate updated_target_bitrate = UpdateTargetBitrate(target_bitrate, cwnd_reduce_ratio); OnBitrateUpdated(updated_target_bitrate, stable_target_bitrate, link_allocation, fraction_lost, round_trip_time_ms, cwnd_reduce_ratio); }); return; } RTC_DCHECK_RUN_ON(encoder_queue_.get()); const bool video_is_suspended = target_bitrate == DataRate::Zero(); const bool video_suspension_changed = video_is_suspended != EncoderPaused(); if (!video_is_suspended && settings_.encoder_switch_request_callback && encoder_selector_) { if (auto encoder = encoder_selector_->OnAvailableBitrate(link_allocation)) { settings_.encoder_switch_request_callback->RequestEncoderSwitch( *encoder, /*allow_default_fallback=*/false); } } RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active."; RTC_LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << target_bitrate.bps() << " stable bitrate = " << stable_target_bitrate.bps() << " link allocation bitrate = " << link_allocation.bps() << " packet loss " << static_cast(fraction_lost) << " rtt " << round_trip_time_ms; if (encoder_) { encoder_->OnPacketLossRateUpdate(static_cast(fraction_lost) / 256.f); encoder_->OnRttUpdate(round_trip_time_ms); } uint32_t framerate_fps = GetInputFramerateFps(); frame_dropper_.SetRates((target_bitrate.bps() + 500) / 1000, framerate_fps); EncoderRateSettings new_rate_settings{ VideoBitrateAllocation(), static_cast(framerate_fps), link_allocation, target_bitrate, stable_target_bitrate}; SetEncoderRates(UpdateBitrateAllocation(new_rate_settings)); if (target_bitrate.bps() != 0) encoder_target_bitrate_bps_ = target_bitrate.bps(); stream_resource_manager_.SetTargetBitrate(target_bitrate); if (video_suspension_changed) { RTC_LOG(LS_INFO) << "Video suspend state changed to: " << (video_is_suspended ? "suspended" : "not suspended"); encoder_stats_observer_->OnSuspendChange(video_is_suspended); if (!video_is_suspended && pending_frame_ && !DropDueToSize(pending_frame_->size())) { // A pending stored frame can be processed. int64_t pending_time_us = clock_->CurrentTime().us() - pending_frame_post_time_us_; if (pending_time_us < kPendingFrameTimeoutMs * 1000) EncodeVideoFrame(*pending_frame_, pending_frame_post_time_us_); pending_frame_.reset(); } else if (!video_is_suspended && !pending_frame_ && encoder_paused_and_dropped_frame_) { // A frame was enqueued during pause-state, but since it was a native // frame we could not store it in `pending_frame_` so request a // refresh-frame instead. RequestRefreshFrame(); } } } bool VideoStreamEncoder::DropDueToSize(uint32_t source_pixel_count) const { if (!encoder_ || !stream_resource_manager_.DropInitialFrames() || !encoder_target_bitrate_bps_ || !stream_resource_manager_.SingleActiveStreamPixels()) { return false; } int pixel_count = std::min( source_pixel_count, *stream_resource_manager_.SingleActiveStreamPixels()); uint32_t bitrate_bps = stream_resource_manager_.UseBandwidthAllocationBps().value_or( encoder_target_bitrate_bps_.value()); absl::optional encoder_bitrate_limits = GetEncoderInfoWithBitrateLimitUpdate( encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_) .GetEncoderBitrateLimitsForResolution(pixel_count); if (encoder_bitrate_limits.has_value()) { // Use bitrate limits provided by encoder. return bitrate_bps < static_cast(encoder_bitrate_limits->min_start_bitrate_bps); } if (bitrate_bps < 300000 /* qvga */) { return pixel_count > 320 * 240; } else if (bitrate_bps < 500000 /* vga */) { return pixel_count > 640 * 480; } return false; } void VideoStreamEncoder::OnVideoSourceRestrictionsUpdated( VideoSourceRestrictions restrictions, const VideoAdaptationCounters& adaptation_counters, rtc::scoped_refptr reason, const VideoSourceRestrictions& unfiltered_restrictions) { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_LOG(LS_INFO) << "Updating sink restrictions from " << (reason ? reason->Name() : std::string("")) << " to " << restrictions.ToString(); if (frame_cadence_adapter_) { frame_cadence_adapter_->UpdateVideoSourceRestrictions( restrictions.max_frame_rate()); } // TODO(webrtc:14451) Split video_source_sink_controller_ // so that ownership on restrictions/wants is kept on &encoder_queue_ latest_restrictions_ = restrictions; worker_queue_->PostTask(SafeTask( task_safety_.flag(), [this, restrictions = std::move(restrictions)]() { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.SetRestrictions(std::move(restrictions)); video_source_sink_controller_.PushSourceSinkSettings(); })); } void VideoStreamEncoder::RunPostEncode(const EncodedImage& encoded_image, int64_t time_sent_us, int temporal_index, DataSize frame_size) { if (!encoder_queue_->IsCurrent()) { encoder_queue_->PostTask([this, encoded_image, time_sent_us, temporal_index, frame_size] { RunPostEncode(encoded_image, time_sent_us, temporal_index, frame_size); }); return; } RTC_DCHECK_RUN_ON(encoder_queue_.get()); absl::optional encode_duration_us; if (encoded_image.timing_.flags != VideoSendTiming::kInvalid) { encode_duration_us = TimeDelta::Millis(encoded_image.timing_.encode_finish_ms - encoded_image.timing_.encode_start_ms) .us(); } // Run post encode tasks, such as overuse detection and frame rate/drop // stats for internal encoders. const bool keyframe = encoded_image._frameType == VideoFrameType::kVideoFrameKey; if (!frame_size.IsZero()) { frame_dropper_.Fill(frame_size.bytes(), !keyframe); } stream_resource_manager_.OnEncodeCompleted(encoded_image, time_sent_us, encode_duration_us, frame_size); if (bitrate_adjuster_) { // We could either have simulcast layers or spatial layers. // TODO(https://crbug.com/webrtc/14891): If we want to support a mix of // simulcast and SVC we'll also need to consider the case where we have both // simulcast and spatial indices. int stream_index = encoded_image.SpatialIndex().value_or( encoded_image.SimulcastIndex().value_or(0)); bitrate_adjuster_->OnEncodedFrame(frame_size, stream_index, temporal_index); } } void VideoStreamEncoder::ReleaseEncoder() { if (!encoder_ || !encoder_initialized_) { return; } encoder_->Release(); encoder_initialized_ = false; TRACE_EVENT0("webrtc", "VCMGenericEncoder::Release"); } VideoStreamEncoder::AutomaticAnimationDetectionExperiment VideoStreamEncoder::ParseAutomatincAnimationDetectionFieldTrial() const { AutomaticAnimationDetectionExperiment result; result.Parser()->Parse( field_trials_.Lookup("WebRTC-AutomaticAnimationDetectionScreenshare")); if (!result.enabled) { RTC_LOG(LS_INFO) << "Automatic animation detection experiment is disabled."; return result; } RTC_LOG(LS_INFO) << "Automatic animation detection experiment settings:" " min_duration_ms=" << result.min_duration_ms << " min_area_ration=" << result.min_area_ratio << " min_fps=" << result.min_fps; return result; } void VideoStreamEncoder::CheckForAnimatedContent( const VideoFrame& frame, int64_t time_when_posted_in_us) { if (!automatic_animation_detection_experiment_.enabled || encoder_config_.content_type != VideoEncoderConfig::ContentType::kScreen || stream_resource_manager_.degradation_preference() != DegradationPreference::BALANCED) { return; } if (expect_resize_state_ == ExpectResizeState::kResize && last_frame_info_ && last_frame_info_->width != frame.width() && last_frame_info_->height != frame.height()) { // On applying resolution cap there will be one frame with no/different // update, which should be skipped. // It can be delayed by several frames. expect_resize_state_ = ExpectResizeState::kFirstFrameAfterResize; return; } if (expect_resize_state_ == ExpectResizeState::kFirstFrameAfterResize) { // The first frame after resize should have new, scaled update_rect. if (frame.has_update_rect()) { last_update_rect_ = frame.update_rect(); } else { last_update_rect_ = absl::nullopt; } expect_resize_state_ = ExpectResizeState::kNoResize; } bool should_cap_resolution = false; if (!frame.has_update_rect()) { last_update_rect_ = absl::nullopt; animation_start_time_ = Timestamp::PlusInfinity(); } else if ((!last_update_rect_ || frame.update_rect() != *last_update_rect_)) { last_update_rect_ = frame.update_rect(); animation_start_time_ = Timestamp::Micros(time_when_posted_in_us); } else { TimeDelta animation_duration = Timestamp::Micros(time_when_posted_in_us) - animation_start_time_; float area_ratio = static_cast(last_update_rect_->width * last_update_rect_->height) / (frame.width() * frame.height()); if (animation_duration.ms() >= automatic_animation_detection_experiment_.min_duration_ms && area_ratio >= automatic_animation_detection_experiment_.min_area_ratio && encoder_stats_observer_->GetInputFrameRate() >= automatic_animation_detection_experiment_.min_fps) { should_cap_resolution = true; } } if (cap_resolution_due_to_video_content_ != should_cap_resolution) { expect_resize_state_ = should_cap_resolution ? ExpectResizeState::kResize : ExpectResizeState::kNoResize; cap_resolution_due_to_video_content_ = should_cap_resolution; if (should_cap_resolution) { RTC_LOG(LS_INFO) << "Applying resolution cap due to animation detection."; } else { RTC_LOG(LS_INFO) << "Removing resolution cap due to no consistent " "animation detection."; } // TODO(webrtc:14451) Split video_source_sink_controller_ // so that ownership on restrictions/wants is kept on &encoder_queue_ if (should_cap_resolution) { animate_restrictions_ = VideoSourceRestrictions(kMaxAnimationPixels, /* target_pixels_per_frame= */ absl::nullopt, /* max_frame_rate= */ absl::nullopt); } else { animate_restrictions_.reset(); } worker_queue_->PostTask( SafeTask(task_safety_.flag(), [this, should_cap_resolution]() { RTC_DCHECK_RUN_ON(worker_queue_); video_source_sink_controller_.SetPixelsPerFrameUpperLimit( should_cap_resolution ? absl::optional(kMaxAnimationPixels) : absl::nullopt); video_source_sink_controller_.PushSourceSinkSettings(); })); } } void VideoStreamEncoder::InjectAdaptationResource( rtc::scoped_refptr resource, VideoAdaptationReason reason) { encoder_queue_->PostTask([this, resource = std::move(resource), reason] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); additional_resources_.push_back(resource); stream_resource_manager_.AddResource(resource, reason); }); } void VideoStreamEncoder::InjectAdaptationConstraint( AdaptationConstraint* adaptation_constraint) { rtc::Event event; encoder_queue_->PostTask([this, adaptation_constraint, &event] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); if (!resource_adaptation_processor_) { // The VideoStreamEncoder was stopped and the processor destroyed before // this task had a chance to execute. No action needed. return; } adaptation_constraints_.push_back(adaptation_constraint); video_stream_adapter_->AddAdaptationConstraint(adaptation_constraint); event.Set(); }); event.Wait(rtc::Event::kForever); } void VideoStreamEncoder::AddRestrictionsListenerForTesting( VideoSourceRestrictionsListener* restrictions_listener) { rtc::Event event; encoder_queue_->PostTask([this, restrictions_listener, &event] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_DCHECK(resource_adaptation_processor_); video_stream_adapter_->AddRestrictionsListener(restrictions_listener); event.Set(); }); event.Wait(rtc::Event::kForever); } void VideoStreamEncoder::RemoveRestrictionsListenerForTesting( VideoSourceRestrictionsListener* restrictions_listener) { rtc::Event event; encoder_queue_->PostTask([this, restrictions_listener, &event] { RTC_DCHECK_RUN_ON(encoder_queue_.get()); RTC_DCHECK(resource_adaptation_processor_); video_stream_adapter_->RemoveRestrictionsListener(restrictions_listener); event.Set(); }); event.Wait(rtc::Event::kForever); } // RTC_RUN_ON(&encoder_queue_) void VideoStreamEncoder::ProcessDroppedFrame( const VideoFrame& frame, VideoStreamEncoderObserver::DropReason reason) { accumulated_update_rect_.Union(frame.update_rect()); accumulated_update_rect_is_valid_ &= frame.has_update_rect(); if (auto converted_reason = MaybeConvertDropReason(reason)) { OnDroppedFrame(*converted_reason); } encoder_stats_observer_->OnFrameDropped(reason); } } // namespace webrtc