// Copyright 2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! A contiguous growable array type with heap-allocated contents, written //! [`Vec<'bump, T>`]. //! //! Vectors have `O(1)` indexing, amortized `O(1)` push (to the end) and //! `O(1)` pop (from the end). //! //! This module is a fork of the [`std::vec`] module, that uses a bump allocator. //! //! [`std::vec`]: https://doc.rust-lang.org/std/vec/index.html //! //! # Examples //! //! You can explicitly create a [`Vec<'bump, T>`] with [`new_in`]: //! //! ``` //! use bumpalo::{Bump, collections::Vec}; //! //! let b = Bump::new(); //! let v: Vec = Vec::new_in(&b); //! ``` //! //! ... or by using the [`vec!`] macro: //! //! ``` //! use bumpalo::{Bump, collections::Vec}; //! //! let b = Bump::new(); //! //! let v: Vec = bumpalo::vec![in &b]; //! //! let v = bumpalo::vec![in &b; 1, 2, 3, 4, 5]; //! //! let v = bumpalo::vec![in &b; 0; 10]; // ten zeroes //! ``` //! //! You can [`push`] values onto the end of a vector (which will grow the vector //! as needed): //! //! ``` //! use bumpalo::{Bump, collections::Vec}; //! //! let b = Bump::new(); //! //! let mut v = bumpalo::vec![in &b; 1, 2]; //! //! v.push(3); //! ``` //! //! Popping values works in much the same way: //! //! ``` //! use bumpalo::{Bump, collections::Vec}; //! //! let b = Bump::new(); //! //! let mut v = bumpalo::vec![in &b; 1, 2]; //! //! assert_eq!(v.pop(), Some(2)); //! ``` //! //! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits): //! //! ``` //! use bumpalo::{Bump, collections::Vec}; //! //! let b = Bump::new(); //! //! let mut v = bumpalo::vec![in &b; 1, 2, 3]; //! assert_eq!(v[2], 3); //! v[1] += 5; //! assert_eq!(v, [1, 7, 3]); //! ``` //! //! [`Vec<'bump, T>`]: struct.Vec.html //! [`new_in`]: struct.Vec.html#method.new_in //! [`push`]: struct.Vec.html#method.push //! [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html //! [`IndexMut`]: https://doc.rust-lang.org/std/ops/trait.IndexMut.html //! [`vec!`]: ../../macro.vec.html use super::raw_vec::RawVec; use crate::collections::CollectionAllocErr; use crate::Bump; use core::borrow::{Borrow, BorrowMut}; use core::cmp::Ordering; use core::fmt; use core::hash::{self, Hash}; use core::iter::FusedIterator; use core::marker::PhantomData; use core::mem; use core::ops; use core::ops::Bound::{Excluded, Included, Unbounded}; use core::ops::{Index, IndexMut, RangeBounds}; use core::ptr; use core::ptr::NonNull; use core::slice; unsafe fn arith_offset(p: *const T, offset: isize) -> *const T { p.offset(offset) } fn partition_dedup_by(s: &mut [T], mut same_bucket: F) -> (&mut [T], &mut [T]) where F: FnMut(&mut T, &mut T) -> bool, { // Although we have a mutable reference to `s`, we cannot make // *arbitrary* changes. The `same_bucket` calls could panic, so we // must ensure that the slice is in a valid state at all times. // // The way that we handle this is by using swaps; we iterate // over all the elements, swapping as we go so that at the end // the elements we wish to keep are in the front, and those we // wish to reject are at the back. We can then split the slice. // This operation is still O(n). // // Example: We start in this state, where `r` represents "next // read" and `w` represents "next_write`. // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing s[r] against s[w-1], this is not a duplicate, so // we swap s[r] and s[w] (no effect as r==w) and then increment both // r and w, leaving us with: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing s[r] against s[w-1], this value is a duplicate, // so we increment `r` but leave everything else unchanged: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 1 | 2 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Comparing s[r] against s[w-1], this is not a duplicate, // so swap s[r] and s[w] and advance r and w: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 1 | 3 | 3 | // +---+---+---+---+---+---+ // w // // Not a duplicate, repeat: // // r // +---+---+---+---+---+---+ // | 0 | 1 | 2 | 3 | 1 | 3 | // +---+---+---+---+---+---+ // w // // Duplicate, advance r. End of slice. Split at w. let len = s.len(); if len <= 1 { return (s, &mut []); } let ptr = s.as_mut_ptr(); let mut next_read: usize = 1; let mut next_write: usize = 1; unsafe { // Avoid bounds checks by using raw pointers. while next_read < len { let ptr_read = ptr.add(next_read); let prev_ptr_write = ptr.add(next_write - 1); if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) { if next_read != next_write { let ptr_write = prev_ptr_write.offset(1); mem::swap(&mut *ptr_read, &mut *ptr_write); } next_write += 1; } next_read += 1; } } s.split_at_mut(next_write) } unsafe fn offset_from(p: *const T, origin: *const T) -> isize where T: Sized, { let pointee_size = mem::size_of::(); assert!(0 < pointee_size && pointee_size <= isize::max_value() as usize); // This is the same sequence that Clang emits for pointer subtraction. // It can be neither `nsw` nor `nuw` because the input is treated as // unsigned but then the output is treated as signed, so neither works. let d = isize::wrapping_sub(p as _, origin as _); d / (pointee_size as isize) } /// Creates a [`Vec`] containing the arguments. /// /// `vec!` allows `Vec`s to be defined with the same syntax as array expressions. /// There are two forms of this macro: /// /// - Create a [`Vec`] containing a given list of elements: /// /// ``` /// use bumpalo::Bump; /// /// let b = Bump::new(); /// let v = bumpalo::vec![in &b; 1, 2, 3]; /// assert_eq!(v, [1, 2, 3]); /// ``` /// /// - Create a [`Vec`] from a given element and size: /// /// ``` /// use bumpalo::Bump; /// /// let b = Bump::new(); /// let v = bumpalo::vec![in &b; 1; 3]; /// assert_eq!(v, [1, 1, 1]); /// ``` /// /// Note that unlike array expressions, this syntax supports all elements /// which implement [`Clone`] and the number of elements doesn't have to be /// a constant. /// /// This will use `clone` to duplicate an expression, so one should be careful /// using this with types having a non-standard `Clone` implementation. For /// example, `bumpalo::vec![in ≎ Rc::new(1); 5]` will create a vector of five references /// to the same boxed integer value, not five references pointing to independently /// boxed integers. /// /// [`Vec`]: collections/vec/struct.Vec.html /// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html #[macro_export] macro_rules! vec { (in $bump:expr; $elem:expr; $n:expr) => {{ let n = $n; let mut v = $crate::collections::Vec::with_capacity_in(n, $bump); if n > 0 { let elem = $elem; for _ in 0..n - 1 { v.push(elem.clone()); } v.push(elem); } v }}; (in $bump:expr) => { $crate::collections::Vec::new_in($bump) }; (in $bump:expr; $($x:expr),*) => {{ let mut v = $crate::collections::Vec::new_in($bump); $( v.push($x); )* v }}; (in $bump:expr; $($x:expr,)*) => (bumpalo::vec![in $bump; $($x),*]) } /// A contiguous growable array type, written `Vec<'bump, T>` but pronounced 'vector'. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = Vec::new_in(&b); /// vec.push(1); /// vec.push(2); /// /// assert_eq!(vec.len(), 2); /// assert_eq!(vec[0], 1); /// /// assert_eq!(vec.pop(), Some(2)); /// assert_eq!(vec.len(), 1); /// /// vec[0] = 7; /// assert_eq!(vec[0], 7); /// /// vec.extend([1, 2, 3].iter().cloned()); /// /// for x in &vec { /// println!("{}", x); /// } /// assert_eq!(vec, [7, 1, 2, 3]); /// ``` /// /// The [`vec!`] macro is provided to make initialization more convenient: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// vec.push(4); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` /// /// It can also initialize each element of a `Vec<'bump, T>` with a given value. /// This may be more efficient than performing allocation and initialization /// in separate steps, especially when initializing a vector of zeros: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let vec = bumpalo::vec![in &b; 0; 5]; /// assert_eq!(vec, [0, 0, 0, 0, 0]); /// /// // The following is equivalent, but potentially slower: /// let mut vec1 = Vec::with_capacity_in(5, &b); /// vec1.resize(5, 0); /// ``` /// /// Use a `Vec<'bump, T>` as an efficient stack: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut stack = Vec::new_in(&b); /// /// stack.push(1); /// stack.push(2); /// stack.push(3); /// /// while let Some(top) = stack.pop() { /// // Prints 3, 2, 1 /// println!("{}", top); /// } /// ``` /// /// # Indexing /// /// The `Vec` type allows to access values by index, because it implements the /// [`Index`] trait. An example will be more explicit: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let v = bumpalo::vec![in &b; 0, 2, 4, 6]; /// println!("{}", v[1]); // it will display '2' /// ``` /// /// However be careful: if you try to access an index which isn't in the `Vec`, /// your software will panic! You cannot do this: /// /// ```should_panic /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let v = bumpalo::vec![in &b; 0, 2, 4, 6]; /// println!("{}", v[6]); // it will panic! /// ``` /// /// In conclusion: always check if the index you want to get really exists /// before doing it. /// /// # Slicing /// /// A `Vec` can be mutable. Slices, on the other hand, are read-only objects. /// To get a slice, use `&`. Example: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// fn read_slice(slice: &[usize]) { /// // ... /// } /// /// let b = Bump::new(); /// /// let v = bumpalo::vec![in &b; 0, 1]; /// read_slice(&v); /// /// // ... and that's all! /// // you can also do it like this: /// let x : &[usize] = &v; /// ``` /// /// In Rust, it's more common to pass slices as arguments rather than vectors /// when you just want to provide a read access. The same goes for [`String`] and /// [`&str`]. /// /// # Capacity and reallocation /// /// The capacity of a vector is the amount of space allocated for any future /// elements that will be added onto the vector. This is not to be confused with /// the *length* of a vector, which specifies the number of actual elements /// within the vector. If a vector's length exceeds its capacity, its capacity /// will automatically be increased, but its elements will have to be /// reallocated. /// /// For example, a vector with capacity 10 and length 0 would be an empty vector /// with space for 10 more elements. Pushing 10 or fewer elements onto the /// vector will not change its capacity or cause reallocation to occur. However, /// if the vector's length is increased to 11, it will have to reallocate, which /// can be slow. For this reason, it is recommended to use [`Vec::with_capacity_in`] /// whenever possible to specify how big the vector is expected to get. /// /// # Guarantees /// /// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees /// about its design. This ensures that it's as low-overhead as possible in /// the general case, and can be correctly manipulated in primitive ways /// by unsafe code. Note that these guarantees refer to an unqualified `Vec<'bump, T>`. /// If additional type parameters are added (e.g. to support custom allocators), /// overriding their defaults may change the behavior. /// /// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length) /// triplet. No more, no less. The order of these fields is completely /// unspecified, and you should use the appropriate methods to modify these. /// The pointer will never be null, so this type is null-pointer-optimized. /// /// However, the pointer may not actually point to allocated memory. In particular, /// if you construct a `Vec` with capacity 0 via [`Vec::new_in`], [`bumpalo::vec![in bump]`][`vec!`], /// [`Vec::with_capacity_in(0)`][`Vec::with_capacity_in`], or by calling [`shrink_to_fit`] /// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized /// types inside a `Vec`, it will not allocate space for them. *Note that in this case /// the `Vec` may not report a [`capacity`] of 0*. `Vec` will allocate if and only /// if [`mem::size_of::`]\() * capacity() > 0. In general, `Vec`'s allocation /// details are very subtle — if you intend to allocate memory using a `Vec` /// and use it for something else (either to pass to unsafe code, or to build your /// own memory-backed collection), be sure to deallocate this memory by using /// `from_raw_parts` to recover the `Vec` and then dropping it. /// /// If a `Vec` *has* allocated memory, then the memory it points to is /// in the [`Bump`] arena used to construct it, and its /// pointer points to [`len`] initialized, contiguous elements in order (what /// you would see if you coerced it to a slice), followed by [`capacity`] - /// [`len`] logically uninitialized, contiguous elements. /// /// `Vec` will never perform a "small optimization" where elements are actually /// stored on the stack for two reasons: /// /// * It would make it more difficult for unsafe code to correctly manipulate /// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were /// only moved, and it would be more difficult to determine if a `Vec` had /// actually allocated memory. /// /// * It would penalize the general case, incurring an additional branch /// on every access. /// /// `Vec` will never automatically shrink itself, even if completely empty. This /// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec` /// and then filling it back up to the same [`len`] should incur no calls to /// the allocator. If you wish to free up unused memory, use /// [`shrink_to_fit`][`shrink_to_fit`]. /// /// [`push`] and [`insert`] will never (re)allocate if the reported capacity is /// sufficient. [`push`] and [`insert`] *will* (re)allocate if /// [`len`] == [`capacity`]. That is, the reported capacity is completely /// accurate, and can be relied on. It can even be used to manually free the memory /// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even /// when not necessary. /// /// `Vec` does not guarantee any particular growth strategy when reallocating /// when full, nor when [`reserve`] is called. The current strategy is basic /// and it may prove desirable to use a non-constant growth factor. Whatever /// strategy is used will of course guarantee `O(1)` amortized [`push`]. /// /// `bumpalo::vec![in bump; x; n]`, `bumpalo::vec![in bump; a, b, c, d]`, and /// [`Vec::with_capacity_in(n)`][`Vec::with_capacity_in`], will all produce a /// `Vec` with exactly the requested capacity. If [`len`] == [`capacity`], (as /// is the case for the [`vec!`] macro), then a `Vec<'bump, T>` can be converted /// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the /// elements. /// /// `Vec` will not specifically overwrite any data that is removed from it, /// but also won't specifically preserve it. Its uninitialized memory is /// scratch space that it may use however it wants. It will generally just do /// whatever is most efficient or otherwise easy to implement. Do not rely on /// removed data to be erased for security purposes. Even if you drop a `Vec`, its /// buffer may simply be reused by another `Vec`. Even if you zero a `Vec`'s memory /// first, that may not actually happen because the optimizer does not consider /// this a side-effect that must be preserved. There is one case which we will /// not break, however: using `unsafe` code to write to the excess capacity, /// and then increasing the length to match, is always valid. /// /// `Vec` does not currently guarantee the order in which elements are dropped. /// The order has changed in the past and may change again. /// /// [`vec!`]: ../../macro.vec.html /// [`Index`]: https://doc.rust-lang.org/std/ops/trait.Index.html /// [`String`]: ../string/struct.String.html /// [`&str`]: https://doc.rust-lang.org/std/primitive.str.html /// [`Vec::with_capacity_in`]: struct.Vec.html#method.with_capacity_in /// [`Vec::new_in`]: struct.Vec.html#method.new_in /// [`shrink_to_fit`]: struct.Vec.html#method.shrink_to_fit /// [`capacity`]: struct.Vec.html#method.capacity /// [`mem::size_of::`]: https://doc.rust-lang.org/std/mem/fn.size_of.html /// [`len`]: struct.Vec.html#method.len /// [`push`]: struct.Vec.html#method.push /// [`insert`]: struct.Vec.html#method.insert /// [`reserve`]: struct.Vec.html#method.reserve /// [owned slice]: https://doc.rust-lang.org/std/boxed/struct.Box.html pub struct Vec<'bump, T: 'bump> { buf: RawVec<'bump, T>, len: usize, } //////////////////////////////////////////////////////////////////////////////// // Inherent methods //////////////////////////////////////////////////////////////////////////////// impl<'bump, T: 'bump> Vec<'bump, T> { /// Constructs a new, empty `Vec<'bump, T>`. /// /// The vector will not allocate until elements are pushed onto it. /// /// # Examples /// /// ``` /// # #![allow(unused_mut)] /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let mut vec: Vec = Vec::new_in(&b); /// ``` #[inline] pub fn new_in(bump: &'bump Bump) -> Vec<'bump, T> { Vec { buf: RawVec::new_in(bump), len: 0, } } /// Constructs a new, empty `Vec<'bump, T>` with the specified capacity. /// /// The vector will be able to hold exactly `capacity` elements without /// reallocating. If `capacity` is 0, the vector will not allocate. /// /// It is important to note that although the returned vector has the /// *capacity* specified, the vector will have a zero *length*. For an /// explanation of the difference between length and capacity, see /// *[Capacity and reallocation]*. /// /// [Capacity and reallocation]: #capacity-and-reallocation /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = Vec::with_capacity_in(10, &b); /// /// // The vector contains no items, even though it has capacity for more /// assert_eq!(vec.len(), 0); /// /// // These are all done without reallocating... /// for i in 0..10 { /// vec.push(i); /// } /// /// // ...but this may make the vector reallocate /// vec.push(11); /// ``` #[inline] pub fn with_capacity_in(capacity: usize, bump: &'bump Bump) -> Vec<'bump, T> { Vec { buf: RawVec::with_capacity_in(capacity, bump), len: 0, } } /// Construct a new `Vec` from the given iterator's items. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// use std::iter; /// /// let b = Bump::new(); /// let v = Vec::from_iter_in(iter::repeat(7).take(3), &b); /// assert_eq!(v, [7, 7, 7]); /// ``` pub fn from_iter_in>(iter: I, bump: &'bump Bump) -> Vec<'bump, T> { let mut v = Vec::new_in(bump); v.extend(iter); v } /// Creates a `Vec<'bump, T>` directly from the raw components of another vector. /// /// # Safety /// /// This is highly unsafe, due to the number of invariants that aren't /// checked: /// /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<'bump, T>` /// (at least, it's highly likely to be incorrect if it wasn't). /// * `ptr`'s `T` needs to have the same size and alignment as it was allocated with. /// * `length` needs to be less than or equal to `capacity`. /// * `capacity` needs to be the capacity that the pointer was allocated with. /// /// Violating these may cause problems like corrupting the allocator's /// internal data structures. For example it is **not** safe /// to build a `Vec` from a pointer to a C `char` array and a `size_t`. /// /// The ownership of `ptr` is effectively transferred to the /// `Vec<'bump, T>` which may then deallocate, reallocate or change the /// contents of memory pointed to by the pointer at will. Ensure /// that nothing else uses the pointer after calling this /// function. /// /// [`String`]: ../string/struct.String.html /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// use std::ptr; /// use std::mem; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; 1, 2, 3]; /// /// // Pull out the various important pieces of information about `v` /// let p = v.as_mut_ptr(); /// let len = v.len(); /// let cap = v.capacity(); /// /// unsafe { /// // Cast `v` into the void: no destructor run, so we are in /// // complete control of the allocation to which `p` points. /// mem::forget(v); /// /// // Overwrite memory with 4, 5, 6 /// for i in 0..len as isize { /// ptr::write(p.offset(i), 4 + i); /// } /// /// // Put everything back together into a Vec /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, &b); /// assert_eq!(rebuilt, [4, 5, 6]); /// } /// ``` pub unsafe fn from_raw_parts_in( ptr: *mut T, length: usize, capacity: usize, bump: &'bump Bump, ) -> Vec<'bump, T> { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, bump), len: length, } } /// Returns a shared reference to the allocator backing this `Vec`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// // uses the same allocator as the provided `Vec` /// fn add_strings<'bump>(vec: &mut Vec<'bump, &'bump str>) { /// for string in ["foo", "bar", "baz"] { /// vec.push(vec.bump().alloc_str(string)); /// } /// } /// ``` #[inline] #[must_use] pub fn bump(&self) -> &'bump Bump { self.buf.bump() } /// Returns the number of elements the vector can hold without /// reallocating. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let vec: Vec = Vec::with_capacity_in(10, &b); /// assert_eq!(vec.capacity(), 10); /// ``` #[inline] pub fn capacity(&self) -> usize { self.buf.cap() } /// Reserves capacity for at least `additional` more elements to be inserted /// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid /// frequent reallocations. After calling `reserve`, capacity will be /// greater than or equal to `self.len() + additional`. Does nothing if /// capacity is already sufficient. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let mut vec = bumpalo::vec![in &b; 1]; /// vec.reserve(10); /// assert!(vec.capacity() >= 11); /// ``` pub fn reserve(&mut self, additional: usize) { self.buf.reserve(self.len, additional); } /// Reserves the minimum capacity for exactly `additional` more elements to /// be inserted in the given `Vec<'bump, T>`. After calling `reserve_exact`, /// capacity will be greater than or equal to `self.len() + additional`. /// Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it /// requests. Therefore capacity can not be relied upon to be precisely /// minimal. Prefer `reserve` if future insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let mut vec = bumpalo::vec![in &b; 1]; /// vec.reserve_exact(10); /// assert!(vec.capacity() >= 11); /// ``` pub fn reserve_exact(&mut self, additional: usize) { self.buf.reserve_exact(self.len, additional); } /// Attempts to reserve capacity for at least `additional` more elements to be inserted /// in the given `Vec<'bump, T>`. The collection may reserve more space to avoid /// frequent reallocations. After calling `try_reserve`, capacity will be /// greater than or equal to `self.len() + additional`. Does nothing if /// capacity is already sufficient. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let mut vec = bumpalo::vec![in &b; 1]; /// vec.try_reserve(10).unwrap(); /// assert!(vec.capacity() >= 11); /// ``` pub fn try_reserve(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { self.buf.try_reserve(self.len, additional) } /// Attempts to reserve the minimum capacity for exactly `additional` more elements to /// be inserted in the given `Vec<'bump, T>`. After calling `try_reserve_exact`, /// capacity will be greater than or equal to `self.len() + additional`. /// Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it /// requests. Therefore capacity can not be relied upon to be precisely /// minimal. Prefer `try_reserve` if future insertions are expected. /// /// # Panics /// /// Panics if the new capacity overflows `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let mut vec = bumpalo::vec![in &b; 1]; /// vec.try_reserve_exact(10).unwrap(); /// assert!(vec.capacity() >= 11); /// ``` pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), CollectionAllocErr> { self.buf.try_reserve_exact(self.len, additional) } /// Shrinks the capacity of the vector as much as possible. /// /// It will drop down as close as possible to the length but the allocator /// may still inform the vector that there is space for a few more elements. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = Vec::with_capacity_in(10, &b); /// vec.extend([1, 2, 3].iter().cloned()); /// assert_eq!(vec.capacity(), 10); /// vec.shrink_to_fit(); /// assert!(vec.capacity() >= 3); /// ``` pub fn shrink_to_fit(&mut self) { if self.capacity() != self.len { self.buf.shrink_to_fit(self.len); } } /// Converts the vector into `&'bump [T]`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let v = bumpalo::vec![in &b; 1, 2, 3]; /// /// let slice = v.into_bump_slice(); /// assert_eq!(slice, [1, 2, 3]); /// ``` pub fn into_bump_slice(self) -> &'bump [T] { unsafe { let ptr = self.as_ptr(); let len = self.len(); mem::forget(self); slice::from_raw_parts(ptr, len) } } /// Converts the vector into `&'bump mut [T]`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// let v = bumpalo::vec![in &b; 1, 2, 3]; /// /// let mut slice = v.into_bump_slice_mut(); /// /// slice[0] = 3; /// slice[2] = 1; /// /// assert_eq!(slice, [3, 2, 1]); /// ``` pub fn into_bump_slice_mut(mut self) -> &'bump mut [T] { let ptr = self.as_mut_ptr(); let len = self.len(); mem::forget(self); unsafe { slice::from_raw_parts_mut(ptr, len) } } /// Shortens the vector, keeping the first `len` elements and dropping /// the rest. /// /// If `len` is greater than the vector's current length, this has no /// effect. /// /// The [`drain`] method can emulate `truncate`, but causes the excess /// elements to be returned instead of dropped. /// /// Note that this method has no effect on the allocated capacity /// of the vector. /// /// # Examples /// /// Truncating a five element vector to two elements: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4, 5]; /// vec.truncate(2); /// assert_eq!(vec, [1, 2]); /// ``` /// /// No truncation occurs when `len` is greater than the vector's current /// length: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// vec.truncate(8); /// assert_eq!(vec, [1, 2, 3]); /// ``` /// /// Truncating when `len == 0` is equivalent to calling the [`clear`] /// method. /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// vec.truncate(0); /// assert_eq!(vec, []); /// ``` /// /// [`clear`]: #method.clear /// [`drain`]: #method.drain pub fn truncate(&mut self, len: usize) { let current_len = self.len; unsafe { let mut ptr = self.as_mut_ptr().add(self.len); // Set the final length at the end, keeping in mind that // dropping an element might panic. Works around a missed // optimization, as seen in the following issue: // https://github.com/rust-lang/rust/issues/51802 let mut local_len = SetLenOnDrop::new(&mut self.len); // drop any extra elements for _ in len..current_len { local_len.decrement_len(1); ptr = ptr.offset(-1); ptr::drop_in_place(ptr); } } } /// Extracts a slice containing the entire vector. /// /// Equivalent to `&s[..]`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// use std::io::{self, Write}; /// /// let b = Bump::new(); /// /// let buffer = bumpalo::vec![in &b; 1, 2, 3, 5, 8]; /// io::sink().write(buffer.as_slice()).unwrap(); /// ``` #[inline] pub fn as_slice(&self) -> &[T] { self } /// Extracts a mutable slice of the entire vector. /// /// Equivalent to `&mut s[..]`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// use std::io::{self, Read}; /// /// let b = Bump::new(); /// let mut buffer = bumpalo::vec![in &b; 0; 3]; /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap(); /// ``` #[inline] pub fn as_mut_slice(&mut self) -> &mut [T] { self } /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer /// valid for zero sized reads if the vector didn't allocate. /// /// The caller must ensure that the vector outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// Modifying the vector may cause its buffer to be reallocated, /// which would also make any pointers to it invalid. /// /// The caller must also ensure that the memory the pointer (non-transitively) points to /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`]. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let bump = Bump::new(); /// /// let x = bumpalo::vec![in ≎ 1, 2, 4]; /// let x_ptr = x.as_ptr(); /// /// unsafe { /// for i in 0..x.len() { /// assert_eq!(*x_ptr.add(i), 1 << i); /// } /// } /// ``` /// /// [`as_mut_ptr`]: Vec::as_mut_ptr #[inline] pub fn as_ptr(&self) -> *const T { // We shadow the slice method of the same name to avoid going through // `deref`, which creates an intermediate reference. let ptr = self.buf.ptr(); unsafe { if ptr.is_null() { core::hint::unreachable_unchecked(); } } ptr } /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling /// raw pointer valid for zero sized reads if the vector didn't allocate. /// /// The caller must ensure that the vector outlives the pointer this /// function returns, or else it will end up pointing to garbage. /// Modifying the vector may cause its buffer to be reallocated, /// which would also make any pointers to it invalid. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let bump = Bump::new(); /// /// // Allocate vector big enough for 4 elements. /// let size = 4; /// let mut x: Vec = Vec::with_capacity_in(size, &bump); /// let x_ptr = x.as_mut_ptr(); /// /// // Initialize elements via raw pointer writes, then set length. /// unsafe { /// for i in 0..size { /// x_ptr.add(i).write(i as i32); /// } /// x.set_len(size); /// } /// assert_eq!(&*x, &[0, 1, 2, 3]); /// ``` #[inline] pub fn as_mut_ptr(&mut self) -> *mut T { // We shadow the slice method of the same name to avoid going through // `deref_mut`, which creates an intermediate reference. let ptr = self.buf.ptr(); unsafe { if ptr.is_null() { core::hint::unreachable_unchecked(); } } ptr } /// Sets the length of a vector. /// /// This will explicitly set the size of the vector, without actually /// modifying its buffers, so it is up to the caller to ensure that the /// vector is actually the specified size. /// /// # Safety /// /// - `new_len` must be less than or equal to [`capacity()`]. /// - The elements at `old_len..new_len` must be initialized. /// /// [`capacity()`]: struct.Vec.html#method.capacity /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// use std::ptr; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 'r', 'u', 's', 't']; /// /// unsafe { /// ptr::drop_in_place(&mut vec[3]); /// vec.set_len(3); /// } /// assert_eq!(vec, ['r', 'u', 's']); /// ``` /// /// In this example, there is a memory leak since the memory locations /// owned by the inner vectors were not freed prior to the `set_len` call: /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; /// bumpalo::vec![in &b; 1, 0, 0], /// bumpalo::vec![in &b; 0, 1, 0], /// bumpalo::vec![in &b; 0, 0, 1]]; /// unsafe { /// vec.set_len(0); /// } /// ``` /// /// In this example, the vector gets expanded from zero to four items /// but we directly initialize uninitialized memory: /// // TODO: rely upon `spare_capacity_mut` /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let len = 4; /// let b = Bump::new(); /// /// let mut vec: Vec = Vec::with_capacity_in(len, &b); /// /// for i in 0..len { /// // SAFETY: we initialize memory via `pointer::write` /// unsafe { vec.as_mut_ptr().add(i).write(b'a') } /// } /// /// unsafe { /// vec.set_len(len); /// } /// /// assert_eq!(b"aaaa", &*vec); /// ``` #[inline] pub unsafe fn set_len(&mut self, new_len: usize) { self.len = new_len; } /// Removes an element from the vector and returns it. /// /// The removed element is replaced by the last element of the vector. /// /// This does not preserve ordering, but is O(1). /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; "foo", "bar", "baz", "qux"]; /// /// assert_eq!(v.swap_remove(1), "bar"); /// assert_eq!(v, ["foo", "qux", "baz"]); /// /// assert_eq!(v.swap_remove(0), "foo"); /// assert_eq!(v, ["baz", "qux"]); /// ``` #[inline] pub fn swap_remove(&mut self, index: usize) -> T { unsafe { // We replace self[index] with the last element. Note that if the // bounds check on hole succeeds there must be a last element (which // can be self[index] itself). let hole: *mut T = &mut self[index]; let last = ptr::read(self.get_unchecked(self.len - 1)); self.len -= 1; ptr::replace(hole, last) } } /// Inserts an element at position `index` within the vector, shifting all /// elements after it to the right. /// /// # Panics /// /// Panics if `index > len`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// vec.insert(1, 4); /// assert_eq!(vec, [1, 4, 2, 3]); /// vec.insert(4, 5); /// assert_eq!(vec, [1, 4, 2, 3, 5]); /// ``` pub fn insert(&mut self, index: usize, element: T) { let len = self.len(); assert!(index <= len); // space for the new element if len == self.buf.cap() { self.reserve(1); } unsafe { // infallible // The spot to put the new value { let p = self.as_mut_ptr().add(index); // Shift everything over to make space. (Duplicating the // `index`th element into two consecutive places.) ptr::copy(p, p.offset(1), len - index); // Write it in, overwriting the first copy of the `index`th // element. ptr::write(p, element); } self.set_len(len + 1); } } /// Removes and returns the element at position `index` within the vector, /// shifting all elements after it to the left. /// /// # Panics /// /// Panics if `index` is out of bounds. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; 1, 2, 3]; /// assert_eq!(v.remove(1), 2); /// assert_eq!(v, [1, 3]); /// ``` pub fn remove(&mut self, index: usize) -> T { let len = self.len(); assert!(index < len); unsafe { // infallible let ret; { // the place we are taking from. let ptr = self.as_mut_ptr().add(index); // copy it out, unsafely having a copy of the value on // the stack and in the vector at the same time. ret = ptr::read(ptr); // Shift everything down to fill in that spot. ptr::copy(ptr.offset(1), ptr, len - index - 1); } self.set_len(len - 1); ret } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` such that `f(&e)` returns `false`. /// This method operates in place and preserves the order of the retained /// elements. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4]; /// vec.retain(|&x| x % 2 == 0); /// assert_eq!(vec, [2, 4]); /// ``` pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool, { self.drain_filter(|x| !f(x)); } /// Creates an iterator that removes the elements in the vector /// for which the predicate returns `true` and yields the removed items. /// /// # Examples /// /// ``` /// use bumpalo::Bump; /// use bumpalo::collections::{CollectIn, Vec}; /// /// let b = Bump::new(); /// /// let mut numbers = bumpalo::vec![in &b; 1, 2, 3, 4, 5]; /// /// let evens: Vec<_> = numbers.drain_filter(|x| *x % 2 == 0).collect_in(&b); /// /// assert_eq!(numbers, &[1, 3, 5]); /// assert_eq!(evens, &[2, 4]); /// ``` pub fn drain_filter<'a, F>(&'a mut self, filter: F) -> DrainFilter<'a, 'bump, T, F> where F: FnMut(&mut T) -> bool, { let old_len = self.len(); // Guard against us getting leaked (leak amplification) unsafe { self.set_len(0); } DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, } } /// Removes all but the first of consecutive elements in the vector that resolve to the same /// key. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 10, 20, 21, 30, 20]; /// /// vec.dedup_by_key(|i| *i / 10); /// /// assert_eq!(vec, [10, 20, 30, 20]); /// ``` #[inline] pub fn dedup_by_key(&mut self, mut key: F) where F: FnMut(&mut T) -> K, K: PartialEq, { self.dedup_by(|a, b| key(a) == key(b)) } /// Removes all but the first of consecutive elements in the vector satisfying a given equality /// relation. /// /// The `same_bucket` function is passed references to two elements from the vector and /// must determine if the elements compare equal. The elements are passed in opposite order /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; "foo", "bar", "Bar", "baz", "bar"]; /// /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b)); /// /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]); /// ``` pub fn dedup_by(&mut self, same_bucket: F) where F: FnMut(&mut T, &mut T) -> bool, { let len = { let (dedup, _) = partition_dedup_by(self.as_mut_slice(), same_bucket); dedup.len() }; self.truncate(len); } /// Appends an element to the back of a vector. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2]; /// vec.push(3); /// assert_eq!(vec, [1, 2, 3]); /// ``` #[inline] pub fn push(&mut self, value: T) { // This will panic or abort if we would allocate > isize::MAX bytes // or if the length increment would overflow for zero-sized types. if self.len == self.buf.cap() { self.reserve(1); } unsafe { let end = self.buf.ptr().add(self.len); ptr::write(end, value); self.len += 1; } } /// Removes the last element from a vector and returns it, or [`None`] if it /// is empty. /// /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// assert_eq!(vec.pop(), Some(3)); /// assert_eq!(vec, [1, 2]); /// ``` #[inline] pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { unsafe { self.len -= 1; Some(ptr::read(self.as_ptr().add(self.len()))) } } } /// Moves all the elements of `other` into `Self`, leaving `other` empty. /// /// # Panics /// /// Panics if the number of elements in the vector overflows a `usize`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// let mut vec2 = bumpalo::vec![in &b; 4, 5, 6]; /// vec.append(&mut vec2); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]); /// assert_eq!(vec2, []); /// ``` #[inline] pub fn append(&mut self, other: &mut Self) { unsafe { self.append_elements(other.as_slice() as _); other.set_len(0); } } /// Appends elements to `Self` from other buffer. #[inline] unsafe fn append_elements(&mut self, other: *const [T]) { let count = (*other).len(); self.reserve(count); let len = self.len(); ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count); self.len += count; } /// Creates a draining iterator that removes the specified range in the vector /// and yields the removed items. /// /// Note 1: The element range is removed even if the iterator is only /// partially consumed or not consumed at all. /// /// Note 2: It is unspecified how many elements are removed from the vector /// if the `Drain` value is leaked. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. /// /// # Examples /// /// ``` /// use bumpalo::Bump; /// use bumpalo::collections::{CollectIn, Vec}; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; 1, 2, 3]; /// /// let u: Vec<_> = v.drain(1..).collect_in(&b); /// /// assert_eq!(v, &[1]); /// assert_eq!(u, &[2, 3]); /// /// // A full range clears the vector /// v.drain(..); /// assert_eq!(v, &[]); /// ``` pub fn drain(&mut self, range: R) -> Drain where R: RangeBounds, { // Memory safety // // When the Drain is first created, it shortens the length of // the source vector to make sure no uninitialized or moved-from elements // are accessible at all if the Drain's destructor never gets to run. // // Drain will ptr::read out the values to remove. // When finished, remaining tail of the vec is copied back to cover // the hole, and the vector length is restored to the new length. // let len = self.len(); let start = match range.start_bound() { Included(&n) => n, Excluded(&n) => n + 1, Unbounded => 0, }; let end = match range.end_bound() { Included(&n) => n + 1, Excluded(&n) => n, Unbounded => len, }; assert!(start <= end); assert!(end <= len); unsafe { // set self.vec length's to start, to be safe in case Drain is leaked self.set_len(start); // Use the borrow in the IterMut to indicate borrowing behavior of the // whole Drain iterator (like &mut T). let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start); Drain { tail_start: end, tail_len: len - end, iter: range_slice.iter(), vec: NonNull::from(self), } } } /// Clears the vector, removing all values. /// /// Note that this method has no effect on the allocated capacity /// of the vector. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; 1, 2, 3]; /// /// v.clear(); /// /// assert!(v.is_empty()); /// ``` #[inline] pub fn clear(&mut self) { self.truncate(0) } /// Returns the number of elements in the vector, also referred to /// as its 'length'. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let a = bumpalo::vec![in &b; 1, 2, 3]; /// assert_eq!(a.len(), 3); /// ``` #[inline] pub fn len(&self) -> usize { self.len } /// Returns `true` if the vector contains no elements. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut v = Vec::new_in(&b); /// assert!(v.is_empty()); /// /// v.push(1); /// assert!(!v.is_empty()); /// ``` pub fn is_empty(&self) -> bool { self.len() == 0 } /// Splits the collection into two at the given index. /// /// Returns a newly allocated vector. `self` contains elements `[0, at)`, /// and the returned vector contains elements `[at, len)`. /// /// Note that the capacity of `self` does not change. /// /// # Panics /// /// Panics if `at > len`. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3]; /// let vec2 = vec.split_off(1); /// assert_eq!(vec, [1]); /// assert_eq!(vec2, [2, 3]); /// ``` #[inline] pub fn split_off(&mut self, at: usize) -> Self { assert!(at <= self.len(), "`at` out of bounds"); let other_len = self.len - at; let mut other = Vec::with_capacity_in(other_len, self.buf.bump()); // Unsafely `set_len` and copy items to `other`. unsafe { self.set_len(at); other.set_len(other_len); ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len()); } other } } #[cfg(feature = "boxed")] impl<'bump, T> Vec<'bump, T> { /// Converts the vector into [`Box<[T]>`][owned slice]. /// /// Note that this will drop any excess capacity. /// /// [owned slice]: ../../boxed/struct.Box.html /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec, vec}; /// /// let b = Bump::new(); /// /// let v = vec![in &b; 1, 2, 3]; /// /// let slice = v.into_boxed_slice(); /// ``` pub fn into_boxed_slice(mut self) -> crate::boxed::Box<'bump, [T]> { use crate::boxed::Box; // Unlike `alloc::vec::Vec` shrinking here isn't necessary as `bumpalo::boxed::Box` doesn't own memory. unsafe { let slice = slice::from_raw_parts_mut(self.as_mut_ptr(), self.len); let output: Box<'bump, [T]> = Box::from_raw(slice); mem::forget(self); output } } } impl<'bump, T: 'bump + Clone> Vec<'bump, T> { /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. /// /// If `new_len` is greater than `len`, the `Vec` is extended by the /// difference, with each additional slot filled with `value`. /// If `new_len` is less than `len`, the `Vec` is simply truncated. /// /// This method requires [`Clone`] to be able clone the passed value. If /// you need more flexibility (or want to rely on [`Default`] instead of /// [`Clone`]), use [`resize_with`]. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; "hello"]; /// vec.resize(3, "world"); /// assert_eq!(vec, ["hello", "world", "world"]); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 3, 4]; /// vec.resize(2, 0); /// assert_eq!(vec, [1, 2]); /// ``` /// /// [`Clone`]: https://doc.rust-lang.org/std/clone/trait.Clone.html /// [`Default`]: https://doc.rust-lang.org/std/default/trait.Default.html /// [`resize_with`]: #method.resize_with pub fn resize(&mut self, new_len: usize, value: T) { let len = self.len(); if new_len > len { self.extend_with(new_len - len, ExtendElement(value)) } else { self.truncate(new_len); } } /// Clones and appends all elements in a slice to the `Vec`. /// /// Iterates over the slice `other`, clones each element, and then appends /// it to this `Vec`. The `other` vector is traversed in-order. /// /// Note that this function is same as [`extend`] except that it is /// specialized to work with slices instead. If and when Rust gets /// specialization this function will likely be deprecated (but still /// available). /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1]; /// vec.extend_from_slice(&[2, 3, 4]); /// assert_eq!(vec, [1, 2, 3, 4]); /// ``` /// /// [`extend`]: #method.extend pub fn extend_from_slice(&mut self, other: &[T]) { self.extend(other.iter().cloned()) } } // This code generalises `extend_with_{element,default}`. trait ExtendWith { fn next(&mut self) -> T; fn last(self) -> T; } struct ExtendElement(T); impl ExtendWith for ExtendElement { fn next(&mut self) -> T { self.0.clone() } fn last(self) -> T { self.0 } } impl<'bump, T: 'bump> Vec<'bump, T> { /// Extend the vector by `n` values, using the given generator. fn extend_with>(&mut self, n: usize, mut value: E) { self.reserve(n); unsafe { let mut ptr = self.as_mut_ptr().add(self.len()); // Use SetLenOnDrop to work around bug where compiler // may not realize the store through `ptr` through self.set_len() // don't alias. let mut local_len = SetLenOnDrop::new(&mut self.len); // Write all elements except the last one for _ in 1..n { ptr::write(ptr, value.next()); ptr = ptr.offset(1); // Increment the length in every step in case next() panics local_len.increment_len(1); } if n > 0 { // We can write the last element directly without cloning needlessly ptr::write(ptr, value.last()); local_len.increment_len(1); } // len set by scope guard } } } // Set the length of the vec when the `SetLenOnDrop` value goes out of scope. // // The idea is: The length field in SetLenOnDrop is a local variable // that the optimizer will see does not alias with any stores through the Vec's data // pointer. This is a workaround for alias analysis issue #32155 struct SetLenOnDrop<'a> { len: &'a mut usize, local_len: usize, } impl<'a> SetLenOnDrop<'a> { #[inline] fn new(len: &'a mut usize) -> Self { SetLenOnDrop { local_len: *len, len, } } #[inline] fn increment_len(&mut self, increment: usize) { self.local_len += increment; } #[inline] fn decrement_len(&mut self, decrement: usize) { self.local_len -= decrement; } } impl<'a> Drop for SetLenOnDrop<'a> { #[inline] fn drop(&mut self) { *self.len = self.local_len; } } impl<'bump, T: 'bump + PartialEq> Vec<'bump, T> { /// Removes consecutive repeated elements in the vector according to the /// [`PartialEq`] trait implementation. /// /// If the vector is sorted, this removes all duplicates. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut vec = bumpalo::vec![in &b; 1, 2, 2, 3, 2]; /// /// vec.dedup(); /// /// assert_eq!(vec, [1, 2, 3, 2]); /// ``` #[inline] pub fn dedup(&mut self) { self.dedup_by(|a, b| a == b) } } //////////////////////////////////////////////////////////////////////////////// // Common trait implementations for Vec //////////////////////////////////////////////////////////////////////////////// impl<'bump, T: 'bump + Clone> Clone for Vec<'bump, T> { #[cfg(not(test))] fn clone(&self) -> Vec<'bump, T> { let mut v = Vec::with_capacity_in(self.len(), self.buf.bump()); v.extend(self.iter().cloned()); v } // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is // required for this method definition, is not available. Instead use the // `slice::to_vec` function which is only available with cfg(test) // NB see the slice::hack module in slice.rs for more information #[cfg(test)] fn clone(&self) -> Vec<'bump, T> { let mut v = Vec::new_in(self.buf.bump()); v.extend(self.iter().cloned()); v } } impl<'bump, T: 'bump + Hash> Hash for Vec<'bump, T> { #[inline] fn hash(&self, state: &mut H) { Hash::hash(&**self, state) } } impl<'bump, T, I> Index for Vec<'bump, T> where I: ::core::slice::SliceIndex<[T]>, { type Output = I::Output; #[inline] fn index(&self, index: I) -> &Self::Output { Index::index(&**self, index) } } impl<'bump, T, I> IndexMut for Vec<'bump, T> where I: ::core::slice::SliceIndex<[T]>, { #[inline] fn index_mut(&mut self, index: I) -> &mut Self::Output { IndexMut::index_mut(&mut **self, index) } } impl<'bump, T: 'bump> ops::Deref for Vec<'bump, T> { type Target = [T]; fn deref(&self) -> &[T] { unsafe { let p = self.buf.ptr(); // assume(!p.is_null()); slice::from_raw_parts(p, self.len) } } } impl<'bump, T: 'bump> ops::DerefMut for Vec<'bump, T> { fn deref_mut(&mut self) -> &mut [T] { unsafe { let ptr = self.buf.ptr(); // assume(!ptr.is_null()); slice::from_raw_parts_mut(ptr, self.len) } } } impl<'bump, T: 'bump> IntoIterator for Vec<'bump, T> { type Item = T; type IntoIter = IntoIter<'bump, T>; /// Creates a consuming iterator, that is, one that moves each value out of /// the vector (from start to end). The vector cannot be used after calling /// this. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let v = bumpalo::vec![in &b; "a".to_string(), "b".to_string()]; /// for s in v.into_iter() { /// // s has type String, not &String /// println!("{}", s); /// } /// ``` #[inline] fn into_iter(mut self) -> IntoIter<'bump, T> { unsafe { let begin = self.as_mut_ptr(); // assume(!begin.is_null()); let end = if mem::size_of::() == 0 { arith_offset(begin as *const i8, self.len() as isize) as *const T } else { begin.add(self.len()) as *const T }; mem::forget(self); IntoIter { phantom: PhantomData, ptr: begin, end, } } } } impl<'a, 'bump, T> IntoIterator for &'a Vec<'bump, T> { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; fn into_iter(self) -> slice::Iter<'a, T> { self.iter() } } impl<'a, 'bump, T> IntoIterator for &'a mut Vec<'bump, T> { type Item = &'a mut T; type IntoIter = slice::IterMut<'a, T>; fn into_iter(self) -> slice::IterMut<'a, T> { self.iter_mut() } } impl<'bump, T: 'bump> Extend for Vec<'bump, T> { #[inline] fn extend>(&mut self, iter: I) { let iter = iter.into_iter(); self.reserve(iter.size_hint().0); for t in iter { self.push(t); } } } impl<'bump, T: 'bump> Vec<'bump, T> { /// Creates a splicing iterator that replaces the specified range in the vector /// with the given `replace_with` iterator and yields the removed items. /// `replace_with` does not need to be the same length as `range`. /// /// Note 1: The element range is removed even if the iterator is not /// consumed until the end. /// /// Note 2: It is unspecified how many elements are removed from the vector, /// if the `Splice` value is leaked. /// /// Note 3: The input iterator `replace_with` is only consumed /// when the `Splice` value is dropped. /// /// Note 4: This is optimal if: /// /// * The tail (elements in the vector after `range`) is empty, /// * or `replace_with` yields fewer elements than `range`’s length /// * or the lower bound of its `size_hint()` is exact. /// /// Otherwise, a temporary vector is allocated and the tail is moved twice. /// /// # Panics /// /// Panics if the starting point is greater than the end point or if /// the end point is greater than the length of the vector. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let mut v = bumpalo::vec![in &b; 1, 2, 3]; /// let new = [7, 8]; /// let u: Vec<_> = Vec::from_iter_in(v.splice(..2, new.iter().cloned()), &b); /// assert_eq!(v, &[7, 8, 3]); /// assert_eq!(u, &[1, 2]); /// ``` #[inline] pub fn splice(&mut self, range: R, replace_with: I) -> Splice where R: RangeBounds, I: IntoIterator, { Splice { drain: self.drain(range), replace_with: replace_with.into_iter(), } } } /// Extend implementation that copies elements out of references before pushing them onto the Vec. /// /// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to /// append the entire slice at once. /// /// [`copy_from_slice`]: https://doc.rust-lang.org/std/primitive.slice.html#method.copy_from_slice impl<'a, 'bump, T: 'a + Copy> Extend<&'a T> for Vec<'bump, T> { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()) } } macro_rules! __impl_slice_eq1 { ($Lhs: ty, $Rhs: ty) => { __impl_slice_eq1! { $Lhs, $Rhs, Sized } }; ($Lhs: ty, $Rhs: ty, $Bound: ident) => { impl<'a, 'b, A: $Bound, B> PartialEq<$Rhs> for $Lhs where A: PartialEq, { #[inline] fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] } } }; } __impl_slice_eq1! { Vec<'a, A>, Vec<'b, B> } __impl_slice_eq1! { Vec<'a, A>, &'b [B] } __impl_slice_eq1! { Vec<'a, A>, &'b mut [B] } // __impl_slice_eq1! { Cow<'a, [A]>, Vec<'b, B>, Clone } macro_rules! __impl_slice_eq1_array { ($Lhs: ty, $Rhs: ty) => { impl<'a, 'b, A, B, const N: usize> PartialEq<$Rhs> for $Lhs where A: PartialEq, { #[inline] fn eq(&self, other: &$Rhs) -> bool { self[..] == other[..] } } }; } __impl_slice_eq1_array! { Vec<'a, A>, [B; N] } __impl_slice_eq1_array! { Vec<'a, A>, &'b [B; N] } __impl_slice_eq1_array! { Vec<'a, A>, &'b mut [B; N] } /// Implements comparison of vectors, lexicographically. impl<'bump, T: 'bump + PartialOrd> PartialOrd for Vec<'bump, T> { #[inline] fn partial_cmp(&self, other: &Vec<'bump, T>) -> Option { PartialOrd::partial_cmp(&**self, &**other) } } impl<'bump, T: 'bump + Eq> Eq for Vec<'bump, T> {} /// Implements ordering of vectors, lexicographically. impl<'bump, T: 'bump + Ord> Ord for Vec<'bump, T> { #[inline] fn cmp(&self, other: &Vec<'bump, T>) -> Ordering { Ord::cmp(&**self, &**other) } } impl<'bump, T: 'bump + fmt::Debug> fmt::Debug for Vec<'bump, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<'bump, T: 'bump> AsRef> for Vec<'bump, T> { fn as_ref(&self) -> &Vec<'bump, T> { self } } impl<'bump, T: 'bump> AsMut> for Vec<'bump, T> { fn as_mut(&mut self) -> &mut Vec<'bump, T> { self } } impl<'bump, T: 'bump> AsRef<[T]> for Vec<'bump, T> { fn as_ref(&self) -> &[T] { self } } impl<'bump, T: 'bump> AsMut<[T]> for Vec<'bump, T> { fn as_mut(&mut self) -> &mut [T] { self } } #[cfg(feature = "boxed")] impl<'bump, T: 'bump> From> for crate::boxed::Box<'bump, [T]> { fn from(v: Vec<'bump, T>) -> crate::boxed::Box<'bump, [T]> { v.into_boxed_slice() } } impl<'bump, T: 'bump> Borrow<[T]> for Vec<'bump, T> { #[inline] fn borrow(&self) -> &[T] { &self[..] } } impl<'bump, T: 'bump> BorrowMut<[T]> for Vec<'bump, T> { #[inline] fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } impl<'bump, T> Drop for Vec<'bump, T> { fn drop(&mut self) { unsafe { // use drop for [T] // use a raw slice to refer to the elements of the vector as weakest necessary type; // could avoid questions of validity in certain cases ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len)) } // RawVec handles deallocation } } //////////////////////////////////////////////////////////////////////////////// // Clone-on-write //////////////////////////////////////////////////////////////////////////////// // impl<'a, 'bump, T: Clone> From> for Cow<'a, [T]> { // fn from(v: Vec<'bump, T>) -> Cow<'a, [T]> { // Cow::Owned(v) // } // } // impl<'a, 'bump, T: Clone> From<&'a Vec<'bump, T>> for Cow<'a, [T]> { // fn from(v: &'a Vec<'bump, T>) -> Cow<'a, [T]> { // Cow::Borrowed(v.as_slice()) // } // } //////////////////////////////////////////////////////////////////////////////// // Iterators //////////////////////////////////////////////////////////////////////////////// /// An iterator that moves out of a vector. /// /// This `struct` is created by the [`Vec::into_iter`] method /// (provided by the [`IntoIterator`] trait). /// /// [`IntoIterator`]: https://doc.rust-lang.org/std/iter/trait.IntoIterator.html pub struct IntoIter<'bump, T> { phantom: PhantomData<&'bump [T]>, ptr: *const T, end: *const T, } impl<'bump, T: fmt::Debug> fmt::Debug for IntoIter<'bump, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("IntoIter").field(&self.as_slice()).finish() } } impl<'bump, T: 'bump> IntoIter<'bump, T> { /// Returns the remaining items of this iterator as a slice. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let vec = bumpalo::vec![in &b; 'a', 'b', 'c']; /// let mut into_iter = vec.into_iter(); /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); /// let _ = into_iter.next().unwrap(); /// assert_eq!(into_iter.as_slice(), &['b', 'c']); /// ``` pub fn as_slice(&self) -> &[T] { unsafe { slice::from_raw_parts(self.ptr, self.len()) } } /// Returns the remaining items of this iterator as a mutable slice. /// /// # Examples /// /// ``` /// use bumpalo::{Bump, collections::Vec}; /// /// let b = Bump::new(); /// /// let vec = bumpalo::vec![in &b; 'a', 'b', 'c']; /// let mut into_iter = vec.into_iter(); /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); /// into_iter.as_mut_slice()[2] = 'z'; /// assert_eq!(into_iter.next().unwrap(), 'a'); /// assert_eq!(into_iter.next().unwrap(), 'b'); /// assert_eq!(into_iter.next().unwrap(), 'z'); /// ``` pub fn as_mut_slice(&mut self) -> &mut [T] { unsafe { slice::from_raw_parts_mut(self.ptr as *mut T, self.len()) } } } unsafe impl<'bump, T: Send> Send for IntoIter<'bump, T> {} unsafe impl<'bump, T: Sync> Sync for IntoIter<'bump, T> {} impl<'bump, T: 'bump> Iterator for IntoIter<'bump, T> { type Item = T; #[inline] fn next(&mut self) -> Option { unsafe { if self.ptr as *const _ == self.end { None } else if mem::size_of::() == 0 { // purposefully don't use 'ptr.offset' because for // vectors with 0-size elements this would return the // same pointer. self.ptr = arith_offset(self.ptr as *const i8, 1) as *mut T; // Make up a value of this ZST. Some(mem::zeroed()) } else { let old = self.ptr; self.ptr = self.ptr.offset(1); Some(ptr::read(old)) } } } #[inline] fn size_hint(&self) -> (usize, Option) { let exact = if mem::size_of::() == 0 { (self.end as usize).wrapping_sub(self.ptr as usize) } else { unsafe { offset_from(self.end, self.ptr) as usize } }; (exact, Some(exact)) } #[inline] fn count(self) -> usize { self.len() } } impl<'bump, T: 'bump> DoubleEndedIterator for IntoIter<'bump, T> { #[inline] fn next_back(&mut self) -> Option { unsafe { if self.end == self.ptr { None } else if mem::size_of::() == 0 { // See above for why 'ptr.offset' isn't used self.end = arith_offset(self.end as *const i8, -1) as *mut T; // Make up a value of this ZST. Some(mem::zeroed()) } else { self.end = self.end.offset(-1); Some(ptr::read(self.end)) } } } } impl<'bump, T: 'bump> ExactSizeIterator for IntoIter<'bump, T> {} impl<'bump, T: 'bump> FusedIterator for IntoIter<'bump, T> {} impl<'bump, T> Drop for IntoIter<'bump, T> { fn drop(&mut self) { // drop all remaining elements self.for_each(drop); } } /// A draining iterator for `Vec<'bump, T>`. /// /// This `struct` is created by the [`Vec::drain`] method. pub struct Drain<'a, 'bump, T: 'a + 'bump> { /// Index of tail to preserve tail_start: usize, /// Length of tail tail_len: usize, /// Current remaining range to remove iter: slice::Iter<'a, T>, vec: NonNull>, } impl<'a, 'bump, T: 'a + 'bump + fmt::Debug> fmt::Debug for Drain<'a, 'bump, T> { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_tuple("Drain").field(&self.iter.as_slice()).finish() } } unsafe impl<'a, 'bump, T: Sync> Sync for Drain<'a, 'bump, T> {} unsafe impl<'a, 'bump, T: Send> Send for Drain<'a, 'bump, T> {} impl<'a, 'bump, T> Iterator for Drain<'a, 'bump, T> { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter .next() .map(|elt| unsafe { ptr::read(elt as *const _) }) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, 'bump, T> DoubleEndedIterator for Drain<'a, 'bump, T> { #[inline] fn next_back(&mut self) -> Option { self.iter .next_back() .map(|elt| unsafe { ptr::read(elt as *const _) }) } } impl<'a, 'bump, T> Drop for Drain<'a, 'bump, T> { fn drop(&mut self) { // exhaust self first self.for_each(drop); if self.tail_len > 0 { unsafe { let source_vec = self.vec.as_mut(); // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.tail_start; if tail != start { let src = source_vec.as_ptr().add(tail); let dst = source_vec.as_mut_ptr().add(start); ptr::copy(src, dst, self.tail_len); } source_vec.set_len(start + self.tail_len); } } } } impl<'a, 'bump, T> ExactSizeIterator for Drain<'a, 'bump, T> {} impl<'a, 'bump, T> FusedIterator for Drain<'a, 'bump, T> {} /// A splicing iterator for `Vec`. /// /// This struct is created by the [`Vec::splice`] method. See its /// documentation for more information. #[derive(Debug)] pub struct Splice<'a, 'bump, I: Iterator + 'a + 'bump> { drain: Drain<'a, 'bump, I::Item>, replace_with: I, } impl<'a, 'bump, I: Iterator> Iterator for Splice<'a, 'bump, I> { type Item = I::Item; fn next(&mut self) -> Option { self.drain.next() } fn size_hint(&self) -> (usize, Option) { self.drain.size_hint() } } impl<'a, 'bump, I: Iterator> DoubleEndedIterator for Splice<'a, 'bump, I> { fn next_back(&mut self) -> Option { self.drain.next_back() } } impl<'a, 'bump, I: Iterator> ExactSizeIterator for Splice<'a, 'bump, I> {} impl<'a, 'bump, I: Iterator> Drop for Splice<'a, 'bump, I> { fn drop(&mut self) { self.drain.by_ref().for_each(drop); unsafe { if self.drain.tail_len == 0 { self.drain.vec.as_mut().extend(self.replace_with.by_ref()); return; } // First fill the range left by drain(). if !self.drain.fill(&mut self.replace_with) { return; } // There may be more elements. Use the lower bound as an estimate. // FIXME: Is the upper bound a better guess? Or something else? let (lower_bound, _upper_bound) = self.replace_with.size_hint(); if lower_bound > 0 { self.drain.move_tail(lower_bound); if !self.drain.fill(&mut self.replace_with) { return; } } // Collect any remaining elements. // This is a zero-length vector which does not allocate if `lower_bound` was exact. let mut collected = Vec::new_in(self.drain.vec.as_ref().buf.bump()); collected.extend(self.replace_with.by_ref()); let mut collected = collected.into_iter(); // Now we have an exact count. if collected.len() > 0 { self.drain.move_tail(collected.len()); let filled = self.drain.fill(&mut collected); debug_assert!(filled); debug_assert_eq!(collected.len(), 0); } } // Let `Drain::drop` move the tail back if necessary and restore `vec.len`. } } /// Private helper methods for `Splice::drop` impl<'a, 'bump, T> Drain<'a, 'bump, T> { /// The range from `self.vec.len` to `self.tail_start` contains elements /// that have been moved out. /// Fill that range as much as possible with new elements from the `replace_with` iterator. /// Return whether we filled the entire range. (`replace_with.next()` didn’t return `None`.) unsafe fn fill>(&mut self, replace_with: &mut I) -> bool { let vec = self.vec.as_mut(); let range_start = vec.len; let range_end = self.tail_start; let range_slice = slice::from_raw_parts_mut(vec.as_mut_ptr().add(range_start), range_end - range_start); for place in range_slice { if let Some(new_item) = replace_with.next() { ptr::write(place, new_item); vec.len += 1; } else { return false; } } true } /// Make room for inserting more elements before the tail. unsafe fn move_tail(&mut self, extra_capacity: usize) { let vec = self.vec.as_mut(); let used_capacity = self.tail_start + self.tail_len; vec.buf.reserve(used_capacity, extra_capacity); let new_tail_start = self.tail_start + extra_capacity; let src = vec.as_ptr().add(self.tail_start); let dst = vec.as_mut_ptr().add(new_tail_start); ptr::copy(src, dst, self.tail_len); self.tail_start = new_tail_start; } } /// An iterator produced by calling [`Vec::drain_filter`]. #[derive(Debug)] pub struct DrainFilter<'a, 'bump: 'a, T: 'a + 'bump, F> where F: FnMut(&mut T) -> bool, { vec: &'a mut Vec<'bump, T>, idx: usize, del: usize, old_len: usize, pred: F, } impl<'a, 'bump, T, F> Iterator for DrainFilter<'a, 'bump, T, F> where F: FnMut(&mut T) -> bool, { type Item = T; fn next(&mut self) -> Option { unsafe { while self.idx != self.old_len { let i = self.idx; self.idx += 1; let v = slice::from_raw_parts_mut(self.vec.as_mut_ptr(), self.old_len); if (self.pred)(&mut v[i]) { self.del += 1; return Some(ptr::read(&v[i])); } else if self.del > 0 { let del = self.del; let src: *const T = &v[i]; let dst: *mut T = &mut v[i - del]; // This is safe because self.vec has length 0 // thus its elements will not have Drop::drop // called on them in the event of a panic. ptr::copy_nonoverlapping(src, dst, 1); } } None } } fn size_hint(&self) -> (usize, Option) { (0, Some(self.old_len - self.idx)) } } impl<'a, 'bump, T, F> Drop for DrainFilter<'a, 'bump, T, F> where F: FnMut(&mut T) -> bool, { fn drop(&mut self) { self.for_each(drop); unsafe { self.vec.set_len(self.old_len - self.del); } } }