use super::attr::AttrsHelper; use proc_macro2::{Span, TokenStream}; use quote::{format_ident, quote}; use syn::{ punctuated::Punctuated, token::{Colon, Comma, PathSep, Plus, Where}, Data, DataEnum, DataStruct, DeriveInput, Error, Fields, Generics, Ident, Path, PathArguments, PathSegment, PredicateType, Result, TraitBound, TraitBoundModifier, Type, TypeParam, TypeParamBound, TypePath, WhereClause, WherePredicate, }; use std::collections::HashMap; pub(crate) fn derive(input: &DeriveInput) -> Result { let impls = match &input.data { Data::Struct(data) => impl_struct(input, data), Data::Enum(data) => impl_enum(input, data), Data::Union(_) => Err(Error::new_spanned(input, "Unions are not supported")), }?; let helpers = specialization(); let dummy_const = format_ident!("_DERIVE_Display_FOR_{}", input.ident); Ok(quote! { #[allow(non_upper_case_globals, unused_attributes, unused_qualifications)] const #dummy_const: () = { #helpers #impls }; }) } #[cfg(feature = "std")] fn specialization() -> TokenStream { quote! { trait DisplayToDisplayDoc { fn __displaydoc_display(&self) -> Self; } impl DisplayToDisplayDoc for &T { fn __displaydoc_display(&self) -> Self { self } } // If the `std` feature gets enabled we want to ensure that any crate // using displaydoc can still reference the std crate, which is already // being compiled in by whoever enabled the `std` feature in // `displaydoc`, even if the crates using displaydoc are no_std. extern crate std; trait PathToDisplayDoc { fn __displaydoc_display(&self) -> std::path::Display<'_>; } impl PathToDisplayDoc for std::path::Path { fn __displaydoc_display(&self) -> std::path::Display<'_> { self.display() } } impl PathToDisplayDoc for std::path::PathBuf { fn __displaydoc_display(&self) -> std::path::Display<'_> { self.display() } } } } #[cfg(not(feature = "std"))] fn specialization() -> TokenStream { quote! {} } fn impl_struct(input: &DeriveInput, data: &DataStruct) -> Result { let ty = &input.ident; let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl(); let where_clause = generate_where_clause(&input.generics, where_clause); let helper = AttrsHelper::new(&input.attrs); let display = helper.display(&input.attrs)?.map(|display| { let pat = match &data.fields { Fields::Named(fields) => { let var = fields.named.iter().map(|field| &field.ident); quote!(Self { #(#var),* }) } Fields::Unnamed(fields) => { let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i)); quote!(Self(#(#var),*)) } Fields::Unit => quote!(_), }; quote! { impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { // NB: This destructures the fields of `self` into named variables (for unnamed // fields, it uses _0, _1, etc as above). The `#[allow(unused_variables)]` // section means it doesn't have to parse the individual field references out of // the docstring. #[allow(unused_variables)] let #pat = self; #display } } } }); Ok(quote! { #display }) } /// Create a `where` predicate for `ident`, without any [bound][TypeParamBound]s yet. fn new_empty_where_type_predicate(ident: Ident) -> PredicateType { let mut path_segments = Punctuated::::new(); path_segments.push_value(PathSegment { ident, arguments: PathArguments::None, }); PredicateType { lifetimes: None, bounded_ty: Type::Path(TypePath { qself: None, path: Path { leading_colon: None, segments: path_segments, }, }), colon_token: Colon { spans: [Span::call_site()], }, bounds: Punctuated::::new(), } } /// Create a `where` clause that we can add [WherePredicate]s to. fn new_empty_where_clause() -> WhereClause { WhereClause { where_token: Where { span: Span::call_site(), }, predicates: Punctuated::::new(), } } enum UseGlobalPrefix { LeadingColon, #[allow(dead_code)] NoLeadingColon, } /// Create a path with segments composed of [Idents] *without* any [PathArguments]. fn join_paths(name_segments: &[&str], use_global_prefix: UseGlobalPrefix) -> Path { let mut segments = Punctuated::::new(); assert!(!name_segments.is_empty()); segments.push_value(PathSegment { ident: Ident::new(name_segments[0], Span::call_site()), arguments: PathArguments::None, }); for name in name_segments[1..].iter() { segments.push_punct(PathSep { spans: [Span::call_site(), Span::mixed_site()], }); segments.push_value(PathSegment { ident: Ident::new(name, Span::call_site()), arguments: PathArguments::None, }); } Path { leading_colon: match use_global_prefix { UseGlobalPrefix::LeadingColon => Some(PathSep { spans: [Span::call_site(), Span::mixed_site()], }), UseGlobalPrefix::NoLeadingColon => None, }, segments, } } /// Push `new_type_predicate` onto the end of `where_clause`. fn append_where_clause_type_predicate( where_clause: &mut WhereClause, new_type_predicate: PredicateType, ) { // Push a comma at the end if there are already any `where` predicates. if !where_clause.predicates.is_empty() { where_clause.predicates.push_punct(Comma { spans: [Span::call_site()], }); } where_clause .predicates .push_value(WherePredicate::Type(new_type_predicate)); } /// Add a requirement for [core::fmt::Display] to a `where` predicate for some type. fn add_display_constraint_to_type_predicate( predicate_that_needs_a_display_impl: &mut PredicateType, ) { // Create a `Path` of `::core::fmt::Display`. let display_path = join_paths(&["core", "fmt", "Display"], UseGlobalPrefix::LeadingColon); let display_bound = TypeParamBound::Trait(TraitBound { paren_token: None, modifier: TraitBoundModifier::None, lifetimes: None, path: display_path, }); if !predicate_that_needs_a_display_impl.bounds.is_empty() { predicate_that_needs_a_display_impl.bounds.push_punct(Plus { spans: [Span::call_site()], }); } predicate_that_needs_a_display_impl .bounds .push_value(display_bound); } /// Map each declared generic type parameter to the set of all trait boundaries declared on it. /// /// These boundaries may come from the declaration site: /// pub enum E { ... } /// or a `where` clause after the parameter declarations: /// pub enum E where T: MyTrait { ... } /// This method will return the boundaries from both of those cases. fn extract_trait_constraints_from_source( where_clause: &WhereClause, type_params: &[&TypeParam], ) -> HashMap> { // Add trait bounds provided at the declaration site of type parameters for the struct/enum. let mut param_constraint_mapping: HashMap> = type_params .iter() .map(|type_param| { let trait_bounds: Vec = type_param .bounds .iter() .flat_map(|bound| match bound { TypeParamBound::Trait(trait_bound) => Some(trait_bound), _ => None, }) .cloned() .collect(); (type_param.ident.clone(), trait_bounds) }) .collect(); // Add trait bounds from `where` clauses, which may be type parameters or types containing // those parameters. for predicate in where_clause.predicates.iter() { // We only care about type and not lifetime constraints here. if let WherePredicate::Type(ref pred_ty) = predicate { let ident = match &pred_ty.bounded_ty { Type::Path(TypePath { path, qself: None }) => match path.get_ident() { None => continue, Some(ident) => ident, }, _ => continue, }; // We ignore any type constraints that aren't direct references to type // parameters of the current enum of struct definition. No types can be // constrained in a `where` clause unless they are a type parameter or a generic // type instantiated with one of the type parameters, so by only allowing single // identifiers, we can be sure that the constrained type is a type parameter // that is contained in `param_constraint_mapping`. if let Some((_, ref mut known_bounds)) = param_constraint_mapping .iter_mut() .find(|(id, _)| *id == ident) { for bound in pred_ty.bounds.iter() { // We only care about trait bounds here. if let TypeParamBound::Trait(ref bound) = bound { known_bounds.push(bound.clone()); } } } } } param_constraint_mapping } /// Hygienically add `where _: Display` to the set of [TypeParamBound]s for `ident`, creating such /// a set if necessary. fn ensure_display_in_where_clause_for_type(where_clause: &mut WhereClause, ident: Ident) { for pred_ty in where_clause .predicates .iter_mut() // Find the `where` predicate constraining the current type param, if it exists. .flat_map(|predicate| match predicate { WherePredicate::Type(pred_ty) => Some(pred_ty), // We're looking through type constraints, not lifetime constraints. _ => None, }) { // Do a complicated destructuring in order to check if the type being constrained in this // `where` clause is the type we're looking for, so we can use the mutable reference to // `pred_ty` if so. let matches_desired_type = matches!( &pred_ty.bounded_ty, Type::Path(TypePath { path, .. }) if Some(&ident) == path.get_ident()); if matches_desired_type { add_display_constraint_to_type_predicate(pred_ty); return; } } // If there is no `where` predicate for the current type param, we will construct one. let mut new_type_predicate = new_empty_where_type_predicate(ident); add_display_constraint_to_type_predicate(&mut new_type_predicate); append_where_clause_type_predicate(where_clause, new_type_predicate); } /// For all declared type parameters, add a [core::fmt::Display] constraint, unless the type /// parameter already has any type constraint. fn ensure_where_clause_has_display_for_all_unconstrained_members( where_clause: &mut WhereClause, type_params: &[&TypeParam], ) { let param_constraint_mapping = extract_trait_constraints_from_source(where_clause, type_params); for (ident, known_bounds) in param_constraint_mapping.into_iter() { // If the type parameter has any constraints already, we don't want to touch it, to avoid // breaking use cases where a type parameter only needs to impl `Debug`, for example. if known_bounds.is_empty() { ensure_display_in_where_clause_for_type(where_clause, ident); } } } /// Generate a `where` clause that ensures all generic type parameters `impl` /// [core::fmt::Display] unless already constrained. /// /// This approach allows struct/enum definitions deriving [crate::Display] to avoid hardcoding /// a [core::fmt::Display] constraint into every type parameter. /// /// If the type parameter isn't already constrained, we add a `where _: Display` clause to our /// display implementation to expect to be able to format every enum case or struct member. /// /// In fact, we would preferably only require `where _: Display` or `where _: Debug` where the /// format string actually requires it. However, while [`std::fmt` defines a formal syntax for /// `format!()`][format syntax], it *doesn't* expose the actual logic to parse the format string, /// which appears to live in [`rustc_parse_format`]. While we use the [`syn`] crate to parse rust /// syntax, it also doesn't currently provide any method to introspect a `format!()` string. It /// would be nice to contribute this upstream in [`syn`]. /// /// [format syntax]: std::fmt#syntax /// [`rustc_parse_format`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_parse_format/index.html fn generate_where_clause(generics: &Generics, where_clause: Option<&WhereClause>) -> WhereClause { let mut where_clause = where_clause.cloned().unwrap_or_else(new_empty_where_clause); let type_params: Vec<&TypeParam> = generics.type_params().collect(); ensure_where_clause_has_display_for_all_unconstrained_members(&mut where_clause, &type_params); where_clause } fn impl_enum(input: &DeriveInput, data: &DataEnum) -> Result { let ty = &input.ident; let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl(); let where_clause = generate_where_clause(&input.generics, where_clause); let helper = AttrsHelper::new(&input.attrs); let displays = data .variants .iter() .map(|variant| helper.display_with_input(&input.attrs, &variant.attrs)) .collect::>>()?; if data.variants.is_empty() { Ok(quote! { impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { unreachable!("empty enums cannot be instantiated and thus cannot be printed") } } }) } else if displays.iter().any(Option::is_some) { let arms = data .variants .iter() .zip(displays) .map(|(variant, display)| { let display = display.ok_or_else(|| Error::new_spanned(variant, "missing doc comment"))?; let ident = &variant.ident; Ok(match &variant.fields { Fields::Named(fields) => { let var = fields.named.iter().map(|field| &field.ident); quote!(Self::#ident { #(#var),* } => { #display }) } Fields::Unnamed(fields) => { let var = (0..fields.unnamed.len()).map(|i| format_ident!("_{}", i)); quote!(Self::#ident(#(#var),*) => { #display }) } Fields::Unit => quote!(Self::#ident => { #display }), }) }) .collect::>>()?; Ok(quote! { impl #impl_generics core::fmt::Display for #ty #ty_generics #where_clause { fn fmt(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { #[allow(unused_variables)] match self { #(#arms,)* } } } }) } else { Err(Error::new_spanned(input, "Missing doc comments")) } }