use crate::repr::EnumSetTypeRepr; use crate::traits::EnumSetType; use crate::EnumSetTypeWithRepr; use core::cmp::Ordering; use core::fmt::{Debug, Formatter}; use core::hash::{Hash, Hasher}; use core::iter::Sum; use core::ops::{ BitAnd, BitAndAssign, BitOr, BitOrAssign, BitXor, BitXorAssign, Not, Sub, SubAssign, }; #[cfg(feature = "serde")] use { serde2 as serde, serde2::{Deserialize, Serialize}, }; /// An efficient set type for enums. /// /// It is implemented using a bitset stored using the smallest integer that can fit all bits /// in the underlying enum. In general, an enum variant with a discriminator of `n` is stored in /// the nth least significant bit (corresponding with a mask of, e.g. `1 << enum as u32`). /// /// # Numeric representation /// /// `EnumSet` is internally implemented using integer types, and as such can be easily converted /// from and to numbers. /// /// Each bit of the underlying integer corresponds to at most one particular enum variant. If the /// corresponding bit for a variant is set, it present in the set. Bits that do not correspond to /// any variant are always unset. /// /// By default, each enum variant is stored in a bit corresponding to its discriminator. An enum /// variant with a discriminator of `n` is stored in the `n + 1`th least significant bit /// (corresponding to a mask of e.g. `1 << enum as u32`). /// /// # Array representation /// /// Sets with more than 128 variants are instead stored with an underlying array of `u64`s. This /// is treated as if it was a single large integer. The `n`th least significant bit of this integer /// is stored in the `n % 64`th least significant bit of the `n / 64`th element in the array. /// /// # Serialization /// /// When the `serde` feature is enabled, `EnumSet`s can be serialized and deserialized using /// the `serde` crate. The exact serialization format can be controlled with additional attributes /// on the enum type. These attributes are valid regardless of whether the `serde` feature /// is enabled. /// /// By default, `EnumSet` is serialized by directly writing out a single integer containing the /// numeric representation of the bitset. The integer type used is the smallest one that can fit /// the largest variant in the enum. If no integer type is large enough, instead the `EnumSet` is /// serialized as an array of `u64`s containing the array representation. /// /// The `#[enumset(serialize_repr = "…")]` attribute can be used to override the representation /// used. Valid values are as follows: /// /// * `u8`, `u16`, `u32`, `u64`, and `u128` serialize the type as the corresponding integer type. /// * `array` serializes the set as an list of `u64`s corresponding to the array representation. /// * `list` serializes the set as a list of enum variants. This requires your enum type implement /// [`Serialize`] and [`Deserialize`]. /// * `map` serializes the set as a map of enum variants to booleans. The set contains a value if /// the boolean is `true`. This requires your enum type implement `Serialize` and `Deserialize`. /// /// The representation used is determined statically at compile time, and there is currently no /// support for reading different formats with the same deserializer. /// /// By default, unknown bits are ignored and silently removed from the bitset. To override this /// behavior, you can add a `#[enumset(serialize_deny_unknown)]` attribute. This will cause /// deserialization to fail if an invalid bit is set. /// /// # FFI, Safety and `repr` /// /// If an enum type `T` is annotated with /// [`#[enumset(repr = "…")]`](derive@crate::EnumSetType#options) where `…` is a primitive integer /// type, then several things happen: /// /// * `T` will implement /// [EnumSetTypeWithRepr](crate::traits::EnumSetTypeWithRepr)<Repr = R> in /// addition to [`EnumSetType`]. /// * The `EnumSet` methods with `repr` in their name, such as [`as_repr`][EnumSet::as_repr] and /// [`from_repr`][EnumSet::from_repr], will be available for `EnumSet`. /// * The in-memory representation of `EnumSet` is guaranteed to be `R`. /// /// That last guarantee makes it sound to send `EnumSet` across an FFI boundary. For example: /// /// ``` /// # use enumset::*; /// # /// # mod ffi_impl { /// # // This example “foreign” function is actually written in Rust, but for the sake /// # // of example, we'll pretend it's written in C. /// # #[no_mangle] /// # extern "C" fn some_foreign_function(set: u32) -> u32 { /// # set & 0b100 /// # } /// # } /// # /// extern "C" { /// // This function is written in C like: /// // uint32_t some_foreign_function(uint32_t set) { … } /// fn some_foreign_function(set: EnumSet) -> EnumSet; /// } /// /// #[derive(Debug, EnumSetType)] /// #[enumset(repr = "u32")] /// enum MyEnum { A, B, C } /// /// let set: EnumSet = enum_set!(MyEnum::A | MyEnum::C); /// /// let new_set: EnumSet = unsafe { some_foreign_function(set) }; /// assert_eq!(new_set, enum_set!(MyEnum::C)); /// ``` /// /// When an `EnumSet` is received via FFI, all bits that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. #[cfg_attr( not(feature = "serde"), doc = "\n\n", doc = "[`Serialize`]: https://docs.rs/serde/latest/serde/trait.Serialize.html\n", doc = "[`Deserialize`]: https://docs.rs/serde/latest/serde/trait.Deserialize.html\n" )] #[derive(Copy, Clone, PartialEq, Eq)] #[repr(transparent)] pub struct EnumSet { #[doc(hidden)] /// This is public due to the `enum_set!` macro. /// This is **NOT** public API and may change at any time. pub __priv_repr: T::Repr, } //region EnumSet operations impl EnumSet { /// An empty `EnumSet`. /// /// This is available as a constant for use in constant expressions. pub const EMPTY: Self = EnumSet { __priv_repr: T::Repr::EMPTY }; /// An `EnumSet` containing all valid variants of the enum. /// /// This is available as a constant for use in constant expressions. pub const ALL: Self = EnumSet { __priv_repr: T::ALL_BITS }; /// Creates an empty `EnumSet`. #[inline(always)] pub fn new() -> Self { Self::EMPTY } /// Returns an `EnumSet` containing a single element. #[inline(always)] pub fn only(t: T) -> Self { let mut set = Self::new(); set.insert(t); set } /// Creates an empty `EnumSet`. /// /// This is an alias for [`EnumSet::new`]. #[inline(always)] pub fn empty() -> Self { Self::EMPTY } /// Returns an `EnumSet` containing all valid variants of the enum. #[inline(always)] pub fn all() -> Self { Self::ALL } /// Total number of bits used by this type. Note that the actual amount of space used is /// rounded up to the next highest integer type (`u8`, `u16`, `u32`, `u64`, or `u128`). /// /// This is the same as [`EnumSet::variant_count`] except in enums with "sparse" variants. /// (e.g. `enum Foo { A = 10, B = 20 }`) #[inline(always)] pub fn bit_width() -> u32 { T::BIT_WIDTH } /// The number of valid variants that this type can contain. /// /// This is the same as [`EnumSet::bit_width`] except in enums with "sparse" variants. /// (e.g. `enum Foo { A = 10, B = 20 }`) #[inline(always)] pub fn variant_count() -> u32 { T::VARIANT_COUNT } /// Returns the number of elements in this set. #[inline(always)] pub fn len(&self) -> usize { self.__priv_repr.count_ones() as usize } /// Returns `true` if the set contains no elements. #[inline(always)] pub fn is_empty(&self) -> bool { self.__priv_repr.is_empty() } /// Removes all elements from the set. #[inline(always)] pub fn clear(&mut self) { self.__priv_repr = T::Repr::EMPTY; } /// Returns `true` if `self` has no elements in common with `other`. This is equivalent to /// checking for an empty intersection. #[inline(always)] pub fn is_disjoint(&self, other: Self) -> bool { (*self & other).is_empty() } /// Returns `true` if the set is a superset of another, i.e., `self` contains at least all the /// values in `other`. #[inline(always)] pub fn is_superset(&self, other: Self) -> bool { (*self & other).__priv_repr == other.__priv_repr } /// Returns `true` if the set is a subset of another, i.e., `other` contains at least all /// the values in `self`. #[inline(always)] pub fn is_subset(&self, other: Self) -> bool { other.is_superset(*self) } /// Returns a set containing any elements present in either set. #[inline(always)] pub fn union(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr | other.__priv_repr } } /// Returns a set containing every element present in both sets. #[inline(always)] pub fn intersection(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr & other.__priv_repr } } /// Returns a set containing element present in `self` but not in `other`. #[inline(always)] pub fn difference(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr.and_not(other.__priv_repr) } } /// Returns a set containing every element present in either `self` or `other`, but is not /// present in both. #[inline(always)] pub fn symmetrical_difference(&self, other: Self) -> Self { EnumSet { __priv_repr: self.__priv_repr ^ other.__priv_repr } } /// Returns a set containing all enum variants not in this set. #[inline(always)] pub fn complement(&self) -> Self { EnumSet { __priv_repr: !self.__priv_repr & T::ALL_BITS } } /// Checks whether this set contains a value. #[inline(always)] pub fn contains(&self, value: T) -> bool { self.__priv_repr.has_bit(value.enum_into_u32()) } /// Adds a value to this set. /// /// If the set did not have this value present, `true` is returned. /// /// If the set did have this value present, `false` is returned. #[inline(always)] pub fn insert(&mut self, value: T) -> bool { let contains = !self.contains(value); self.__priv_repr.add_bit(value.enum_into_u32()); contains } /// Removes a value from this set. Returns whether the value was present in the set. #[inline(always)] pub fn remove(&mut self, value: T) -> bool { let contains = self.contains(value); self.__priv_repr.remove_bit(value.enum_into_u32()); contains } /// Adds all elements in another set to this one. #[inline(always)] pub fn insert_all(&mut self, other: Self) { self.__priv_repr = self.__priv_repr | other.__priv_repr } /// Removes all values in another set from this one. #[inline(always)] pub fn remove_all(&mut self, other: Self) { self.__priv_repr = self.__priv_repr.and_not(other.__priv_repr); } } impl Default for EnumSet { /// Returns an empty set. fn default() -> Self { Self::new() } } impl>> Sub for EnumSet { type Output = Self; #[inline(always)] fn sub(self, other: O) -> Self::Output { self.difference(other.into()) } } impl>> BitAnd for EnumSet { type Output = Self; #[inline(always)] fn bitand(self, other: O) -> Self::Output { self.intersection(other.into()) } } impl>> BitOr for EnumSet { type Output = Self; #[inline(always)] fn bitor(self, other: O) -> Self::Output { self.union(other.into()) } } impl>> BitXor for EnumSet { type Output = Self; #[inline(always)] fn bitxor(self, other: O) -> Self::Output { self.symmetrical_difference(other.into()) } } impl>> SubAssign for EnumSet { #[inline(always)] fn sub_assign(&mut self, rhs: O) { *self = *self - rhs; } } impl>> BitAndAssign for EnumSet { #[inline(always)] fn bitand_assign(&mut self, rhs: O) { *self = *self & rhs; } } impl>> BitOrAssign for EnumSet { #[inline(always)] fn bitor_assign(&mut self, rhs: O) { *self = *self | rhs; } } impl>> BitXorAssign for EnumSet { #[inline(always)] fn bitxor_assign(&mut self, rhs: O) { *self = *self ^ rhs; } } impl Not for EnumSet { type Output = Self; #[inline(always)] fn not(self) -> Self::Output { self.complement() } } impl From for EnumSet { fn from(t: T) -> Self { EnumSet::only(t) } } impl PartialEq for EnumSet { fn eq(&self, other: &T) -> bool { self.__priv_repr == EnumSet::only(*other).__priv_repr } } impl Debug for EnumSet { fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { let mut is_first = true; f.write_str("EnumSet(")?; for v in self.iter() { if !is_first { f.write_str(" | ")?; } is_first = false; v.fmt(f)?; } f.write_str(")")?; Ok(()) } } #[allow(clippy::derived_hash_with_manual_eq)] // This impl exists to change trait bounds only. impl Hash for EnumSet { fn hash(&self, state: &mut H) { self.__priv_repr.hash(state) } } impl PartialOrd for EnumSet { fn partial_cmp(&self, other: &Self) -> Option { self.__priv_repr.partial_cmp(&other.__priv_repr) } } impl Ord for EnumSet { fn cmp(&self, other: &Self) -> Ordering { self.__priv_repr.cmp(&other.__priv_repr) } } #[cfg(feature = "serde")] impl Serialize for EnumSet { fn serialize(&self, serializer: S) -> Result { T::serialize(*self, serializer) } } #[cfg(feature = "serde")] impl<'de, T: EnumSetType> Deserialize<'de> for EnumSet { fn deserialize>(deserializer: D) -> Result { T::deserialize(deserializer) } } //endregion //region EnumSet conversions impl EnumSet { /// Returns a `T::Repr` representing the elements of this set. /// /// Unlike the other `as_*` methods, this method is zero-cost and guaranteed not to fail, /// panic or truncate any bits. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn as_repr(&self) -> ::Repr { self.__priv_repr } /// Constructs a bitset from a `T::Repr` without checking for invalid bits. /// /// Unlike the other `from_*` methods, this method is zero-cost and guaranteed not to fail, /// panic or truncate any bits, provided the conditions under “Safety” are upheld. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant of /// `T` must be set to `0`. Behavior is **undefined** if any of these bits are set to `1`. #[inline(always)] pub unsafe fn from_repr_unchecked(bits: ::Repr) -> Self { Self { __priv_repr: bits } } /// Constructs a bitset from a `T::Repr`. /// /// If a bit that doesn't correspond to an enum variant is set, this /// method will panic. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn from_repr(bits: ::Repr) -> Self { Self::try_from_repr(bits).expect("Bitset contains invalid variants.") } /// Attempts to constructs a bitset from a `T::Repr`. /// /// If a bit that doesn't correspond to an enum variant is set, this /// method will return `None`. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn try_from_repr(bits: ::Repr) -> Option { let mask = Self::all().__priv_repr; if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None } } /// Constructs a bitset from a `T::Repr`, ignoring invalid variants. /// /// In order to use this method, the definition of `T` must have the `#[enumset(repr = "…")]` /// annotation. #[inline(always)] pub fn from_repr_truncated(bits: ::Repr) -> Self { let mask = Self::all().as_repr(); let bits = bits & mask; EnumSet { __priv_repr: bits } } } /// Helper macro for generating conversion functions. macro_rules! conversion_impls { ( $(for_num!( $underlying:ty, $underlying_str:expr, $from_fn:ident $to_fn:ident $from_fn_opt:ident $to_fn_opt:ident, $from:ident $try_from:ident $from_truncated:ident $from_unchecked:ident, $to:ident $try_to:ident $to_truncated:ident );)* ) => { impl EnumSet {$( #[doc = "Returns a `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "`, this method will panic."] #[inline(always)] pub fn $to(&self) -> $underlying { self.$try_to().expect("Bitset will not fit into this type.") } #[doc = "Tries to return a `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "`, this method will panic."] #[inline(always)] pub fn $try_to(&self) -> Option<$underlying> { EnumSetTypeRepr::$to_fn_opt(&self.__priv_repr) } #[doc = "Returns a truncated `"] #[doc = $underlying_str] #[doc = "` representing the elements of this set.\n\nIf the underlying bitset will \ not fit in a `"] #[doc = $underlying_str] #[doc = "`, this method will truncate any bits that don't fit."] #[inline(always)] pub fn $to_truncated(&self) -> $underlying { EnumSetTypeRepr::$to_fn(&self.__priv_repr) } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ method will panic."] #[inline(always)] pub fn $from(bits: $underlying) -> Self { Self::$try_from(bits).expect("Bitset contains invalid variants.") } #[doc = "Attempts to constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`.\n\nIf a bit that doesn't correspond to an enum variant is set, this \ method will return `None`."] #[inline(always)] pub fn $try_from(bits: $underlying) -> Option { let bits = T::Repr::$from_fn_opt(bits); let mask = T::ALL_BITS; bits.and_then(|bits| if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None }) } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`, ignoring bits that do not correspond to a variant."] #[inline(always)] pub fn $from_truncated(bits: $underlying) -> Self { let mask = Self::all().$to_truncated(); let bits = ::$from_fn(bits & mask); EnumSet { __priv_repr: bits } } #[doc = "Constructs a bitset from a `"] #[doc = $underlying_str] #[doc = "`, without checking for invalid bits."] /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set /// to `1`. #[inline(always)] pub unsafe fn $from_unchecked(bits: $underlying) -> Self { EnumSet { __priv_repr: ::$from_fn(bits) } } )*} } } conversion_impls! { for_num!(u8, "u8", from_u8 to_u8 from_u8_opt to_u8_opt, from_u8 try_from_u8 from_u8_truncated from_u8_unchecked, as_u8 try_as_u8 as_u8_truncated); for_num!(u16, "u16", from_u16 to_u16 from_u16_opt to_u16_opt, from_u16 try_from_u16 from_u16_truncated from_u16_unchecked, as_u16 try_as_u16 as_u16_truncated); for_num!(u32, "u32", from_u32 to_u32 from_u32_opt to_u32_opt, from_u32 try_from_u32 from_u32_truncated from_u32_unchecked, as_u32 try_as_u32 as_u32_truncated); for_num!(u64, "u64", from_u64 to_u64 from_u64_opt to_u64_opt, from_u64 try_from_u64 from_u64_truncated from_u64_unchecked, as_u64 try_as_u64 as_u64_truncated); for_num!(u128, "u128", from_u128 to_u128 from_u128_opt to_u128_opt, from_u128 try_from_u128 from_u128_truncated from_u128_unchecked, as_u128 try_as_u128 as_u128_truncated); for_num!(usize, "usize", from_usize to_usize from_usize_opt to_usize_opt, from_usize try_from_usize from_usize_truncated from_usize_unchecked, as_usize try_as_usize as_usize_truncated); } impl EnumSet { /// Returns an `[u64; O]` representing the elements of this set. /// /// If the underlying bitset will not fit in a `[u64; O]`, this method will panic. pub fn as_array(&self) -> [u64; O] { self.try_as_array() .expect("Bitset will not fit into this type.") } /// Returns an `[u64; O]` representing the elements of this set. /// /// If the underlying bitset will not fit in a `[u64; O]`, this method will instead return /// `None`. pub fn try_as_array(&self) -> Option<[u64; O]> { self.__priv_repr.to_u64_array_opt() } /// Returns an `[u64; O]` representing the elements of this set. /// /// If the underlying bitset will not fit in a `[u64; O]`, this method will truncate any bits /// that don't fit. pub fn as_array_truncated(&self) -> [u64; O] { self.__priv_repr.to_u64_array() } /// Attempts to constructs a bitset from a `[u64; O]`. /// /// If a bit that doesn't correspond to an enum variant is set, this method will panic. pub fn from_array(v: [u64; O]) -> Self { Self::try_from_array(v).expect("Bitset contains invalid variants.") } /// Attempts to constructs a bitset from a `[u64; O]`. /// /// If a bit that doesn't correspond to an enum variant is set, this method will return `None`. pub fn try_from_array(bits: [u64; O]) -> Option { let bits = T::Repr::from_u64_array_opt::(bits); let mask = T::ALL_BITS; bits.and_then(|bits| { if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None } }) } /// Constructs a bitset from a `[u64; O]`, ignoring bits that do not correspond to a variant. pub fn from_array_truncated(bits: [u64; O]) -> Self { let bits = T::Repr::from_u64_array(bits) & T::ALL_BITS; EnumSet { __priv_repr: bits } } /// Constructs a bitset from a `[u64; O]`, without checking for invalid bits. /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set /// to `1`. #[inline(always)] pub unsafe fn from_array_unchecked(bits: [u64; O]) -> Self { EnumSet { __priv_repr: T::Repr::from_u64_array(bits) } } /// Returns a `Vec` representing the elements of this set. #[cfg(feature = "alloc")] #[cfg_attr(docsrs, doc(cfg(feature = "alloc")))] pub fn to_vec(&self) -> alloc::vec::Vec { let mut vec = alloc::vec![0; T::Repr::PREFERRED_ARRAY_LEN]; self.__priv_repr.to_u64_slice(&mut vec); vec } /// Copies the elements of this set into a `&mut [u64]`. /// /// If the underlying bitset will not fit in the provided slice, this method will panic. pub fn copy_into_slice(&self, data: &mut [u64]) { self.try_copy_into_slice(data) .expect("Bitset will not fit into slice.") } /// Copies the elements of this set into a `&mut [u64]`. /// /// If the underlying bitset will not fit in the provided slice, this method will return /// `None`. Otherwise, it will return `Some(())`. #[must_use] pub fn try_copy_into_slice(&self, data: &mut [u64]) -> Option<()> { self.__priv_repr.to_u64_slice_opt(data) } /// Copies the elements of this set into a `&mut [u64]`. /// /// If the underlying bitset will not fit in the provided slice, this method will truncate any /// bits that don't fit. pub fn copy_into_slice_truncated(&self, data: &mut [u64]) { self.__priv_repr.to_u64_slice(data) } /// Attempts to constructs a bitset from a `&[u64]`. /// /// If a bit that doesn't correspond to an enum variant is set, this method will panic. pub fn from_slice(v: &[u64]) -> Self { Self::try_from_slice(v).expect("Bitset contains invalid variants.") } /// Attempts to constructs a bitset from a `&[u64]`. /// /// If a bit that doesn't correspond to an enum variant is set, this method will return `None`. pub fn try_from_slice(bits: &[u64]) -> Option { let bits = T::Repr::from_u64_slice_opt(bits); let mask = T::ALL_BITS; bits.and_then(|bits| { if bits.and_not(mask).is_empty() { Some(EnumSet { __priv_repr: bits }) } else { None } }) } /// Constructs a bitset from a `&[u64]`, ignoring bits that do not correspond to a variant. pub fn from_slice_truncated(bits: &[u64]) -> Self { let bits = T::Repr::from_u64_slice(bits) & T::ALL_BITS; EnumSet { __priv_repr: bits } } /// Constructs a bitset from a `&[u64]`, without checking for invalid bits. /// /// # Safety /// /// All bits in the provided parameter `bits` that don't correspond to an enum variant /// of `T` must be set to `0`. Behavior is **undefined** if any of these bits are set /// to `1`. #[inline(always)] pub unsafe fn from_slice_unchecked(bits: &[u64]) -> Self { EnumSet { __priv_repr: T::Repr::from_u64_slice(bits) } } } //endregion //region EnumSet iter /// The iterator used by [`EnumSet`]s. #[derive(Clone, Debug)] pub struct EnumSetIter { iter: ::Iter, } impl EnumSetIter { fn new(set: EnumSet) -> EnumSetIter { EnumSetIter { iter: set.__priv_repr.iter() } } } impl EnumSet { /// Iterates the contents of the set in order from the least significant bit to the most /// significant bit. /// /// Note that iterator invalidation is impossible as the iterator contains a copy of this type, /// rather than holding a reference to it. pub fn iter(&self) -> EnumSetIter { EnumSetIter::new(*self) } } impl Iterator for EnumSetIter { type Item = T; fn next(&mut self) -> Option { self.iter.next().map(|x| unsafe { T::enum_from_u32(x) }) } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl DoubleEndedIterator for EnumSetIter { fn next_back(&mut self) -> Option { self.iter .next_back() .map(|x| unsafe { T::enum_from_u32(x) }) } } impl ExactSizeIterator for EnumSetIter {} impl Extend for EnumSet { fn extend>(&mut self, iter: I) { iter.into_iter().for_each(|v| { self.insert(v); }); } } impl FromIterator for EnumSet { fn from_iter>(iter: I) -> Self { let mut set = EnumSet::default(); set.extend(iter); set } } impl Extend> for EnumSet { fn extend>>(&mut self, iter: I) { iter.into_iter().for_each(|v| { self.insert_all(v); }); } } impl FromIterator> for EnumSet { fn from_iter>>(iter: I) -> Self { let mut set = EnumSet::default(); set.extend(iter); set } } impl IntoIterator for EnumSet { type Item = T; type IntoIter = EnumSetIter; fn into_iter(self) -> Self::IntoIter { self.iter() } } impl Sum for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | v) } } impl<'a, T: EnumSetType> Sum<&'a EnumSet> for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | *v) } } impl Sum for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | v) } } impl<'a, T: EnumSetType> Sum<&'a T> for EnumSet { fn sum>(iter: I) -> Self { iter.fold(EnumSet::empty(), |a, v| a | *v) } } //endregion