use super::assert_future; use crate::future::{Either, FutureExt}; use core::pin::Pin; use futures_core::future::{FusedFuture, Future}; use futures_core::task::{Context, Poll}; /// Future for the [`select()`] function. #[must_use = "futures do nothing unless you `.await` or poll them"] #[derive(Debug)] pub struct Select { inner: Option<(A, B)>, } impl Unpin for Select {} /// Waits for either one of two differently-typed futures to complete. /// /// This function will return a new future which awaits for either one of both /// futures to complete. The returned future will finish with both the value /// resolved and a future representing the completion of the other work. /// /// Note that this function consumes the receiving futures and returns a /// wrapped version of them. /// /// Also note that if both this and the second future have the same /// output type you can use the `Either::factor_first` method to /// conveniently extract out the value at the end. /// /// # Examples /// /// A simple example /// /// ``` /// # futures::executor::block_on(async { /// use futures::{ /// pin_mut, /// future::Either, /// future::self, /// }; /// /// // These two futures have different types even though their outputs have the same type. /// let future1 = async { /// future::pending::<()>().await; // will never finish /// 1 /// }; /// let future2 = async { /// future::ready(2).await /// }; /// /// // 'select' requires Future + Unpin bounds /// pin_mut!(future1); /// pin_mut!(future2); /// /// let value = match future::select(future1, future2).await { /// Either::Left((value1, _)) => value1, // `value1` is resolved from `future1` /// // `_` represents `future2` /// Either::Right((value2, _)) => value2, // `value2` is resolved from `future2` /// // `_` represents `future1` /// }; /// /// assert!(value == 2); /// # }); /// ``` /// /// A more complex example /// /// ``` /// use futures::future::{self, Either, Future, FutureExt}; /// /// // A poor-man's join implemented on top of select /// /// fn join(a: A, b: B) -> impl Future /// where A: Future + Unpin, /// B: Future + Unpin, /// { /// future::select(a, b).then(|either| { /// match either { /// Either::Left((x, b)) => b.map(move |y| (x, y)).left_future(), /// Either::Right((y, a)) => a.map(move |x| (x, y)).right_future(), /// } /// }) /// } /// ``` pub fn select(future1: A, future2: B) -> Select where A: Future + Unpin, B: Future + Unpin, { assert_future::, _>(Select { inner: Some((future1, future2)), }) } impl Future for Select where A: Future + Unpin, B: Future + Unpin, { type Output = Either<(A::Output, B), (B::Output, A)>; fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll { /// When compiled with `-C opt-level=z`, this function will help the compiler eliminate the `None` branch, where /// `Option::unwrap` does not. #[inline(always)] fn unwrap_option(value: Option) -> T { match value { None => unreachable!(), Some(value) => value, } } let (a, b) = self.inner.as_mut().expect("cannot poll Select twice"); if let Poll::Ready(val) = a.poll_unpin(cx) { return Poll::Ready(Either::Left((val, unwrap_option(self.inner.take()).1))); } if let Poll::Ready(val) = b.poll_unpin(cx) { return Poll::Ready(Either::Right((val, unwrap_option(self.inner.take()).0))); } Poll::Pending } } impl FusedFuture for Select where A: Future + Unpin, B: Future + Unpin, { fn is_terminated(&self) -> bool { self.inner.is_none() } }