//! [`IndexMap`] is a hash table where the iteration order of the key-value //! pairs is independent of the hash values of the keys. mod core; mod iter; mod mutable; mod slice; #[cfg(feature = "serde")] #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] pub mod serde_seq; #[cfg(test)] mod tests; pub use self::core::raw_entry_v1::{self, RawEntryApiV1}; pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry}; pub use self::iter::{ Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, Keys, Splice, Values, ValuesMut, }; pub use self::mutable::MutableKeys; pub use self::slice::Slice; #[cfg(feature = "rayon")] pub use crate::rayon::map as rayon; use ::core::cmp::Ordering; use ::core::fmt; use ::core::hash::{BuildHasher, Hash, Hasher}; use ::core::mem; use ::core::ops::{Index, IndexMut, RangeBounds}; use alloc::boxed::Box; use alloc::vec::Vec; #[cfg(feature = "std")] use std::collections::hash_map::RandomState; use self::core::IndexMapCore; use crate::util::{third, try_simplify_range}; use crate::{Bucket, Entries, Equivalent, HashValue, TryReserveError}; /// A hash table where the iteration order of the key-value pairs is independent /// of the hash values of the keys. /// /// The interface is closely compatible with the standard /// [`HashMap`][std::collections::HashMap], /// but also has additional features. /// /// # Order /// /// The key-value pairs have a consistent order that is determined by /// the sequence of insertion and removal calls on the map. The order does /// not depend on the keys or the hash function at all. /// /// All iterators traverse the map in *the order*. /// /// The insertion order is preserved, with **notable exceptions** like the /// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. /// Methods such as [`.sort_by()`][Self::sort_by] of /// course result in a new order, depending on the sorting order. /// /// # Indices /// /// The key-value pairs are indexed in a compact range without holes in the /// range `0..self.len()`. For example, the method `.get_full` looks up the /// index for a key, and the method `.get_index` looks up the key-value pair by /// index. /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// // count the frequency of each letter in a sentence. /// let mut letters = IndexMap::new(); /// for ch in "a short treatise on fungi".chars() { /// *letters.entry(ch).or_insert(0) += 1; /// } /// /// assert_eq!(letters[&'s'], 2); /// assert_eq!(letters[&'t'], 3); /// assert_eq!(letters[&'u'], 1); /// assert_eq!(letters.get(&'y'), None); /// ``` #[cfg(feature = "std")] pub struct IndexMap { pub(crate) core: IndexMapCore, hash_builder: S, } #[cfg(not(feature = "std"))] pub struct IndexMap { pub(crate) core: IndexMapCore, hash_builder: S, } impl Clone for IndexMap where K: Clone, V: Clone, S: Clone, { fn clone(&self) -> Self { IndexMap { core: self.core.clone(), hash_builder: self.hash_builder.clone(), } } fn clone_from(&mut self, other: &Self) { self.core.clone_from(&other.core); self.hash_builder.clone_from(&other.hash_builder); } } impl Entries for IndexMap { type Entry = Bucket; #[inline] fn into_entries(self) -> Vec { self.core.into_entries() } #[inline] fn as_entries(&self) -> &[Self::Entry] { self.core.as_entries() } #[inline] fn as_entries_mut(&mut self) -> &mut [Self::Entry] { self.core.as_entries_mut() } fn with_entries(&mut self, f: F) where F: FnOnce(&mut [Self::Entry]), { self.core.with_entries(f); } } impl fmt::Debug for IndexMap where K: fmt::Debug, V: fmt::Debug, { #[cfg(not(feature = "test_debug"))] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_map().entries(self.iter()).finish() } #[cfg(feature = "test_debug")] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // Let the inner `IndexMapCore` print all of its details f.debug_struct("IndexMap") .field("core", &self.core) .finish() } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl IndexMap { /// Create a new map. (Does not allocate.) #[inline] pub fn new() -> Self { Self::with_capacity(0) } /// Create a new map with capacity for `n` key-value pairs. (Does not /// allocate if `n` is zero.) /// /// Computes in **O(n)** time. #[inline] pub fn with_capacity(n: usize) -> Self { Self::with_capacity_and_hasher(n, <_>::default()) } } impl IndexMap { /// Create a new map with capacity for `n` key-value pairs. (Does not /// allocate if `n` is zero.) /// /// Computes in **O(n)** time. #[inline] pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { if n == 0 { Self::with_hasher(hash_builder) } else { IndexMap { core: IndexMapCore::with_capacity(n), hash_builder, } } } /// Create a new map with `hash_builder`. /// /// This function is `const`, so it /// can be called in `static` contexts. pub const fn with_hasher(hash_builder: S) -> Self { IndexMap { core: IndexMapCore::new(), hash_builder, } } /// Return the number of elements the map can hold without reallocating. /// /// This number is a lower bound; the map might be able to hold more, /// but is guaranteed to be able to hold at least this many. /// /// Computes in **O(1)** time. pub fn capacity(&self) -> usize { self.core.capacity() } /// Return a reference to the map's `BuildHasher`. pub fn hasher(&self) -> &S { &self.hash_builder } /// Return the number of key-value pairs in the map. /// /// Computes in **O(1)** time. #[inline] pub fn len(&self) -> usize { self.core.len() } /// Returns true if the map contains no elements. /// /// Computes in **O(1)** time. #[inline] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Return an iterator over the key-value pairs of the map, in their order pub fn iter(&self) -> Iter<'_, K, V> { Iter::new(self.as_entries()) } /// Return an iterator over the key-value pairs of the map, in their order pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { IterMut::new(self.as_entries_mut()) } /// Return an iterator over the keys of the map, in their order pub fn keys(&self) -> Keys<'_, K, V> { Keys::new(self.as_entries()) } /// Return an owning iterator over the keys of the map, in their order pub fn into_keys(self) -> IntoKeys { IntoKeys::new(self.into_entries()) } /// Return an iterator over the values of the map, in their order pub fn values(&self) -> Values<'_, K, V> { Values::new(self.as_entries()) } /// Return an iterator over mutable references to the values of the map, /// in their order pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { ValuesMut::new(self.as_entries_mut()) } /// Return an owning iterator over the values of the map, in their order pub fn into_values(self) -> IntoValues { IntoValues::new(self.into_entries()) } /// Remove all key-value pairs in the map, while preserving its capacity. /// /// Computes in **O(n)** time. pub fn clear(&mut self) { self.core.clear(); } /// Shortens the map, keeping the first `len` elements and dropping the rest. /// /// If `len` is greater than the map's current length, this has no effect. pub fn truncate(&mut self, len: usize) { self.core.truncate(len); } /// Clears the `IndexMap` in the given index range, returning those /// key-value pairs as a drain iterator. /// /// The range may be any type that implements [`RangeBounds`], /// including all of the `std::ops::Range*` types, or even a tuple pair of /// `Bound` start and end values. To drain the map entirely, use `RangeFull` /// like `map.drain(..)`. /// /// This shifts down all entries following the drained range to fill the /// gap, and keeps the allocated memory for reuse. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the map. pub fn drain(&mut self, range: R) -> Drain<'_, K, V> where R: RangeBounds, { Drain::new(self.core.drain(range)) } /// Splits the collection into two at the given index. /// /// Returns a newly allocated map containing the elements in the range /// `[at, len)`. After the call, the original map will be left containing /// the elements `[0, at)` with its previous capacity unchanged. /// /// ***Panics*** if `at > len`. pub fn split_off(&mut self, at: usize) -> Self where S: Clone, { Self { core: self.core.split_off(at), hash_builder: self.hash_builder.clone(), } } /// Reserve capacity for `additional` more key-value pairs. /// /// Computes in **O(n)** time. pub fn reserve(&mut self, additional: usize) { self.core.reserve(additional); } /// Reserve capacity for `additional` more key-value pairs, without over-allocating. /// /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn reserve_exact(&mut self, additional: usize) { self.core.reserve_exact(additional); } /// Try to reserve capacity for `additional` more key-value pairs. /// /// Computes in **O(n)** time. pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.core.try_reserve(additional) } /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating. /// /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid /// frequent re-allocations. However, the underlying data structures may still have internal /// capacity requirements, and the allocator itself may give more space than requested, so this /// cannot be relied upon to be precisely minimal. /// /// Computes in **O(n)** time. pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { self.core.try_reserve_exact(additional) } /// Shrink the capacity of the map as much as possible. /// /// Computes in **O(n)** time. pub fn shrink_to_fit(&mut self) { self.core.shrink_to(0); } /// Shrink the capacity of the map with a lower limit. /// /// Computes in **O(n)** time. pub fn shrink_to(&mut self, min_capacity: usize) { self.core.shrink_to(min_capacity); } } impl IndexMap where K: Hash + Eq, S: BuildHasher, { /// Insert a key-value pair in the map. /// /// If an equivalent key already exists in the map: the key remains and /// retains in its place in the order, its corresponding value is updated /// with `value`, and the older value is returned inside `Some(_)`. /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted, last in order, and `None` is returned. /// /// Computes in **O(1)** time (amortized average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify, /// or [`insert_full`][Self::insert_full] if you need to get the index of /// the corresponding key-value pair. pub fn insert(&mut self, key: K, value: V) -> Option { self.insert_full(key, value).1 } /// Insert a key-value pair in the map, and get their index. /// /// If an equivalent key already exists in the map: the key remains and /// retains in its place in the order, its corresponding value is updated /// with `value`, and the older value is returned inside `(index, Some(_))`. /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted, last in order, and `(index, None)` is returned. /// /// Computes in **O(1)** time (amortized average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify. pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option) { let hash = self.hash(&key); self.core.insert_full(hash, key, value) } /// Insert a key-value pair in the map at its ordered position among sorted keys. /// /// This is equivalent to finding the position with /// [`binary_search_keys`][Self::binary_search_keys], then either updating /// it or calling [`shift_insert`][Self::shift_insert] for a new key. /// /// If the sorted key is found in the map, its corresponding value is /// updated with `value`, and the older value is returned inside /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at /// the sorted position, and `(index, None)` is returned. /// /// If the existing keys are **not** already sorted, then the insertion /// index is unspecified (like [`slice::binary_search`]), but the key-value /// pair is moved to or inserted at that position regardless. /// /// Computes in **O(n)** time (average). Instead of repeating calls to /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys] /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once. pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option) where K: Ord, { match self.binary_search_keys(&key) { Ok(i) => (i, Some(mem::replace(&mut self[i], value))), Err(i) => (i, self.shift_insert(i, key, value)), } } /// Insert a key-value pair in the map at the given index. /// /// If an equivalent key already exists in the map: the key remains and /// is moved to the new position in the map, its corresponding value is updated /// with `value`, and the older value is returned inside `Some(_)`. /// /// If no equivalent key existed in the map: the new key-value pair is /// inserted at the given index, and `None` is returned. /// /// ***Panics*** if `index` is out of bounds. /// /// Computes in **O(n)** time (average). /// /// See also [`entry`][Self::entry] if you want to insert *or* modify, /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option { match self.entry(key) { Entry::Occupied(mut entry) => { let old = mem::replace(entry.get_mut(), value); entry.move_index(index); Some(old) } Entry::Vacant(entry) => { entry.shift_insert(index, value); None } } } /// Get the given key’s corresponding entry in the map for insertion and/or /// in-place manipulation. /// /// Computes in **O(1)** time (amortized average). pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { let hash = self.hash(&key); self.core.entry(hash, key) } /// Creates a splicing iterator that replaces the specified range in the map /// with the given `replace_with` key-value iterator and yields the removed /// items. `replace_with` does not need to be the same length as `range`. /// /// The `range` is removed even if the iterator is not consumed until the /// end. It is unspecified how many elements are removed from the map if the /// `Splice` value is leaked. /// /// The input iterator `replace_with` is only consumed when the `Splice` /// value is dropped. If a key from the iterator matches an existing entry /// in the map (outside of `range`), then the value will be updated in that /// position. Otherwise, the new key-value pair will be inserted in the /// replaced `range`. /// /// ***Panics*** if the starting point is greater than the end point or if /// the end point is greater than the length of the map. /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]); /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')]; /// let removed: Vec<_> = map.splice(2..4, new).collect(); /// /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted. /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')])); /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]); /// ``` pub fn splice(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S> where R: RangeBounds, I: IntoIterator, { Splice::new(self, range, replace_with.into_iter()) } } impl IndexMap where S: BuildHasher, { pub(crate) fn hash(&self, key: &Q) -> HashValue { let mut h = self.hash_builder.build_hasher(); key.hash(&mut h); HashValue(h.finish() as usize) } /// Return `true` if an equivalent to `key` exists in the map. /// /// Computes in **O(1)** time (average). pub fn contains_key(&self, key: &Q) -> bool where Q: ?Sized + Hash + Equivalent, { self.get_index_of(key).is_some() } /// Return a reference to the value stored for `key`, if it is present, /// else `None`. /// /// Computes in **O(1)** time (average). pub fn get(&self, key: &Q) -> Option<&V> where Q: ?Sized + Hash + Equivalent, { if let Some(i) = self.get_index_of(key) { let entry = &self.as_entries()[i]; Some(&entry.value) } else { None } } /// Return references to the key-value pair stored for `key`, /// if it is present, else `None`. /// /// Computes in **O(1)** time (average). pub fn get_key_value(&self, key: &Q) -> Option<(&K, &V)> where Q: ?Sized + Hash + Equivalent, { if let Some(i) = self.get_index_of(key) { let entry = &self.as_entries()[i]; Some((&entry.key, &entry.value)) } else { None } } /// Return item index, key and value pub fn get_full(&self, key: &Q) -> Option<(usize, &K, &V)> where Q: ?Sized + Hash + Equivalent, { if let Some(i) = self.get_index_of(key) { let entry = &self.as_entries()[i]; Some((i, &entry.key, &entry.value)) } else { None } } /// Return item index, if it exists in the map /// /// Computes in **O(1)** time (average). pub fn get_index_of(&self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { match self.as_entries() { [] => None, [x] => key.equivalent(&x.key).then_some(0), _ => { let hash = self.hash(key); self.core.get_index_of(hash, key) } } } pub fn get_mut(&mut self, key: &Q) -> Option<&mut V> where Q: ?Sized + Hash + Equivalent, { if let Some(i) = self.get_index_of(key) { let entry = &mut self.as_entries_mut()[i]; Some(&mut entry.value) } else { None } } pub fn get_full_mut(&mut self, key: &Q) -> Option<(usize, &K, &mut V)> where Q: ?Sized + Hash + Equivalent, { if let Some(i) = self.get_index_of(key) { let entry = &mut self.as_entries_mut()[i]; Some((i, &entry.key, &mut entry.value)) } else { None } } /// Remove the key-value pair equivalent to `key` and return /// its value. /// /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this /// entry's position with the last element, and it is deprecated in favor of calling that /// explicitly. If you need to preserve the relative order of the keys in the map, use /// [`.shift_remove(key)`][Self::shift_remove] instead. #[deprecated(note = "`remove` disrupts the map order -- \ use `swap_remove` or `shift_remove` for explicit behavior.")] pub fn remove(&mut self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.swap_remove(key) } /// Remove and return the key-value pair equivalent to `key`. /// /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry], /// replacing this entry's position with the last element, and it is deprecated in favor of /// calling that explicitly. If you need to preserve the relative order of the keys in the map, /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead. #[deprecated(note = "`remove_entry` disrupts the map order -- \ use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")] pub fn remove_entry(&mut self, key: &Q) -> Option<(K, V)> where Q: ?Sized + Hash + Equivalent, { self.swap_remove_entry(key) } /// Remove the key-value pair equivalent to `key` and return /// its value. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove(&mut self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.swap_remove_full(key).map(third) } /// Remove and return the key-value pair equivalent to `key`. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove_entry(&mut self, key: &Q) -> Option<(K, V)> where Q: ?Sized + Hash + Equivalent, { match self.swap_remove_full(key) { Some((_, key, value)) => Some((key, value)), None => None, } } /// Remove the key-value pair equivalent to `key` and return it and /// the index it had. /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(1)** time (average). pub fn swap_remove_full(&mut self, key: &Q) -> Option<(usize, K, V)> where Q: ?Sized + Hash + Equivalent, { match self.as_entries() { [x] if key.equivalent(&x.key) => { let (k, v) = self.core.pop()?; Some((0, k, v)) } [_] | [] => None, _ => { let hash = self.hash(key); self.core.swap_remove_full(hash, key) } } } /// Remove the key-value pair equivalent to `key` and return /// its value. /// /// Like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn shift_remove(&mut self, key: &Q) -> Option where Q: ?Sized + Hash + Equivalent, { self.shift_remove_full(key).map(third) } /// Remove and return the key-value pair equivalent to `key`. /// /// Like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn shift_remove_entry(&mut self, key: &Q) -> Option<(K, V)> where Q: ?Sized + Hash + Equivalent, { match self.shift_remove_full(key) { Some((_, key, value)) => Some((key, value)), None => None, } } /// Remove the key-value pair equivalent to `key` and return it and /// the index it had. /// /// Like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Return `None` if `key` is not in map. /// /// Computes in **O(n)** time (average). pub fn shift_remove_full(&mut self, key: &Q) -> Option<(usize, K, V)> where Q: ?Sized + Hash + Equivalent, { match self.as_entries() { [x] if key.equivalent(&x.key) => { let (k, v) = self.core.pop()?; Some((0, k, v)) } [_] | [] => None, _ => { let hash = self.hash(key); self.core.shift_remove_full(hash, key) } } } } impl IndexMap { /// Remove the last key-value pair /// /// This preserves the order of the remaining elements. /// /// Computes in **O(1)** time (average). pub fn pop(&mut self) -> Option<(K, V)> { self.core.pop() } /// Scan through each key-value pair in the map and keep those where the /// closure `keep` returns `true`. /// /// The elements are visited in order, and remaining elements keep their /// order. /// /// Computes in **O(n)** time (average). pub fn retain(&mut self, mut keep: F) where F: FnMut(&K, &mut V) -> bool, { self.core.retain_in_order(move |k, v| keep(k, v)); } /// Sort the map’s key-value pairs by the default ordering of the keys. /// /// This is a stable sort -- but equivalent keys should not normally coexist in /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred /// because it is generally faster and doesn't allocate auxiliary memory. /// /// See [`sort_by`](Self::sort_by) for details. pub fn sort_keys(&mut self) where K: Ord, { self.with_entries(move |entries| { entries.sort_by(move |a, b| K::cmp(&a.key, &b.key)); }); } /// Sort the map’s key-value pairs in place using the comparison /// function `cmp`. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). /// /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is /// the length of the map and *c* the capacity. The sort is stable. pub fn sort_by(&mut self, mut cmp: F) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.with_entries(move |entries| { entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); }); } /// Sort the key-value pairs of the map and return a by-value iterator of /// the key-value pairs with the result. /// /// The sort is stable. pub fn sorted_by(self, mut cmp: F) -> IntoIter where F: FnMut(&K, &V, &K, &V) -> Ordering, { let mut entries = self.into_entries(); entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); IntoIter::new(entries) } /// Sort the map's key-value pairs by the default ordering of the keys, but /// may not preserve the order of equal elements. /// /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. pub fn sort_unstable_keys(&mut self) where K: Ord, { self.with_entries(move |entries| { entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key)); }); } /// Sort the map's key-value pairs in place using the comparison function `cmp`, but /// may not preserve the order of equal elements. /// /// The comparison function receives two key and value pairs to compare (you /// can sort by keys or values or their combination as needed). /// /// Computes in **O(n log n + c)** time where *n* is /// the length of the map and *c* is the capacity. The sort is unstable. pub fn sort_unstable_by(&mut self, mut cmp: F) where F: FnMut(&K, &V, &K, &V) -> Ordering, { self.with_entries(move |entries| { entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); }); } /// Sort the key-value pairs of the map and return a by-value iterator of /// the key-value pairs with the result. /// /// The sort is unstable. #[inline] pub fn sorted_unstable_by(self, mut cmp: F) -> IntoIter where F: FnMut(&K, &V, &K, &V) -> Ordering, { let mut entries = self.into_entries(); entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); IntoIter::new(entries) } /// Sort the map’s key-value pairs in place using a sort-key extraction function. /// /// During sorting, the function is called at most once per entry, by using temporary storage /// to remember the results of its evaluation. The order of calls to the function is /// unspecified and may change between versions of `indexmap` or the standard library. /// /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. pub fn sort_by_cached_key(&mut self, mut sort_key: F) where T: Ord, F: FnMut(&K, &V) -> T, { self.with_entries(move |entries| { entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value)); }); } /// Search over a sorted map for a key. /// /// Returns the position where that key is present, or the position where it can be inserted to /// maintain the sort. See [`slice::binary_search`] for more details. /// /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys. pub fn binary_search_keys(&self, x: &K) -> Result where K: Ord, { self.as_slice().binary_search_keys(x) } /// Search over a sorted map with a comparator function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result where F: FnMut(&'a K, &'a V) -> Ordering, { self.as_slice().binary_search_by(f) } /// Search over a sorted map with an extraction function. /// /// Returns the position where that value is present, or the position where it can be inserted /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. /// /// Computes in **O(log(n))** time. #[inline] pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result where F: FnMut(&'a K, &'a V) -> B, B: Ord, { self.as_slice().binary_search_by_key(b, f) } /// Returns the index of the partition point of a sorted map according to the given predicate /// (the index of the first element of the second partition). /// /// See [`slice::partition_point`] for more details. /// /// Computes in **O(log(n))** time. #[must_use] pub fn partition_point

(&self, pred: P) -> usize where P: FnMut(&K, &V) -> bool, { self.as_slice().partition_point(pred) } /// Reverses the order of the map’s key-value pairs in place. /// /// Computes in **O(n)** time and **O(1)** space. pub fn reverse(&mut self) { self.core.reverse() } /// Returns a slice of all the key-value pairs in the map. /// /// Computes in **O(1)** time. pub fn as_slice(&self) -> &Slice { Slice::from_slice(self.as_entries()) } /// Returns a mutable slice of all the key-value pairs in the map. /// /// Computes in **O(1)** time. pub fn as_mut_slice(&mut self) -> &mut Slice { Slice::from_mut_slice(self.as_entries_mut()) } /// Converts into a boxed slice of all the key-value pairs in the map. /// /// Note that this will drop the inner hash table and any excess capacity. pub fn into_boxed_slice(self) -> Box> { Slice::from_boxed(self.into_entries().into_boxed_slice()) } /// Get a key-value pair by index /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_index(&self, index: usize) -> Option<(&K, &V)> { self.as_entries().get(index).map(Bucket::refs) } /// Get a key-value pair by index /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> { self.as_entries_mut().get_mut(index).map(Bucket::ref_mut) } /// Get an entry in the map by index for in-place manipulation. /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_index_entry(&mut self, index: usize) -> Option> { if index >= self.len() { return None; } Some(IndexedEntry::new(&mut self.core, index)) } /// Returns a slice of key-value pairs in the given range of indices. /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_range>(&self, range: R) -> Option<&Slice> { let entries = self.as_entries(); let range = try_simplify_range(range, entries.len())?; entries.get(range).map(Slice::from_slice) } /// Returns a mutable slice of key-value pairs in the given range of indices. /// /// Valid indices are *0 <= index < self.len()* /// /// Computes in **O(1)** time. pub fn get_range_mut>(&mut self, range: R) -> Option<&mut Slice> { let entries = self.as_entries_mut(); let range = try_simplify_range(range, entries.len())?; entries.get_mut(range).map(Slice::from_mut_slice) } /// Get the first key-value pair /// /// Computes in **O(1)** time. pub fn first(&self) -> Option<(&K, &V)> { self.as_entries().first().map(Bucket::refs) } /// Get the first key-value pair, with mutable access to the value /// /// Computes in **O(1)** time. pub fn first_mut(&mut self) -> Option<(&K, &mut V)> { self.as_entries_mut().first_mut().map(Bucket::ref_mut) } /// Get the last key-value pair /// /// Computes in **O(1)** time. pub fn last(&self) -> Option<(&K, &V)> { self.as_entries().last().map(Bucket::refs) } /// Get the last key-value pair, with mutable access to the value /// /// Computes in **O(1)** time. pub fn last_mut(&mut self) -> Option<(&K, &mut V)> { self.as_entries_mut().last_mut().map(Bucket::ref_mut) } /// Remove the key-value pair by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the /// last element of the map and popping it off. **This perturbs /// the position of what used to be the last element!** /// /// Computes in **O(1)** time (average). pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> { self.core.swap_remove_index(index) } /// Remove the key-value pair by index /// /// Valid indices are *0 <= index < self.len()* /// /// Like [`Vec::remove`], the pair is removed by shifting all of the /// elements that follow it, preserving their relative order. /// **This perturbs the index of all of those elements!** /// /// Computes in **O(n)** time (average). pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> { self.core.shift_remove_index(index) } /// Moves the position of a key-value pair from one index to another /// by shifting all other pairs in-between. /// /// * If `from < to`, the other pairs will shift down while the targeted pair moves up. /// * If `from > to`, the other pairs will shift up while the targeted pair moves down. /// /// ***Panics*** if `from` or `to` are out of bounds. /// /// Computes in **O(n)** time (average). pub fn move_index(&mut self, from: usize, to: usize) { self.core.move_index(from, to) } /// Swaps the position of two key-value pairs in the map. /// /// ***Panics*** if `a` or `b` are out of bounds. /// /// Computes in **O(1)** time (average). pub fn swap_indices(&mut self, a: usize, b: usize) { self.core.swap_indices(a, b) } } /// Access [`IndexMap`] values corresponding to a key. /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_uppercase()); /// } /// assert_eq!(map["lorem"], "LOREM"); /// assert_eq!(map["ipsum"], "IPSUM"); /// ``` /// /// ```should_panic /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// map.insert("foo", 1); /// println!("{:?}", map["bar"]); // panics! /// ``` impl Index<&Q> for IndexMap where Q: Hash + Equivalent, S: BuildHasher, { type Output = V; /// Returns a reference to the value corresponding to the supplied `key`. /// /// ***Panics*** if `key` is not present in the map. fn index(&self, key: &Q) -> &V { self.get(key).expect("IndexMap: key not found") } } /// Access [`IndexMap`] values corresponding to a key. /// /// Mutable indexing allows changing / updating values of key-value /// pairs that are already present. /// /// You can **not** insert new pairs with index syntax, use `.insert()`. /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_string()); /// } /// let lorem = &mut map["lorem"]; /// assert_eq!(lorem, "Lorem"); /// lorem.retain(char::is_lowercase); /// assert_eq!(map["lorem"], "orem"); /// ``` /// /// ```should_panic /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// map.insert("foo", 1); /// map["bar"] = 1; // panics! /// ``` impl IndexMut<&Q> for IndexMap where Q: Hash + Equivalent, S: BuildHasher, { /// Returns a mutable reference to the value corresponding to the supplied `key`. /// /// ***Panics*** if `key` is not present in the map. fn index_mut(&mut self, key: &Q) -> &mut V { self.get_mut(key).expect("IndexMap: key not found") } } /// Access [`IndexMap`] values at indexed positions. /// /// See [`Index for Keys`][keys] to access a map's keys instead. /// /// [keys]: Keys#impl-Index-for-Keys<'a,+K,+V> /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_uppercase()); /// } /// assert_eq!(map[0], "LOREM"); /// assert_eq!(map[1], "IPSUM"); /// map.reverse(); /// assert_eq!(map[0], "AMET"); /// assert_eq!(map[1], "SIT"); /// map.sort_keys(); /// assert_eq!(map[0], "AMET"); /// assert_eq!(map[1], "DOLOR"); /// ``` /// /// ```should_panic /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// map.insert("foo", 1); /// println!("{:?}", map[10]); // panics! /// ``` impl Index for IndexMap { type Output = V; /// Returns a reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index(&self, index: usize) -> &V { self.get_index(index) .expect("IndexMap: index out of bounds") .1 } } /// Access [`IndexMap`] values at indexed positions. /// /// Mutable indexing allows changing / updating indexed values /// that are already present. /// /// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert]. /// /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { /// map.insert(word.to_lowercase(), word.to_string()); /// } /// let lorem = &mut map[0]; /// assert_eq!(lorem, "Lorem"); /// lorem.retain(char::is_lowercase); /// assert_eq!(map["lorem"], "orem"); /// ``` /// /// ```should_panic /// use indexmap::IndexMap; /// /// let mut map = IndexMap::new(); /// map.insert("foo", 1); /// map[10] = 1; // panics! /// ``` impl IndexMut for IndexMap { /// Returns a mutable reference to the value at the supplied `index`. /// /// ***Panics*** if `index` is out of bounds. fn index_mut(&mut self, index: usize) -> &mut V { self.get_index_mut(index) .expect("IndexMap: index out of bounds") .1 } } impl FromIterator<(K, V)> for IndexMap where K: Hash + Eq, S: BuildHasher + Default, { /// Create an `IndexMap` from the sequence of key-value pairs in the /// iterable. /// /// `from_iter` uses the same logic as `extend`. See /// [`extend`][IndexMap::extend] for more details. fn from_iter>(iterable: I) -> Self { let iter = iterable.into_iter(); let (low, _) = iter.size_hint(); let mut map = Self::with_capacity_and_hasher(low, <_>::default()); map.extend(iter); map } } #[cfg(feature = "std")] #[cfg_attr(docsrs, doc(cfg(feature = "std")))] impl From<[(K, V); N]> for IndexMap where K: Hash + Eq, { /// # Examples /// /// ``` /// use indexmap::IndexMap; /// /// let map1 = IndexMap::from([(1, 2), (3, 4)]); /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into(); /// assert_eq!(map1, map2); /// ``` fn from(arr: [(K, V); N]) -> Self { Self::from_iter(arr) } } impl Extend<(K, V)> for IndexMap where K: Hash + Eq, S: BuildHasher, { /// Extend the map with all key-value pairs in the iterable. /// /// This is equivalent to calling [`insert`][IndexMap::insert] for each of /// them in order, which means that for keys that already existed /// in the map, their value is updated but it keeps the existing order. /// /// New keys are inserted in the order they appear in the sequence. If /// equivalents of a key occur more than once, the last corresponding value /// prevails. fn extend>(&mut self, iterable: I) { // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.) // Keys may be already present or show multiple times in the iterator. // Reserve the entire hint lower bound if the map is empty. // Otherwise reserve half the hint (rounded up), so the map // will only resize twice in the worst case. let iter = iterable.into_iter(); let reserve = if self.is_empty() { iter.size_hint().0 } else { (iter.size_hint().0 + 1) / 2 }; self.reserve(reserve); iter.for_each(move |(k, v)| { self.insert(k, v); }); } } impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap where K: Hash + Eq + Copy, V: Copy, S: BuildHasher, { /// Extend the map with all key-value pairs in the iterable. /// /// See the first extend method for more details. fn extend>(&mut self, iterable: I) { self.extend(iterable.into_iter().map(|(&key, &value)| (key, value))); } } impl Default for IndexMap where S: Default, { /// Return an empty [`IndexMap`] fn default() -> Self { Self::with_capacity_and_hasher(0, S::default()) } } impl PartialEq> for IndexMap where K: Hash + Eq, V1: PartialEq, S1: BuildHasher, S2: BuildHasher, { fn eq(&self, other: &IndexMap) -> bool { if self.len() != other.len() { return false; } self.iter() .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) } } impl Eq for IndexMap where K: Eq + Hash, V: Eq, S: BuildHasher, { }